2004 62 14, 1349 1352 ACTA CHIMICA SINICA Vol 62, 2004 No 14, 1349 1352 Ni2Sn2B/ SiO 2 Ξ ( 200433) Ξ Ξ Ni2Sn2B/ SiO 2 Sn Sn XRD,Sn, SEM Sn, Sn/ SiO 2 = 10 wt % 9715 % 015 %, XPS, Sn Ni2Sn2B/ SiO 2 Highly Selective Amorphous Ni2Sn2B/ SiO 2 Catalysts in Acetophenone Hydrogenation to 12Phenyl Ethanol WANG, You2Zhen QIAO, Ming2Hua HU, Hua2Rong YAN, Shi2Run WANG, Wei2Jiang Ξ FAN, Kang2Nian Ξ ( Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Fudan University, Shanghai 200433) Abstract A series of amorphous Ni2Sn2B/ SiO 2 catalysts with different tin contents were prepared by salt impregnation and KBH 4 reduction The as2prepared catalysts exhibited excellent activity and selectivity in liquid phase hydrogenation of acetophenone (AP) to 12phenyl ethanol ( PE) A PE yield as high as 9715 % was achieved over the 10 % Sn2NiB/ SiO 2 catalyst, which is much higher than that over the amorphous Ni2B/ SiO 2 or industrial Raney Ni catalyst According to the characterizations including ICP, nitrogen physisorption, XRD, SEM, DSC and XPS, the superior catalytic behavior of the amorphous Ni2Sn2B/ SiO 2 catalysts is attributed to the unique electronic structure of the amorphous alloy, the enhanced dispersion of the active components, as well as the activation of the carbonyl group by surface tin oxide Keywords Ni2Sn2B/ SiO 2, amorphous alloy, acetophenone, 12phenyl ethanol, selective hydrogenation ( ), Raney Ni [1],,, [4,5] [1 3], Ξ E2mail : knfan @fudan edu cn ; wjwang @fudan edu cn Received January 31, 2004 ; revised and accepted March 30, 2004 973 (No G2000048009) (No 20203004) (Nos 02ZA14006, 03QB14004)
1350 Vol 62, 2004 1, 2 = 22 SiO 2, Sn Ni2Sn2B/ SiO 2 Sn/ SiO 2 = 10 wt %, 1 2 = 45, Ni [4,5,7 9715 %,,8],10 % Sn2NiB/ SiO 2 Ni2B/ SiO 2, Sn [8] 1 1 IRIS Intrepid ; Bruker AXS D8 Advance X ; SETRAM DSC2 141 ; Philips XL 30 ; Micromeritics TriStar 3000 ; Perkin2Elmer PHI 5000C ESCA X ; GC122 (30 m PEG220M, 0132 mm, 015 m) 1 2 SnCl 2 314 ml 0150 mol L - 1 NiCl 2, 110 g SiO 2 ( S BET = 441 m 2 g - 1, 40 60 mesh) 10 min 70 1 Ni2B/ SiO 2 10 % Sn2Ni2B/ SiO 2 XRD, 120 12 h, 200 210 h 618 ml 110 mol L - 1 KBH 4 Figure 1 XRD patterns of the amorphous Ni2B/ SiO 2 and 10 % Sn2 Ni2B/ SiO Sn 2 + 2 catalysts / SiO 2, Sn Ni2Sn2B/ SiO 2 Ni2B/ SiO 2 10 % Sn2NiB/ SiO 2 SEM 220 ml ( 2), 510 ml 50 ml [5,8] SEM 3 80 10 % Sn2NiB/ SiO 2, 210 MPa, 1000 r/ 30 nm Ni2B/ SiO 2, 53 min,, nm Sn 2 2 2 (PE) (CHMK) 2 1 (CHE), Ni2Sn2B/ SiO 2 ( EB) 1 1, 90 % NiCl 2 30 % 40 % Sn 2 Ni2Sn2B/ SiO 2, Sn Ni,, Ni2 B Sn Sn2B/ SiO 2 Ni2B/ SiO 2, 349 m 2 Ni2B/ SiO 2 8815 % g - 1 ; Sn/ SiO 2 20 %, 286 m 2 9918 % t max = 515 h Sn g - 1 Sn, 20 % Sn2NiB/ SiO 2 DSC 10 % Sn2NiB/ SiO 2 9715 %, Ni2B/ SiO 2 84 K [6], Raney Ni ( 8210 % Sn Ni (Sn : 01155 nm, 9719 %) [1], Ni : 01125 nm), 015 % Sn,,,Sn 1 Ni2B/ SiO 2 10 % Sn2NiB/ SiO 2 XRD 3 [1 3] (AP) 2 %
