Gravity flows sourced from volcanoes: a review on their flow and emplacement mechanisms

Σχετικά έγγραφα
Eruption Age and Sequence of Ogurayama Lava Dome at Towada Volcano, Northeast Japan Arc

Origin of New Islets (An-ei islets) Formed During the An-ei Eruption ( , of Sakurajima Volcano, Southern Kyushu, Japan

; +302 ; +313; +320,.

The July +*,,**- and the January +.,,**. Ash Emissions from a Hot Water Pool of the Nakadake Crater, Aso Volcano, Japan

,3** A Large-scale Collapse Event at the Eastern Slope of Fuji Volcano about,3** Years Ago. Naomichi MIYAJI, Shigeko TOGASHI and Tatsuro CHIBA

Stratigraphy and volcanic activities of Hijiori volcano, Northeastern Japan arc

Toward the Quantitative Study of Hydrothermal Systems An Approach to Understand Hydrothermal Systems

, Geology, geologic structure, and hot springs in southern Kyushu, Japan

Emplacement Temperature of the Lithic-rich Pyroclastic Flow of Mt. Vesuvius.1, AD Eruption: Paleomagnetic Measurement

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

K-Ar. K-Ar Dating of Kimpo Volcano, Northern Ryukyu Arc

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Anisotropy of Drainable Macropores in Andosols and Alluvial Soils

Focal Mechanism Solutions of Micro- and Small Earthquakes Occurred in the Western Kanagawa Area Situated in the Izu Collision Zone

Frequent and Intensive Eruptions in the 3th Century, Izu Islands, Japan: Revision of Volcano-Stratigraphy Based on Tephras and Historical Document

Conductivity Logging for Thermal Spring Well

A Pyroclastic Flow Deposit Occurring at the Northeastern Foot of Nakadake, Aso Volcano (Japan) and its Stratigraphic Significance

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

+3.,. +3., , /,*** +3, (Takeuchi and Nakamura,,**+) +3., , -,,*** / /,/** ,3 +31/ Katsui and Komuro, +32. ; +3.

Fukashi Maeno, Kenji Niihori, Takayuki Kaneko, Toshitsugu Fujii, Setsuya Nakada,

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

Areas and Lengths in Polar Coordinates

Κατανομες μεταλλων στα ιζηματα του υφαλοκρηπιδικου συστηματος της βορειοδυτικης Μαυρης Θαλασσας. 2

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

Journal of the Institute of Science and Engineering. Chuo University

Non-volcanic Hot Springs from Deep Wells in the Kanto Plains, Osaka Plains, Ishikari Plains, Nobi Plains, and Ise-Shima-Suzuka Districts

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

Isotopic and Geochemical Study of Travertine and Hot Springs Occurring Along the Yumoto Fault at North Coast of the Oga Peninsula, Akita Prefecture

Areas and Lengths in Polar Coordinates

[1] P Q. Fig. 3.1

,*+* .* +/* +* -* ac. jp +3, *

Θωμάς ΣΑΛΟΝΙΚΙΟΣ 1, Χρήστος ΚΑΡΑΚΩΣΤΑΣ 2, Βασίλειος ΛΕΚΙΔΗΣ 2, Μίλτων ΔΗΜΟΣΘΕΝΟΥΣ 1, Τριαντάφυλλος ΜΑΚΑΡΙΟΣ 3,

A,.* Ma Widespread Tephra Associated with a Large-Scale Pyroclastic Flow from the Sengan Geothermal Area, Northeast Japan Arc

Hydrologic Process in Wetland

Shallow P-wave Velocity Structure of Shirane Pyroclastic Cone, Kusatsu-Shirane Volcano Derived from a Controlled Seismic Experiment

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Soil Temperature Change and Heat of Wetting during Infiltration into Dry soils

Αναερόβια Φυσική Κατάσταση

ΓΕΩΤΕΧΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΑΝΩ ΤΕΤΑΡΤΟΓΕΝΩΝ ΙΖΗΜΑΤΩΝ ΒΑΘΙΩΝ ΛΕΚΑΝΩΝ ΤΟΥ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

