Accounting for model errors in iterative ensemble smoothers

Σχετικά έγγραφα
Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Linearized Lifting Surface Theory Thin-Wing Theory

Matrices and Determinants

Merging Particle Filter

Numerical Analysis FMN011

Summary of the model specified

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Supplementary Appendix

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

6.3 Forecasting ARMA processes

Section 8.3 Trigonometric Equations

Solution Series 9. i=1 x i and i=1 x i.

Homework 8 Model Solution Section

EE101: Resonance in RLC circuits

Solutions to Exercise Sheet 5

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Module 5. February 14, h 0min

Odometry Calibration by Least Square Estimation

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Homework 3 Solutions

6. MAXIMUM LIKELIHOOD ESTIMATION

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

ΘΕΜΑΤΑ ΕΡΓΑΣΙΩΝ ΣΤΗ ΚΟΣΤΟΛΟΓΗΣΗ ΚΑΙ ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

If we restrict the domain of y = sin x to [ π 2, π 2

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Test Data Management in Practice

Introduction to the ML Estimation of ARMA processes

w o = R 1 p. (1) R = p =. = 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation

Bizagi Modeler: Συνοπτικός Οδηγός

2 Composition. Invertible Mappings

Notes on the Open Economy

4.6 Autoregressive Moving Average Model ARMA(1,1)

Srednicki Chapter 55

An Introduction to Spatial Statistics: Data Types, Statistical Tools and Computer Software

:,,, PACS: a. , (3D-Var) (4D-Var) [7 9].,. 4D-Var 3D-Var,.,4D-Var,., ,.,, ;,,,,. ( ), . (PF). PF EnKF,,,

Solution to Review Problems for Midterm III

Neural'Networks' Robot Image Credit: Viktoriya Sukhanova 123RF.com

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

CORDIC Background (4A)

ST5224: Advanced Statistical Theory II

CRASH COURSE IN PRECALCULUS

PARTIAL NOTES for 6.1 Trigonometric Identities

Abstract Storage Devices

Lecture 26: Circular domains

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Statistical Inference I Locally most powerful tests

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Structural and Multidisciplinary Optimization. P. Duysinx, P. Tossings*

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

SECTION II: PROBABILITY MODELS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

EE512: Error Control Coding

Concrete Mathematics Exercises from 30 September 2016

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Areas and Lengths in Polar Coordinates

Additional Results for the Pareto/NBD Model

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

C.S. 430 Assignment 6, Sample Solutions

LAD Estimation for Time Series Models With Finite and Infinite Variance

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

TMA4115 Matematikk 3

D Alembert s Solution to the Wave Equation

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

A Software Package Development for Estimating Atmospheric Path Delay based on Numerical Weather Prediction Model

Math221: HW# 1 solutions

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

Διοίκηση Εφοδιαστικής Αλυσίδας

Ramin Nobakht. Rockwell Semiconductor Systems. IEEE 802.3ab Interim. San Jose, CA February 12-13, 1998

Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση

Discretization of Generalized Convection-Diffusion

( ) 2 and compare to M.

,

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Transcript:

Accounting for model errors in iterative ensemble smoothers Geir Evensen International Research Institute of Stavanger Nansen Environmental and Remote Sensing Center The 3th EnKF Data Assimilation Workshop, Bergen, Ma 8 3, 8 Geir Evensen Slide

Eample: ES.E+7 WOPT:B-H (m^3/da) OPR WOPR:B-H (m^3/da) 8 6 4 E+7 8E+6 OPT 6E+6 4E+6 E+6 3 Time (das) WGPT:B-H (m^3/da) WGPR:B-H (m^3/da) GPR 3 Time (das) E+8 3 3 Time (das) E+7 4 GPT E+9 3 WWPT:B-H (m^3/da) WWPR:B-H (m^3/da) Time (das) 6 Geir Evensen.E+9 E+6 8 WPR Time (das) E+9.E+6 8E+6 6E+6 WPT 4E+6 E+6 3 Time (das) Slide

Eample: An iterative ES WOPT:B-H (m^3/da) OPR WOPR:B-H (m^3/da) 8 6 4 E+7 8E+6 6E+6 E+6 3 OPT 4E+6 Time (das) WGPT:B-H (m^3/da) WGPR:B-H (m^3/da) GPR 3 Time (das) E+8 3 3 Time (das) E+7 4 GPT E+9 3 WWPT:B-H (m^3/da) WWPR:B-H (m^3/da) Time (das) 6 Geir Evensen.E+9 E+6 8 WPR Time (das) E+9.E+6 8E+6 6E+6 WPT 4E+6 E+6 3 Time (das) Slide 3

