Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Σχετικά έγγραφα
Oscillatory integrals

INTEGRAL INEQUALITY REGARDING r-convex AND

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Oscillation criteria for third-order nonlinear neutral differential equations with distributed deviating arguments

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

ST5224: Advanced Statistical Theory II

Homomorphism in Intuitionistic Fuzzy Automata

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Section 8.3 Trigonometric Equations

Fractional Colorings and Zykov Products of graphs

C.S. 430 Assignment 6, Sample Solutions

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

2 Composition. Invertible Mappings

Solutions_3. 1 Exercise Exercise January 26, 2017

Congruence Classes of Invertible Matrices of Order 3 over F 2

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Every set of first-order formulas is equivalent to an independent set

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Example Sheet 3 Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Uniform Convergence of Fourier Series Michael Taylor

Section 7.6 Double and Half Angle Formulas

Matrices and Determinants

Problem Set 3: Solutions

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

New bounds for spherical two-distance sets and equiangular lines

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

EE512: Error Control Coding

Approximation of distance between locations on earth given by latitude and longitude

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

A Note on Intuitionistic Fuzzy. Equivalence Relation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

The Simply Typed Lambda Calculus

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

w o = R 1 p. (1) R = p =. = 1

f (x) g (x) f (x) g (x) + f (x) g (x) f (x) g (x) Solved Examples Example 2: Prove that the determinant sinθ x 1

SOME PROPERTIES OF FUZZY REAL NUMBERS

12. Radon-Nikodym Theorem

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Some definite integrals connected with Gauss s sums

1. Introduction and Preliminaries.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Concrete Mathematics Exercises from 30 September 2016

The Pohozaev identity for the fractional Laplacian

Other Test Constructions: Likelihood Ratio & Bayes Tests

Math221: HW# 1 solutions

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Finite Field Problems: Solutions

Lecture 21: Properties and robustness of LSE

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

The challenges of non-stable predicates

Second Order RLC Filters

Statistical Inference I Locally most powerful tests

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 3 Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Differentiation exercise show differential equation

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Reminders: linear functions

Inverse trigonometric functions & General Solution of Trigonometric Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Chapter 3: Ordinal Numbers

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Areas and Lengths in Polar Coordinates

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Homomorphism of Intuitionistic Fuzzy Groups

On Inclusion Relation of Absolute Summability

Commutative Monoids in Intuitionistic Fuzzy Sets

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Bounding Nonsplitting Enumeration Degrees

The semiclassical Garding inequality

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

6.3 Forecasting ARMA processes

A General Note on δ-quasi Monotone and Increasing Sequence

A summation formula ramified with hypergeometric function and involving recurrence relation

Cyclic or elementary abelian Covers of K 4

Mining Syntactic Structures from Text Database

Quadratic Expressions

Risk! " #$%&'() *!'+,'''## -. / # $

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Appendix S1 1. ( z) α βc. dβ β δ β

F A S C I C U L I M A T H E M A T I C I

c 2007 Society for Industrial and Applied Mathematics

On a p(x)-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Transcript:

Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui [],* [] College of Siene, Hunn Institute of Engineering, Chin. * Corresponding uthor. Address: College of Siene, Hunn Institute of Engineering, 88 Est Fuxing Rod, Xingtn, Hunn 44, Chin; E-Mil: gh9@63.om Reeived: September 3, / Aepted: November 3, / Published: November 3, Abstrt: In this pper, we onsider ertin nonliner prtil differene equtions A m+,n A m,n+ A m,n + p i m, n)a m σi,n τ i = where, b,, ), u is positive integer, p i m, n), i =,,, u) re positive rel sequenes. σ i, τ i N = {,, }, i =,,, u. A new omprison theorem for osilltion of the bove eqution is obtined. Key words: Nonliner prtil; Differene equtions; Eventully positive solutions LIU, G. ). Osilltion of Nonliner Dely Prtil Differene Equtions. Studies in Mthemtil Sienes, 5 ), 9 97. Avilble from http://www.snd.net/index.php/ sms/rtile/view/j.sms.938455.58 DOI:.3968/j.sms.938455.58. INTRODUCTION In this pper we onsider nonliner prtil differene eqution A m+,n A m,n+ A m,n + p i m, n)a m σi,n τ i =.) where, b,, ), u is positive integer, p i m, n), i =,,, u) re positive rel sequenes. σ i, τ i N = {,, }, i =,,, u. The purpose of this pper is to obtin new omprison theorem for osilltion of ll solutions of.). 9