4.4 Superposition of Linear Plane Progressive Waves

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΟΧΙΑΚΗΣ ΠΑΡΑΚΤΙΑΣ ΑΝΑΒΛΥΣΗΣ ΣΤΟ Β.Α. ΑΙΓΑΙΟ. Τμήμα Επιστημών της Θάλασσας, Πανεπιστήμιο Αιγαίου 2

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Eruptive History of Tokachi-dake Volcano during the Last -,-** Years, Central Hokkaido, Japan

,,, (, ) , ;,,, ; -

SERIES DATASHEET INDUCTORS RF INDUCTORS (MRFI SERIES)

Fluorine and Chlorine Contents in the Products of the Large-Scale Pyroclastic Activity of Aira Caldera

Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

2. Chemical Thermodynamics and Energetics - I

Magma Process during the Ninokura Stage, at Towada Volcano, NE Japan

Chapter 7 Transformations of Stress and Strain

the total number of electrons passing through the lamp.

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Radiation observation at Dome Fuji Station, Antarctica

Derivation of Optical-Bloch Equations

Figure 1 - Plan of the Location of the Piles and in Situ Tests

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

Thin Film Chip Resistors

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Evaluation of Total Ejected Ash in Volcanic Clouds Using Video Records: Application to the Eruption of Asama Volcano, Japan, on February 0,,**-

4.6 Autoregressive Moving Average Model ARMA(1,1)

Study of urban housing development projects: The general planning of Alexandria City

6.4 Superposition of Linear Plane Progressive Waves

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

ΟΙ Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΤΗΝ ΛΕΚΑΝΗ ΠΟΤΑΜΙΑΣ ΚΑΙ Η ΑΛΛΗΛΟΕΠΙ ΡΑΣΗ ΤΟΥ Υ ΑΤΙΚΟΥ ΚΑΘΕΣΤΩΤΟΣ ΜΕ ΤΗ ΜΕΛΛΟΝΤΙΚΗ ΛΙΓΝΙΤΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΣΤΗΝ ΕΛΑΣΣΟΝΑ

ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΥΠΟΓΕΙΑΣ ΡΟΗΣ ΚΑΙ ΜΕΤΑΦΟΡΑΣ ΝΙΤΡΙΚΩΝ ΣΤΟΝ ΠΑΡΑΚΤΙΟ ΥΔΡΟΦΟΡΕΑ ΤΟΥ ΠΛΑΤΥ ΠΟΤΑΜΟΥ ΣΤΟ ΝΟΜΟ ΡΕΘΥΜΝΟΥ

ΡΥΠΑΝΣΗ ΕΠΙΦΑΝΕΙΑΚΩΝ Υ ΑΤΩΝ ΑΠΟ ΙΑΘΕΣΗ ΒΑΡΕΩΝ ΛΥΜΑΤΩΝ (ΛΥΜΑΤΩΝ ΑΡΝΗΤΙΚΗΣ ΑΝΩΣΗΣ)

Fused Bis-Benzothiadiazoles as Electron Acceptors

Strain gauge and rosettes

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ


( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

* *, ** Koji Masuda* and Takashi Arai*, **

Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΒΑΘΜΙΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΣΣΗΝΗΣ, Ν.ΜΕΣΣΗΝΙΑΣ

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Table 2 Suggested prediction methods to use for a given set of available input parameters per each examined soil hydraulic property) a.

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

The Technique for Improving Soil Physical Characteristics by Preventing the Formation of Soil Crust by Dressing the Sandy Pyroclastic Deposits

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Transcript:

/* (,**/) S,/- S,1, Gravity flows sourced from volcanoes: a review on their flow and emplacement mechanisms Kazuhiko KANO This paper gives a brief review on the gravity flows sourced from volcanoes on land and under water. Pyroclastic flows are supported by internal gas and the air incorporated during flowage and run out a long distance as density currents. Ash-cloud umbrella is a special case of density current and the particle fallout from the umbrella is a transition to a dilute, pyroclastic density current. Subaqueous equivalents of pyroclastic flows are supported by internal gas and/or the water incorporated during flowage and are thus interpreted as either subaqueous pyroclastic flows in the strict sense or eruption-fed density currents. Debris avalanches and lahars are also important elements of volcaniclastic gravity flows both on land and under water. These pyroclastic and volcaniclastic gravity flows are thought to transform into traction-dominated flow, particle dispersion-dominated flow (grain or granular flow), fluid escape-dominated flow, or debris flows during flowage in response to the changes mainly of flow velocity, particle concentration, and shear stress. The details of these processes still remain in debate. The role of the heat in pyroclastic density current and subaqueous eruption-fed density current is a future subject to be solved. Key words : gravity flow, pyroclastic density current, eruption-fed density current, flow dynamics, emplacement mechanism + (pyroclastic flow) ash-cloud surge ground -*/ 2/01 + + + 1 Institute of Geology and Geoinformation, Geological surge +33+ gravity flow gravity current (pyroclastic density current : Druitt, +332) (Branney and Kokelaar,,**,), density flow density current Survey of Japan, AIST, Tsukuba Central 1, + +, Higashi +-chome, Tsukuba, Ibaraki -*/ 2/01, Japan e-mail: kazu.kano@aist.go.jp

S254 (sediment) sediment gravity flow sediment mass flow, + (turbidity current) (underflow) (overflow) (Fig. +) (interflow) (Fig. +) Rayleigh-Taylor (Fig. +) (vertical flow) W i W s W i W s + (Marsh, +322) W i W s (Marsh, +322 ; Fiske et al., +332) W i W s C h a, r i r f r s r f (+) C h a Fig. +. Principal types of eruption-fed density current. r density of the flowing fluid. r a density of the air. r b density of water. g r s r i r f (+) (Carey, +331 ; Fiske et al., +332) (Manville and Wilson,,**.) (Fig.,) (Fig.,) (cleft) (lobe) (Fig.,) (Fig.,) (Fig. -)

S255 Fig. -. Structure of a turbulent density current. Head velocity U head is smaller than body velocity U body, so the main body feeds the flow head. Fig.,. Structure of the head of a density current with streamlines and current directions relative to the ground. Modified from Allen (+32.). U body U body 2 + r f r c ghsinq f D* f D+ +, (,) g q r c r f h f D* f D+ Darcy-Weisbach (,) +, -. (Allen, +32.),, q t c r c, r f ( r c) y (Fig..) t t r c r f gysinq (-) t c (plug) (plug flow) Fig... Structure and velocity profile of a plug flow by basal shear (laminar) flow. (Bingham body) t c t (debris avalanche), m (Ui et al.,,***) plug U y m t t c mdu dy (.) (-) du dy r c r f gysinq t c m (/) du dy

S256 du dy r.c r f gysinq t c m (0) du dy du dy * t c t (r c-r f) gysinq h du dy * y c U c y h U * U U c y c y * (1) U r c r f g h, y, sinq, t c h y m h y y c (2) (2), - (grain flow) P T a T P T P tan a (3) Bagnold (+3/.) : T K +l -, mdu dy (+*) : Fig. /. Two-dimensional model of a grain flow. U y m r s D K + K, l (linear grain concentration) l + C m C + - + (+,) C C m C (Bagnold number) Ba Ba D r st +, l +, m Dr s T lr s +, m (+-) Ba +* /* q U (Fig. /) y h, C, r s, r f T C r s r f g h y cosq (+.) T (+*) (++) T y * U * : U C r s r f gcosq h, h y, K +l -, m (+/) : T K,r sl, D, du dy, (++)

S257 U, - C r s r f gcosq K,r s +, h -, h y -, ld (+0) (upward coarsening) inverse grading reverse grading (kinematic sieve),. (liquefaction) (fluidization) (fluid-escape structure) Fig. 0. Five types of fluidization. Modified from Allen (+32.) and Branney and Kokelaar (,**,). U flow velocity, V fluidization velocity. (Fig. 0) +) Fig. 0a: stationary fluidization,) Fig. 0b: flow-fluidization -) Fig. 0c: bulk self-fluidization.) Fig. 0d: grain self-fluidization /) Fig. 0e: sedimentation fluidization (Allen, +32.) Sparks (+313)