Inverse problem Find R n given a model = g() given measurements d R m of R m d = + e Standard Histor-Matching problem in oil-reservoir models. Geir Evensen Slide 4

Data-assimilation problem Find a i+ Rn given a model prediction i+ = g( i ) and measurements d R m of i+ R n d = h( i+ ) + e Standard update step in sequential data assimilation Geir Evensen Slide

Baesian update.8.7.6 Prior Baes Datum Marginal PDF..4.3... 4 3 3 4 Geir Evensen Slide 6

Ensemble filter update Prior f j = g( f j) Direct update of a j = f j + C f ( f ) ) C + C dd (d j f j Geir Evensen Slide 7

EnKF (direct) update.8.7.6 Prior Baes Datum ES_D Marginal PDF..4.3... 4 3 3 4 Geir Evensen Slide 8

Ensemble smoother update Prior f j = g( f j) Smoother update of a j = f j + C f ( f ) ) C + C dd (d j f j Indirect update of a j = g( a j) Geir Evensen Slide 9

ES (indirect) update Marginal PDF.8.7.6..4.3 Prior Baes ES Datum ES_D... 4 3 3 4 Geir Evensen Slide

Indirect update Inverse problems: Measure Update predict = g() Data assimilation: Measure i+ Update i predict i+ = g( i) The indirect update allows for the use of iterative methods. Geir Evensen Slide

Nonlinearit Geir Evensen Slide

Sensitivit of smoothers to nonlinearit Model = + sin(π) Case : f j N (., C =.) d j N (., C dd =.) Case : f j N (., C =.9) d j N (., C dd =.) Case 3: f j N (., C =.36) d j N (., C dd =.) Cost function p(), C=. p(), C=.9 p(), C=.36 3 3 Geir Evensen Slide 3

Ensemble vs analtic gradient a j = f j + g ( f j)c ( g ( f j)c g ( f j) + C dd ) ( dj g( f j) ) a j = f j + C (C + C dd ) (d j g( f j)) a j = g( a j) Geir Evensen Slide 4

Case : ES.. Prior Joint PDF 4 4 3 3.. Baesian Posterior PDF 7 6 4 3 9 8 7 6 4 3.4...4.4...4.. ES_ENS 7 6 4 3 9 8 7 6 4 3.. ES_ANA 7 6 4 3 9 8 7 6 4 3.4...4.4...4 Geir Evensen Slide

Case : IES.. Prior Joint PDF 4 4 3 3.. Baesian Posterior PDF 7 6 4 3 9 8 7 6 4 3.4...4.4...4.. IES_ENS 7 6 4 3 9 8 7 6 4 3.. IES_ANA 7 6 4 3 9 8 7 6 4 3.4...4.4...4 Geir Evensen Slide 6

Case : ESMDA.. Prior Joint PDF 4 4 3 3.. Baesian Posterior PDF 7 6 4 3 9 8 7 6 4 3.4...4.4...4.. ES MDA_ENS 7 6 4 3 9 8 7 6 4 3.. MDA_ANA 7 6 4 3 9 8 7 6 4 3.4...4.4...4 Geir Evensen Slide 7

Case : ES... Prior Joint PDF 7 6 4 3 9 8 7 6 4 3... Baesian Posterior PDF 4 3 9 8 7 6 4 3......... ES_ENS 4 3 9 8 7 6 4 3... ES_ANA 4 3 9 8 7 6 4 3...... Geir Evensen Slide 8

Case : IES... Prior Joint PDF 7 6 4 3 9 8 7 6 4 3... Baesian Posterior PDF 4 3 9 8 7 6 4 3......... IES_ENS 4 3 9 8 7 6 4 3... IES_ANA 4 3 9 8 7 6 4 3...... Geir Evensen Slide 9

Case : ESMDA... Prior Joint PDF 7 6 4 3 9 8 7 6 4 3... Baesian Posterior PDF 4 3 9 8 7 6 4 3......... ES MDA_ENS 4 3 9 8 7 6 4 3... MDA_ANA 4 3 9 8 7 6 4 3...... Geir Evensen Slide

