40 8 2012 8 Ni-YSZ Sm 0.5 Sr 0.5 Fe 0.8 Cu 0.2 O 3 δ 1215 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 40 No. 8 August 2012 TiO 2 ( 710048) TiO 2 20 30 nm TiO 2 (PVP) TiO 2 X TiO 2 TiO 2 TiO 2 150 250 nm 20 μm TiO 2 90 min 4 mg/l 72% TQ174 A 0454 5648(2012)08 1215 05 2012 07 30 13:23:34 http://www.cnki.net/kcms/detail/11.2310.tq.20120730.1323.201208.1215_022.html Photocatalytic Acticity of TiO 2 Nanofibres Prepared via Electrospinning Technology TENG Letian ZHAO Kang TANG Yufei (School of Materials Science and Engineering, Xi an University of Technology, Xi an 710048, China) Abstract: TiO 2 nano-materials have a wide range of applications in the fields of photo-catalysis and antimicrobial. TiO 2 nanofibers were prepared via electrospinning and sintering technology, using TiO 2 nano-particles (20 30 nm) and the polyvinylpyrrolidone (PVP) by the electrospinning device. Comparatively, using the solution prepared by Ti(OC 4 H 9 ) 4 to obtain TiO 2 nanofibers for contrast and photocatalytic measurements on methylene blue trihydrate solution are performed. The samples were characterized by energy dispersive spectra, X-ray diffraction, scanning electron microscope and transmition electron microscope. The result shows that the TiO 2 nanofibers can be successfully prepared via an electrospinning technology, by using TiO 2 nano-particles, the diameters were 150 250 nm, the length were more than 20 μm. The ratio of samples diameters were more even compared the TiO 2 nanofibers prepared by using Ti(OC 4 H 9 ) 4. The mehtylene blue solution, which concentration was 4 mg/l, was decomposed 72% by the samples with better photocatalytic efficiency after 90 minutes of UV irradiation. Key words: ceramic nanofiber; titanium oxide; electrospinning; nano-particles [1] ( ) [2 5] ZrO 2 ZnO TiO 2 [6 9] TiO 2 2012 03 29 2012 04 10 (No.20106118110002) (1985 ) (1963 ) Received date: 2012 03 29. Revised date: 2012 04 10. First author: TENG Letian (1985 ), male, Doctorial candidate. E-mail: lay623@163.com Correspondent author: ZHAO Kang (1963 ), male, Ph.D., Professor.
1216 2012 [10 12] TiO 2 [13 15] TiO 2 (PVP) TiO 2 TiO 2 2 2.1 TiO 2 1 TiO 2 TiO 2 EDS 1 Ti (34.66%) O (65.34%) Ti O 1:2 1 1.1 (PVP M w =1300000) TiO 2 ( 20 30 nm) (CH 3 CH 2 OH ) (CH 3 COOH) [Ti(OC 4 H 9 ) 4 ] 4 g PVP 160 g PVP 4 g TiO 2 PVP TiO 2 50 1 h TiO 2 /PVP 0.9 mm 1 ml/h 15 cm 20 kv TiO 2 /PVP 550 2 h TiO 2 TiO 2 4 g PVP 160 g 20 g PVP TiO 2 1.2 Axis Ultra X (EDS) TiO 2 XRD-7000 X (XRD) TiO 2 TiO 2 JSM-6700F (SEM) JEM-3010 (TEM) 1.3 0.2 g 10 ml 0.4 mg/l 40 W ( 253.7 nm) 664 nm 1 TiO 2 TiO 2 EDS Fig. 1 EDS spectrum of TiO 2 nanofibers with TiO 2 nano particles as Ti source 2 TiO 2 TiO 2 XRD TiO 2 / PVP 2θ 26.5 TiO 2 PVP 550 27.5 37 2 TiO 2 TiO 2 TiO 2 TiO 2 TiO 2 XRD TiO 2 TiO 2 TiO 2 2.2 TiO 2 3 TiO 2 TiO 2 TEM TiO 2 20 30 nm TiO 2 PVP 550 TiO 2