S258 Fig. 2. Mechanism of particle support in sediment gravity flows. Modified from Middleton and Hampton (+31-). Fig. 1. Fluidization and transport velocities for particles withdensity + g/cm - and porosity./ in CO, gas at /** and +***. Modified from Sparks (+310). Particles can be entrained where gas flow velocity exceeds their settling velocities. Branney and Kokelaar (,**,) (particulate fluidization) (aggregative fluidization) (plug) (settling velocity) (Fig. 1) CO, + g cm -./ (Fig. 1) + g cm - (, 0. mm) + +* m s, (, mm) + m s +* /* m s, +* m s +* m s (Sparks, +310) - - + (particle-support mechanism) (Fig. 2) (turbidity current) (liquefied or fluidized sediment flow) (grain flow) (debris flow)

S259 -, (flow transformation) +) (body transformation),) (gravity transformation) -) + supercritical flow : subcritical flow : (hydraulic jump) (surface transformation) (Fisher, +32.) (Frude number) Fr U, L Fr U, gl +, U gl +, (+1) (gl) +, (+1) + (Fr +) (Fr +) F g F i F g r c r f gahcosq (+2) Fi r f AU,, (+3) r c r f A h q F i F g r f U,, r c r f ghcosq (,*) F i F g afr, a : (,+) (,*) (,,) (densiometric Frude number) Fr d Fr d r f r c r f Fr (,,) (Richardson number) Ri Ri r c r f ghcosq r cu, (,-) (Bursik and Woods, +330) (Ri +) (Ri +) (Woods and Bursik, +33.)

S260 Fig. 3. Transition between laminar and turbulent flows in terms of Bingham number B and Rheynolds number Re. Based on Hampton (+31,) and Hiscott and Middleton (+313). (Bingham number) B t cl mu (,.) Re ULr c m (,/) Re +*. B + Re B : Hampton number Re B r cu, t c +*** (,0) (Fig. 3) L r c m t c U B + B Re (Fig. 3) (Hampton, +31,) *.. Fig. +*. Features of sediment gravity flow deposits. Modified from Middleton and Hampton (+31-). (Mohrig et al., +332) (,**/) (*.2 +) Kelvin-Helmholtz - - (Fig. +*) (Fig. +*a) Middleton and Hampton (+31-)

S261 Sohn (+331) (Fig +*a) (imbrication) (Fig. +* b) (Fig. +*c) (Allen, +32.) du dt (,1) U t x U U x du dt U t U U x (,1) U t (steadiness) U U x (uniformity) U t Fig. ++. Domains of erosion by and deposition from a density current, classified in terms of its steadiness and uniformity. Modified from Knellar and Branney (+33/). * U U x * (Fig. ++) du dt U t (waxing) (waning) U U x (accumulative) (depletive) (Fig. +,a)

S262 Fig. +,. Four modes of particles emplacement from a density current under steady conditions, with their profiles of particle concentration and current velocity. Modified from Branney and Kokelaar (,**,). (Fig. +, b) (Fig. +,c) (Fig. +,d) (Fig. +*d).. + (Ui et al.,,***) +33. (Melosh, +321),**, (Voight et al., +32-) +),) +32. +322

S263 m, U, x, g, W d d mu,, gmdx dw (,2) H, L U * * gmh W (,3) m F mmg (-*) W FL mmgl (-+) (-*) (-+) (,3) m H L (-,) Dade and Huppert (+332) t A, L W tal (--),l A ll, (-.) (-*) A l + - gmh t, - l +, t, - gmh, - (-/) Fig. +-. (a) Plots of total spreading area A vs. potential energy for debris avalanche deposits. The curve is given by A (l +/, t),/- (gmh),/- with t/l +/,./ 0 kpa. The correlation coe$cient is R *.3- (n 0/). (b) Plots of area A vs. volume V for debris avalanche deposits. Modified from Dade and Huppert (+332). gmh A (Fig. +-a) (--) gmh t A - l +, (-0) V N f N f rgh t A -, l +, V (-1) r N f gh U, (Re/B r cu, /t c) +,***