LIU, G./Studies in Mthemtil Sienes, 5 ),. MAIN RESULTS To prove our min result, we need severl preprtory results. Lemm.. Assume tht {A m,n } is positive solution of.). Then i : A m+,n θ A m,n, A m,n+ A m,n,.) nd ii : A m σi,n τ i θ σ σi θ τ τi A m σ,n,.) where θ =, = b, σ = min i u {σ i}, = min i u {τ i}. Proof. Assume tht {A m,n } is eventully positive solutions of.). From.), we hve A m+,n A m,n+ A m,n = p i m, n)a m σi,n τ i, nd so A m+,n A m,n+ A m,n. Hene A m+,n θ A m,n nd A m,n+ A m,n. From the bove inequlity, we n find A m,n θ σ A m σ,n θ σi A m σ i,n, A m σ,n θ τ A m σ,n, nd A m σi,n θ τ A m σ i,n θ τi A m σ i,n τ i. Hene A m,n θ σ θτ A m σ,n θ σi θτi A m σ i,n τi. The proof of Lemm. is ompleted. Lemm.. [] If x, y R + nd x y, then rx r x y) > x r y r > ry r x y), for r >. Theorem.. If the differene inequlity A m+,n A m,n+ A m,n + θ σ σi θ τ τi p i m, n)a m σ,n.3) hs no eventully positive solutions, then every solution of eqution.) osilltes. Proof. Assume tht {A m,n } is positive solution of eqution.). Then, by.) nd Lemm., we obtin A m+,n A m,n+ A m,n + p i m, n)a m σi,n τ i.4) Substituting.) into.4), we hve A m+,n A m,n+ A m,n + This ontrdition ompletes the proof. θ σ σi θ τ τi p i m, n)a m σ,n. 9

Osilltion of Nonliner Dely Prtil Differene Equtions Define set E by where Q m,n = u E = {λ > λq m,n >, eventully} θ σ σi θ τ τi p i m, n). Theorem.. Assume tht i) lim Q m,n > ; ii) there exists M m, N n suh tht if σ > >, λ E,M m,n n nd if > σ >, λ E,M m,n n σ j= σ σ j= σ λq m i j,n i ) < ) τ, θ σ λq m i,n i j ) < Then every solution of.) osilltes. θ..5).6) Proof. Suppose, to the ontrry, A m,n is n eventully positive solution. We define subset S of the positive numbers s follows: Sλ) = {λ > A m+,n A m,n+ [ λq m,n ]A m,n, From.3) nd Lemm., we hve A m+,n A m,n+ θ σ θ τ Q m,n )A m,n, eventully}. whih implies θ σ θ τ Sλ). Hene, Sλ) is nonempty. For λ S, we hve eventully tht λq m,n >, whih implies tht S E, Due to ondition i), the set E is bounded, nd hene, Sλ) is bounded. Let u S. Then from Lemm., we hve ) A m+,n+ A m+,n A m,n+ θ uq m,n )A m,n. If σ > >, then A m,n ) τ uq m i,n i )A m τ,n τ θ, nd for j =,,, σ, we hve A m j,n θ j ) τ τ θ uq m i j,n i )A m τ j,n ) τ τ uq m i j,n i )A m σ,n. 9.7)

LIU, G./Studies in Mthemtil Sienes, 5 ), Now, from Lemm. nd.7), it follows tht A σ τ m,n i.e., A m,n θ ) τσ ) ) θ ) τσ ) ) Similrly, if > σ >, then A m,n θ ) σ σ ) ) [ σ j= [ σ j= σ j= uq m i j,n i ) A σ τ m σ,n, ] σ uq m i j,n i ) Am σ,n τ..8) ] σ uq m i,n i j ) Am σ,n. Substituting.8) nd.9) into.3), we get respetively, for σ >,.9) A m+,n A m,n+ A m,n +Q m,n ) τ θ nd for > σ, σ j= σ uq m i j,n i ) Am,n, A m+,n A m,n+ A m,n +Q m,n θ Hene, for σ >, σ σ j= σ uq m i,n i j ) Am,n. A m+,n A m,n+ { Q m,n ) τ θ [ σ τ ] τ j= uq } m i j,n i) σ Am,n, m M,n N 93.)

Osilltion of Nonliner Dely Prtil Differene Equtions nd for > σ, A m+,n A m,n+ { Q m,n θ [ τ σ ] σ j= uq } m i,n i j) σ Am,n. m M,n N.) From.) nd.), we get ) τ θ nd θ m M,n N m M,n N [ σ j= [ τ σ j= ] τ uq m i j,n i) ] σ uq m i,n i j) σ S for σ >,.) σ S for > σ..3) On the other hnd,.5) implies tht there exists, ) we n hoose the sme) suh tht for σ > λ E,m M,n N σ j= σ λq m i j,n i ) ) τ, θ.4) nd.6) implies tht there exists, ) we n hoose the sme) suh tht for > σ >, λ E,M m,n n σ σ j= σ λq m i,n i j ) In prtiulr,.4) nd.5) led to when λ = u), respetively, ) τ [ σ τ θ λ E,m M,n N j= 94 uq m i j,n i ) ] θ..5) σ u for σ >,.6)