No 14 : Ni2Sn2B/ SiO 2 1351 1 Ni2Sn2B/ SiO 2 Table 1 Some physicochemical characters of the as2prepared Ni2Sn2B/ SiO 2 catalysts Catalyst Ni loading (wt %) Composition (atomic ratio) S BET / (m 2 g - 1 ) T Crystal / K NiB/ SiO 2 9 09 Ni 70 21 B 29 79 349 547 0 5 % Sn2NiB/ SiO 2 9 13 Ni 67 53 Sn 0 98 B 31 49 346 557 1 % Sn2NiB/ SiO 2 8 89 Ni 61 26 Sn 1 17 B 37 57 341 563 2 % Sn2NiB/ SiO 2 9 13 Ni 59 89 Sn 2 72 B 37 39 338 566 5 % Sn2NiB/ SiO 2 8 99 Ni 58 53 Sn 4 55 B 36 92 333 580 10 % Sn2NiB/ SiO 2 9 11 Ni 56 36 Sn 8 21 B 35 43 322 615 20 % Sn2NiB/ SiO 2 8 92 Ni 51 08 Sn 16 59 B 32 33 286 631 2 Ni2Sn2B/ SiO 2 Table 2 Reaction time and product distribution when achieving the maximum yield of phenyl ethanol over the Ni2Sn2B/ SiO 2 catalysts Catalyst t max / h Product distribution/ mol % AP PE CHMK CHE EB NiB/ SiO 2 5 5 0 2 88 5 5 5 3 4 2 4 0 5 % Sn2NiB/ SiO 2 1 0 1 5 89 1 2 9 4 8 1 7 1 % Sn2NiB/ SiO 2 1 0 1 1 89 6 0 7 2 2 1 2 % Sn2NiB/ SiO 2 2 5 1 3 91 9 0 9 3 9 2 0 5 % Sn2NiB/ SiO 2 2 5 0 94 2 1 3 3 2 1 3 10 % Sn2NiB/ SiO 2 3 0 0 97 5 0 5 0 2 0 20 % Sn2NiB/ SiO 2 4 0 0 2 95 8 2 0 0 5 1 5 3 Figure 3 Reaction network for the hydrogenation of acetophenone 2 Ni2B/ SiO 2 (A) 10 % Sn2Ni2B/ SiO 2 (B) SEM Figure 2 SEM images of (A) Ni2B/ SiO 2 and (B) 10 % Sn2Ni2B/ SiO 2 catalysts Sn, 20 % Sn2NiB/ SiO 2, 410 h XPS, Ni2B B Ni, Ni [5,10], Ni, [11] Ni2 B/ SiO 2 Ni2Sn2B/ SiO 2 Raney Ni SiO 2 [9], XPS Sn,Sn, Sn Sn/ SiO 2 = 015 wt %, 110 h Lewis Ni H
1352 Vol 62, 2004, 83 [12] Sn 3 Lin, S D ; Sanders, D K ; Vannice, M A Appl Catal A ( 2) 1994, 113, 59 4 Moln r, # ; Bart k, M ; Smith, G V Adv Catal 1989, Sn, 36, 329 5 Deng, J 2F ; Li, H2X ; Wang, W2J Catal Today 1999, 51, 113 3 Chim Sinica 2000, 58, 904 (in Chinese) Raney Ni,Ni2B/ SiO 2 (,,,,, 2000, 58, Ni2B/ SiO 2 Sn 904 ) Sn 8 Yang, J ; Chai, L ; Deng, J 2F ; Zhao, H2L Acta Chim, Sinica 1994, 52, 53 (in Chinese) References 1 Masson, J ; Vidal, S ; Cividino, P ; Fouilloux, P ; Court, J Appl Catal A 1993, 99, 147 2 Rajashekharam, M V ; Bergault, I ; Fouilloux, P ; Schweich, D ; Delmas, H ; Chaudhari, R V Catal Today 1999, 48, 6 Chen, H 2S Appl Phys