Case 3: ES... Prior Joint PDF 8 7 6 4 3... Baesian Posterior PDF 7 6 4 4 3 3..... ES_ENS 7 6 4 4 3 3... ES_ANA 7 6 4 4 3 3.. Geir Evensen Slide

Case 3: IES... Prior Joint PDF 8 7 6 4 3... Baesian Posterior PDF 7 6 4 4 3 3..... IES_ENS 7 6 4 4 3 3... IES_ANA 7 6 4 4 3 3.. Geir Evensen Slide

Case 3: ESMDA... Prior Joint PDF 8 7 6 4 3... Baesian Posterior PDF 7 6 4 4 3 3..... ES MDA_ENS 7 6 4 4 3 3... MDA_ANA 7 6 4 4 3 3.. Geir Evensen Slide 3

Model errors in iterative smoothers Geir Evensen Slide 4

Including model errors Model Baes Marginal pdf = g(, q) f(,, q d) f(d )δ ( g(, q) ) f()f(q) f(, q d) f ( d g(, q) ) f()f(q) Ensemble of cost functions J ( j, q j ) = ( j f ) TC ( j j f ) j + ( q j q f ) TC ( j qq qj q f j) + ( ) TC ( ) g( j, q j ) d j dd g(j, q j ) d j Geir Evensen Slide

ES including model errors Prior Update f j = g( f j, q f j) a j = f j + C f ( f ) ) C + C dd (d j f j q a j = q f j + C f ( f ) ) q C + C dd (d j f j Indirect update a j = g( a j, q a j) or direct update a j = f j + C f ( f ) ) C + C dd (d j f j Geir Evensen Slide 6

ESMDA including model errors Cost function for z T j = ( T j, ) qt j at step i J (z i+) = ( z i+ z i ) T ( C i zz ) ( zi+ z i ) where we must have + ( g(z i+) d α ie i ) T ( αic dd ) ( g(zi+) d α ie i ) N mda =. α i i= ) (C i ( + α i C dd i+ = i + C i d + ) α i e i i ) ) q i+ = q i + C i q (C i ( + α i C dd d + ) α i e i i ) i+ = g( i+, q i+ ) Geir Evensen Slide 7

IES including model errors Cost function for z T j Iterative solution = ( T j, ) qt j J (z j ) = ( z j z f j ) TC ( zz zj z f j) + ( g(z j ) d j ) TC dd ( g(zj ) d j ) z j,i+ = z j,i + C i zzc zz (z j,i z f j) ) C i z (C i ( + C dd C i zc zz (z j,i z f j) ( ) ) g(z j,i ) d j j,i+ = g(z j,i ) Geir Evensen Slide 8

Scalar eample Model = ( + β ) + C qq q Linear case: β =. Nonlinear case: β =.. Prior ensemble for : N(, ). Likelihood for measurement of : N(, ). Geir Evensen Slide 9

Linear model without model errors Marginal PDF.6..4.3. Prior Baes_. ES_7_. MDA_7_4_. IES_7_. Marginal PDF.6..4.3. Prior Baes_. ES_7_. MDA_7_4_. IES_7_. Datum... 3 4. 3 3 4 Geir Evensen Slide 3

Linear model including model errors Marginal PDF.6..4.3. Prior Baes_. ES_7_. MDA_7_4_. IES_7_. Marginal PDF.6..4.3. Prior Baes_. ES_7_. MDA_7_4_. IES_7_. Datum... 3 4. 3 3 4 Geir Evensen Slide 3

Pdfs for model error with linear model Marginal PDF.8.6.4 INI_7_. ES_7_. MDA_7_4_. IES_7_... q Geir Evensen Slide 3

Joint pdfs linear model Prior Joint PDF 4. 4. 4 3. 3... Prior Joint PDF 4.4.4.3.3..... 3 4 3 4 Baes Posterior 4. 4. 4 3. 3... Baes Posterior 4.4.4.3.3..... 3 4 3 4 Geir Evensen Slide 33

Joint pdfs linear model Baes Posterior 4. 4. 4 3. 3... Baes Posterior 4.4.4.3.3..... 3 4 3 4 ES 4. 4. 4 3. 3... ES 4.4.4.3.3..... 3 4 3 4 Geir Evensen Slide 34