S264 Fig. +- N f +,/** 0** A l +, N f V -, (-2) (Fig. +-b) l +, N f +* + +*.., (Takahashi,,**+) (stony debris flow) (hyper concentrated flow) (mud flow) +33+ 0 Pinatubo (Pierson et al., +330) +32. (+322). - (Carey and Sparks, +320) (Carey and Sigurdsson, +32,).. Pyroclastic flow Gilbert, +3-2 (+3/1) (+3/1) +320 ; +33+ +3/1 +320 ; Wright et al., +32* (block and ash flow) ( 0. mm) (, mm)

S265 (ash flow) (pumice flow) (scoria flow) (blast surge) (base surge) (ash cloud surge) (Fisher et al., +321) +32* / +2 (Heiken and Wohletz, +32/) -* /* Fig. +..Standard ignimbrite flow unit, proposed by Sparks et al. (+31-) and modified by Fisher (+313).The depositional system (flow boundary zone) of each layer can be interpreted according to the concept of flow boundary approach of Branney and Kokelaar (,**,). (Layers +,, and - : Sparks et al., +31-) (Layers a, b, c and d: Fisher, +313) (Fig. +.) Layer a Layer b (Layer b,) (Layer b +) (Layer b -) Layer c Layer d Sparks et al. (+31-)

S266 (standard ignimbrite flow unit) (lag breccia) Layer a Layer b+ Fisher et al. (+32*) (Layers A, B and C) Layer A Layer B Layer C layer Layer b, c, d (Fisher and Heiken, +32,) Layer a : ground surge Lag breccia (Druitt and Sparks, +32+) (Sparks and Walker, +31-) Wilson and Walker (+32,) Layer a (ground layer) Layer a (jetted deposit) Layer b Sparks (+310) Layer b (Hildreth, +32+) Layer b (Freundt and Schmincke, +32/, +320 ; Cole et al., +33-) Oregon Bend (Kamata and Mimura, +32- ; Mimura, +32.) (Hiscott and Middleton, +313, +32*) Campanian Ignimbrite (AMS) (Suzuki and Ui, +32, ; Fisher et

S267 Fig. +/. Succession ofthe Kurofuji pyroclastic flow deposits (a), (b), (c) and (d) and a wood log fallen down to the flow direction and burnt in the deposit (b). CA and FA are ash layers, and CA is altered to clay. PF denotes pyroclastic flow deposit. After Mimura and Kobayashi (+31/). al., +33-) (Fig. +/) (b) Layer b (Fisher, +300 ; Branney and Kokelaar,,**,) Layer b + Layer b, Layer b, Layer b - (Fisher, +313) Layer c Layer d (co-ignimbrite ash) Layer d (Fisher, +300) Sparks (+310) Fisher (Fisher, +313) Cole et al. (+33-)

S268 Fisher (+300) Branney and Kokelaar (,**,) Grunewald et al. (,***) Soufriere +33/ +333 / +* mm, *./ +* cm, + m cataclasite pseudotachylite Branney and Kokelaar (,**,) (flow boundary approach). / (Fisher, +32.) (Kano, +33* ;Cole and DeCeles, +33+) (Kokelaar and Köninger,,***) (Head and Wilson,,**-) (Wright et al.,,**-) (Head and Wilson,,**- ;Allen and McPhie,,**,) (Kano, +330) (Kano et al., +330 ;Fiske et al.,,**+ ;Yuasa and Kano,,**- ; Wright et al.,,**-) (Head and Wilson,,**- ; Kano,,**-) (Kano et al., +330) (Kokelaar and Busby, +33,) (Cas and Wright, +33+) (Kano et al., +33.) (subaqueous eruption-fed density current : White,,***)