LIU, G./Studies in Mthemtil Sienes, 5 ), nd [ σ θ λ E,M m,n n j= σ uq m i,n i j ) ] σ u for > σ..7) Sine u S nd u u implies tht u S, it follows from.) nd.6) for σ >,.3) nd.7) for > σ tht u S. Repeting the bove rguments with u repled by u u, we get S, where, ). Continuing in this wy, u we obtin S, where i, ). This ontrdits the boundedness of S. i The proof is omplete. Corollry.. In ddition to i) of Theorem., ssume tht for σ > >, σ lim inf σ ) j= nd for > σ >, τ lim inf σ σ )σ j= σ Q m i j,n i > Q m i,n i j > Then every solution of.) osilltes. Proof. We note tht We shll use this for mx λ e >λ> λe)τ = τ+ τ e + ) τ+. τ+ τ τ + ) τ+ ) τ, θ σ+ σ σ σ + + ) σ. θ e = σ ) σ j= Q m i j,n i. Clerly, σ τ λ[ j= λ[ σ ) λq m i j,n i )] σ j= λ λ[ σ ) σ j= 95 σ λq m i j,n i )] τ Q m i j,n i )] τ

Osilltion of Nonliner Dely Prtil Differene Equtions Similrly, we hve σ σ j= τ+ τ τ e + ) τ+ < θ ) τ. σ λq m i,n i j ) < θ. By Theorem., every solutions of.) osilltes. The proof is omplete. By similr rgument, we hve the following results: Corollry.. If the ondition of Theorem. holds, nd lim inf Q m,n = q > σ+ σ σ σ + + ) σ, θ then every solution of.) osilltes. Theorem.3. Assume tht i) lim Q m,n > ; ii) for σ, >, lim inf Q m,n = q >,.) nd lim Q m,n > θ σ θτ θ q >..) Then every solution of.) osilltes. Proof. Suppose, to the ontrry, A m,n is n eventully positive solution. From.3) nd.), for ny ɛ >, we hve Q m,n > q ɛ for m M, n N. From.3), Lemm. nd bove inequlity, we obtin A m,n A m,n q ɛ) A m σ,n τ q ɛ) θ σ θ τ A m,n, nd A m,n q ɛ) θ σ θ τ A m,n, q ɛ) θ σ θ τ A m,n. Substituting bove inequlities into.3), we get [ ] θ σ θ τ θ σ θ τ q ɛ) + Q m,n θ σ θ τ A m,n <, whih implies lim Q m,n θ σ θτ θ q >. This ontrdits.). The proof is omplete. 96

LIU, G./Studies in Mthemtil Sienes, 5 ), Theorem.4. Assume tht i) lim Q m,n > ; ii) σ = =, nd lim Q m,n >..). Then every solution of.) osilltes. Proof. Let u S. Then from.3) nd Lemm., we hve + Q m,n A m,n <, whih implies lim Q m,n. This ontrdits.). The proof is omplete. REFERENCES [] YU, J. S., ZHANG, B. G., & WANG, Z. C. 994). Osilltion of dely differene eqution. Applible Anlysis, 53, 8-4. [] ZHANG, B. G., & ZHOU, Y. ). Osilltion of kind of two-vrible funtion eqution. Computers nd Mthemtis with Applition, 4, 369-378. [3] Bohner, M., & Cstillo, J. E. ). Mimeti methods on mesure hins. Comput. Mth. Appl., 4, 75-7. [4] Tnigw, T. 3). Osilltion nd nonosilltion theorems for lss of fourth order qusiliner funtionl differentil equtions. Hiroshim Mth., 33, 97-36. [5] Bohner, M., & Peterson, A. ). Dynmi equtions on time sles: n introdution with pplitions. Boston: Birkhnser. [6] LIU, G. H., & LIU, L. CH. ). Nonosilltion for system of neutrl dely dynmi eqution on time sles. Studies in Mthemtil Sienes, 3, 6-3. [7] ZHANG, B. G., & YANG, B. 999). Osilltion in higher order nonliner differene eqution. Chznese Ann. Mth.,, 7-8. [8] ZHOU, Y. ). Osilltion of higher-order liner differene equtions. Advne of Diflerene Equtions III: Speil Issue of Computers Mth. Applition, 4, 33-33. [9] Llli, B. S., & ZHANG, B. G. 99). On existene of positive solutions nd bounded osilltions for neutrl differene equtions. J. Mth. Anl. Appl., 66, 7-87. [] ZHANG, B. G., & ZHOU, Y. ). Osilltion nd nonosilltion of seond order liner differene eqution. Computers Mth. Applition, 39, -7. [] Erbe, L., & Peterson, A. ). Osilltion riteri for seond order mtrix dynmi equtions on time sle. In R. P. Agrwl, M. Bohner, & D. O Regn Eds.), Speil Issue on Dynmi Equtions on Time Sles. J. Comput. Appl. Mth., 4, 69-85. [] Erbe, L., & Peterson, A. 4). Boundedness nd osilltion for nonliner dynmi equtions on time sle. Pro. Amer. Mth. So., 3, 735-744. 97