TiO 2 1217 3 TiO 2 Fig. 3 TEM photograph of TiO 2 nanoparticles 2 XRD Fig. 2 XRD patterns of nanofibers 4 SEM TiO 2 4a TiO 2 /PVP 100 250 nm TiO 2 PVP 20 μm 4b /PVP 250 450 nm 20 μm /PVP 4 TiO 2 SEM Fig. 4 SEM photographs of TiO 2 composite nanofibers 5 TiO 2 TiO 2 156 nm 208 nm ( 5c 5d ) > 20 μm 5a TiO 2 TiO 2
1218 2012 100 200 nm TiO 2 TiO 2 20 μm 5b TiO 2 150 400 nm 20 μm TiO 2 2.3 TiO 2 0.4 mg/l 90 min 15 min 6 TiO 2 72% 6 Fig. 6 Relationship between UV photo degradation of methylene blue and time c 0 = 0.4 mg/l. 3 5 550 TiO 2 SEM Fig. 5 TEM and SEM photographs of TiO 2 nanofibers sintered at 550 1) TiO 2 TiO 2 2) TiO 2 TiO 2 TiO 2 100 250 nm 20 μm 90 min 4 mg/l 72%
TiO 2 1219 [1] SIMONS H L. Progress and apparatus for producing patterned nonwoven fabrics [P]. US Patent, 3, 280, 229, 1966. [2] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers [J]. EIectrost, 1995, 35: 151. [3] FORMHALS A. Progress and apparatus for preparing artificial threads [P]. US patent, 1, 975, 504, 1934. [4] FORMHALS A. Apparatus of polymer web by electrospinning process [P]. US patent, 2, 163, 962, 1939. [5] FORMHALS A. Electrospinning of submicron diameter polymer filaments [P]. US patent, 2, 187, 306, 1940. [6] HUANG Z M, ZHANG Y Z, KOTAKI G, et al. A facile technique to prepare biodegradable coasial electrospun nanofibers for controlled release of bioactive agents [J]. Chem Mater, 2004, 16, 3407 3409. [7] LARSEN G, VELARD-ORTIZ R, MINCHOW K. Electrospinning of nanofibers: Reinventing the wheel [J]. J Am Chem Soc, 2003, 125: 1154 1157. [8] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers [J]. EIectrost, 1995, 35: 151. [9] LARSEN G, SPRETZ R, VELARDE O R. Templating of inorganic and organic solids with electrospun fibers for the synthesis of large-pore materials with near-cylindrical pores [J]. J Mater Chem, 2004, 14(10): 1533 1539. [10] FORMO E, LEE E, DEAN C D, et al. Functionalizetion of electrospun TiO 2 nanofibers with Pt nanoparticles and nanowires for catalytic applications [J]. Nano Lett, 2008, 8(2): 667 673. [11] IN S, ORLOV A, BERG R, et al. Effective visible light-activated B-doped and B, N-codoped TiO 2 photocatlysts [J]. J Am Chem Soc, 2007, 129(45): 13789 13792. [12] LIU Z Y, SUN D D, GUO P, et al. An efficient bicomponent TiO 2 /SnO 2 nanofiber photocatalyst fabricated by electrospinning with a side-byside dual spinneret method [J]. Nano Lett, 2007, 7(4): 1080 1086. [13] NUASING W, NINMUANG S, JARERNBOON W, et al. Strictural characterization and morphology of electrospin TiO 2 namofibers [J]. Mater Sci Eng B, 2006, 131(1/3): 146 154. [14],. [J]., 2004, 29(2): 27 30. QIN Xiaohong, WANG Shanyuan. High Tech Fiber Appl, 2004, 29(2): 27 30. [15] GESENHUES U. Calcination of metatianjum acid to titanium dioxide white pigments [J]. Chem Eng Technnol, 2001, 24(7): 684 690.