Lett 1976, 29, 12 7 Qiao, M2H ; Xie, S2H ; Dai, W2L ; Deng, J 2F Acta (,,,,, 1994, 52, 53 ) 9 Malyala, R V ; Rode, C V ; Arai, M ; Hegde, S G ; Chaudhari, R V Appl Catal A 2000, 193, 71 10 Okamoto, Y ; Nitta, Y ; Imanaka, T ; Teranishi, S J Chem Soc, Faraday Trans 1 1979, 75, 2027 11 Chen, Y 2Z ; Wu, K2J Appl Catal 1991, 78, 185 12 Gallezot, P ; Cerino, P J ; Blanc, B ; Fl che, G ; Fuertes, P J Catal 1994, 146, 93 (A0401312 CHENG, B ; LING, J )
No 14 Graphical Abstract Electrochemical Depletion of Ascorbic Acid in the Detection of Hydrogen Peroxide : An Investigation Using SECM WANG, Kang ; WEI, Hui ; XIA, Xing2Hua Acta Chimica Sinica 2004, 62 (14), 1339 By positioning a tip electrode of scanning electrochemical microscopy ( SECM) in the diffusion layer of an Au electrode and meanwhile applying a suitable potential on the substrate, selective detection of hydrogen peroxide free from interference of ascorbic acid has been achieved In addition, potential application of the present method in fabrication of micro2electrochemical sensing devices has been discussed Cyclo2depolymerization of Several Amorphous Aromatic Polyether Sulfone( Ketone) s and Ring2opening Polymerization of the Products WANG, Hong2Hua ; LUO, Fa2Liang ; BO, Shu2 Qin ; CHEN, Tian2Lu Acta Chimica Sinica 2004, 62 (14), 1344 Three amorphous aromatic polyether sulfone ( ketone) s underwent a cyclo2depolymerization reaction using CsF as catalyst in dipolar aprotic solvents to afford corresponding cyclic oligomer products with high yields Figures gave the MALDI2TOF2MS spectra and gradient HPLC trace of PES2C cyclic product, respectively High molecular weight linear products were regenerated after the ring2opening polymerization of the cyclo2products Highly Selective Amorphous Ni2Sn2B/ SiO 2 Catalysts in Acetophenone Hydrogenation to 12Phenyl Ethanol WANG, You2Zhen ; QIAO, Ming2Hua ; HU, Hua2Rong ; YAN, Shi2Run ; WANG, Wei2Jiang ; FAN, Kang2Nian Acta Chimica Sinica 2004, 62 (14), 1349 The maximum yield of PE reaches as high as 9715 % over the 10 % Sn2NiB/ SiO 2 catalyst PES and Theoretical Studies on the Ionization Potentials of Iodine Trichloride QIAO, Zhi2Min ; ZENG, Yan2Li ; SUN, Shu2 Tao ; SUN, Qiao ; WANG, Dian2Xun Acta Chimica Sinica 2004, 62 (14), 1353 Photoelectron spectroscopy ( PES) of iodine trichloride shows that it is made up of iodine chloride and chlorine, and the first vertical ionization potential for iodine trichloride predicted by the OVGF method is 10 732 ev