Joint pdfs linear model Baes Posterior 4. 4. 4 3. 3... Baes Posterior 4.4.4.3.3..... 3 4 3 4 ESMDA 4 4. 4. 4 3. 3... ESMDA 4 4.4.4.3.3..... 3 4 3 4 Geir Evensen Slide 3

Joint pdfs linear model Baes Posterior 4. 4. 4 3. 3... Baes Posterior 4.4.4.3.3..... 3 4 3 4 IES 4. 4. 4 3. 3... IES 4.4.4.3.3..... 3 4 3 4 Geir Evensen Slide 36

Nonlinear model without model errors Marginal PDF.8.7.6..4.3 Prior Baes_. ES_7_. MDA_7_4_. MDA_7_64_. IES_7_. Marginal PDF.8.7.6..4.3 Prior PDFC_7_. ES_7_. MDA_7_4_. MDA_7_64_. IES_7_. Datum ES_7_.D..... 3 4. 4 3 3 4 Geir Evensen Slide 37

Nonlinear model including model errors Marginal PDF.8.7.6..4.3 Prior Baes_. ES_7_. MDA_7_4_. MDA_7_64_. IES_7_. Marginal PDF.8.7.6..4.3 Prior PDFC_7_. ES_7_. MDA_7_4_. MDA_7_64_. IES_7_. Datum ES_7_.D..... 3 4. 4 3 3 4 Geir Evensen Slide 38

Pdfs for model error with nonlinear model Marginal PDF.8.6.4 INI_7_. ES_7_. MDA_7_4_. IES_7_... q Geir Evensen Slide 39

Joint pdfs nonlinear model Prior Joint PDF 4. 4. 4 3. 3... Prior Joint PDF 4.4.4.3.3..... 3 4 3 4 Baes Posterior 4. 4. 4 3. 3... Baes Posterior 4.4.4.3.3..... 3 4 3 4 Geir Evensen Slide 4

Joint pdfs nonlinear model Baes Posterior 4. 4. 4 3. 3... Baes Posterior 4.4.4.3.3..... 3 4 3 4 ES 4. 4. 4 3. 3... ES 4.4.4.3.3..... 3 4 3 4 Geir Evensen Slide 4

Joint pdfs nonlinear model Baes Posterior 4. 4. 4 3. 3... Baes Posterior 4.4.4.3.3..... 3 4 3 4 ESMDA 4 4. 4. 4 3. 3... ESMDA 4 4.4.4.3.3..... 3 4 3 4 Geir Evensen Slide 4

Joint pdfs nonlinear model Baes Posterior 4. 4. 4 3. 3... Baes Posterior 4.4.4.3.3..... 3 4 3 4 IES 4. 4. 4 3. 3... IES 4.4.4.3.3..... 3 4 3 4 Geir Evensen Slide 43

Acknowledgements RCN DIGIRES project with sponsors Equinor, Aker BP, Eni, Petrobras, VNG, and DEA, for funding this work. Y. Chen and D. S. Oliver. Levenberg-Marquardt forms of the iterative ensemble smoother for efficient histor matching and uncertaint quantification. Computat Geosci, 7:689 73, 3. A. A. Emerick and A. C. Renolds. Ensemble smoother with multiple data assimilation. Computers and Geosciences, :3, 3. G. Evensen. Analsis of iterative ensemble smoothers for solving inverse problems. Computat Geosci, (3):88 98, 8a. doi:.7/s96-8-973-. URL https://doi.org/.7/s96-8-973-. G. Evensen. Accounting for model errors in iterative ensemble smoothers, 8b. URL https://ariv.org/abs/86.37. P. K. Kitanidis. Quasi-linear geostatistical theror for inversing. Water Resources Research, 3(): 4 49, 99. D. S. Oliver, N. He, and A. C. Renolds. Conditioning permeabilit fields to pressure data. ECMOR th European Conference on the Mathematics of Oil Recover, 996. J.-A. Skjervheim, G. Evensen, J. Hove, and J. Vabø. An ensemble smoother for assisted histor matching. SPE 499,. P. J. van Leeuwen and G. Evensen. Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Weather Rev., 4:898 93, 996. Geir Evensen Slide 44

Summar We noted the dualit of the DA and inverse problem. Iterations improve the estimate for models with modest nonlinearit. Iterative methods allows for inclusion of general model errors. Results published in Evensen (8a,b). Geir Evensen Slide 4