S269,**-) Fig. +0. Idealized flowunits presumably fed by subaqueous pumice eruption and subaqueous explosive collapse of pumiceous dome, respectively. Modified from Kano et al. (+330) and Kano (+330). (Yamada, +32.) (Kano, +330) +33* (Kano et al., +33.) (Fig. +0) (White,,*** ; Kano,,**-) (Kokelaar and Köninger,,***) (Kano, +33*) (Kano et al., +33.) (Cole and DeCeles, +33+) +31. ; +320 (Kano et al., +330 ; Allen and McPhie,,***) (Kurokawa and Watanabe, +33+) Fiske and Matsuda (+30.) (Cas and Wright, +33+ ; Müeller and White, +33, ; Kano, +33*, +330,,**- ; Kano et al., +33., +330 ; Fiske et al., +332,,**+ ; White et al., / (nue e ardente : Lacroix, +3*.) (Yamamoto et al.,,**/) +33+ 3 +/ (Fujii and Nakada, +333) +320 (Brusik and Woods, +330 ; Takahashi,,**+),** +*** 3* -** +330 +32* (Kiefer and Sturtevant, +322) +33, +* -** m s +33* +33/

S270 Sato et al., +33, ; +33- ; Uhira and Yamasato, +33. ; +330 ;Ui et al., +333 ; Miyabuchi et al., +333 Allen, J. R. L. (+32.) Sedimentary Structure: Their Character and Physical Basis. Development in Sedimentology -*, Elsevier Sci. Publ., Amsterdom, /3-p. (Volume I) 00- p. (Volume II). Allen, S. R. and McPhie, J. (,***) Water settling and sedimentation of submarine rhyolitic pumice at Yali, eastern Aegean, Greece. J. Volcanol. Geotherm. Res., 3/,,2/ -*1. (+3/1) Pyroclastic flow +.1 /1. (+320) 3/.23.3/. Bagnold, R. A. (+3/.) Experiments on a gravity-free dispersion of large soild spheres in Newtonian fluid under shear. Proceed. Roy. Soc. London, A,,/,.3 0-. Branney, M. J. and Kokelaar, P. (,**,) Pyroclastic Density Currents and the Sedimentation. Geol. Soc. Memoir, no.,1, +.-p. Brusik, M. I. and Woods, A. W. (+330) The dynamics and thermodynamics of large ash flows. Bull. Volcanol., /2, +1/ +3-. Carey, S. N. (+331) Influence of convective sedimentation on the formation of widespread tephra layers in the deep sea. Geology,,/, 2-3 2.,. Carey, S. N. and Sigurdsson, H. (+32,) Influence of particle aggregatin on deposition of distal tephra from the May +2, +32* eruption of Mount St. Helens volcano. J. Geophys. Res., 21, 1*0+ 1*1,. Carey, S. N. and Sparks, R. S. J. (+320) Quantitative models of the fallout and dispersal of tephra from volcanic eruption column. Bull. Volcanol.,.2, +*3 +,/. Cas, R. A. F. and Wright, J. V. (+33+) Subaqueous pyroclastic flows and ignimbrites, an assessment. Bull. Volcanol., /-, -/1-2*. Cole, R. B. and DeCelles, P. G. (+33+) Subaerial to submarine transitions in early Miocene pyroclastic flow deposits, southern San Joaquin basin, California. Geol. Soc. Am. Bull., +*-,,,+,-/. Cole, P. D., Guest, J. E. and Duncan, A. M. (+33-) The emplacement of intermediate volume ignimbrites: A case study from Roccamonfina Volcano, southern Italy. Bull. Volcanol., //,.01.2*. Dade, W. D. and Huppert, H. E. (+332) Long-runout rock falls. Geology,,0, 2*- 2*0. Druitt, T. H. (+332) Pyroclastic density currents. In: Gilbert, J. and Sparks, R. S. J. (eds.), The Physics of Explosive Volcanic Eruptions. Geol. Soc. London Spec. Publ., +./, +./ +2,. Druitt, T. H. and Sparks, R. S. J. (+32+) A proximal ignimbrite breccia facies on Santorini, Greece. J. Volcanol. Geotherm. Res., +-, +.1 +1+. Fisher, R. (+300) Mechanism of deposition from pyroclastic flows. Am. J. Sci.,,0., -/* -0-. Fisher, R. (+313) Models for pyroclastic surges and pyroclastic flows. J. Volcanol. Geotherm. Res., 0, -*/ -+2. Fisher, R. (+32.) Submarine volcanic rocks. In: Kokelaar, B. P. and Howells, M. F. (eds.), Marginal Basin Geology : Volcanic and Associated Processes in Modern and Ancient Basins. Geol. Soc. London Spec. Publ., no. +0, p./,1. Fisher, R. V. and Heiken, G. (+32,) Mt. Pelee, Martinique May 2 and,*, +3*,, pyroclastic flows and surges. J. Volcanol.Geotherm. Res., +-, --3-1+. Fisher, R. V., Smith, A. L. and Roobol, M. J. (+32*) Destruction of St. Pierre, Martinique by ash cloud surges, May 2 and,*, +3*,. Geology, 2,.1,.10. Fisher, R. V., Glicken, H. X. and Hoblit, R. P. (+321) May +2, +32*, Mount St. Helens deposits in South Coldwater Creek, Washington. J. Geophys. Res., 3,, +*,01 +*,2-. Fisher, R. V., Orsi, G., Ort, M. and Heiken, G. (+33-) Mobility of large-volume pyroclastic flow emplacement of the Campanian ignimbrite, Italy. J. Volcanol. Geotherm. Res., /0,,*/,,*. Fiske, R. S. and Matsuda, T. (+30.) Submarine equivalents of ash flows in the Tokiwa Formation, Japan. Am. J. Sci.,,0,, 10 +*0. Fiske, R. S., Cashman, K. V., Shibata, A., and Watanabe, K. (+332) Tephra dispersal from Myojinsho, Japan, during its shallow submarine eruption of +3/, +3/-. Bull. Volcanol., /3,,0,,1/. Fiske, R. S., Naka, J., Iizasa, K., Yuasa, M. and Klaus, A. (,**+) Submarine silicic caldera at the front of the Izu-Bonin arc, Japan : Voluminous seafloor eruptions of rhyolite pumice. Geol. Soc. Am. Bull., ++-, 2+- 2,.. Freundt, A. and Schmincke, H.-U. (+32/) Lithic-enriched segregation bodies in pyroclastic flow deposits of Lacher See Volcano (East Eifel, Germany). J. Volcanol. Geotherm. Res.,,/, +3-,,.. Freundt, A. and Schmincke, H.-U. (+320) Emplacement of small volume pyroclastic flows of Lacher See Volcano (East Eifel, Germany). Bull. Volcanol.,.2, -3 /3. Fujii, T. and Nakada, S. (+333) The +/ September +33+ pyroclastic flows at Unzen Volcano (Japan) : a flow model for associated ash-cloud surges. J. Volcanol. Geotherm. Res., 23, +/3 +1,.

S271 Gilbert, C. M. (+3-2) Welded tu# in Eastern California. Bull. Geol. Soc. Am.,.3, +2,3 +20,. Grunewald, U., Sparks, R. S. J., Kearns, S. and Komorowski, J. C. (,***) Friction marks on blocks from pyroclastic flows at the Soufriere Hills volcano, Montserrat : Implication for flow mechanism. Geology,,2, 2,1 2-*. (+33+) -0 -/1-1*. Hampton, M. A. (+31,) The role of subaqueous debris flow in generating turbidity currents. J. Sediment. Petrol.,.,, 11/ 13-. Head, J. W. and Wilson, L. (,**-) Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits. J. Volcanol. Geotherm. Res., +,+, +// +3-. Heiken, G. and Wohletz, K. H. (+32/) Volcanic Ash. Univ. California Press, Berkley,,.0 p. Hildreth, W. (+32+) Gradients in silicic magma chambers : implication for lithospheric magmatism. J. Geophys. Res., 20, +*+/- +*+3,. Hiscott, R. N. and Middleton, G. V. (+313) Depositional mechanics of thick-bedded sandstone at the base of a submarine slope, Tourelle Formation (Lower Ordovician), Quebec, Canada. In: Doyle, L. J. and Pilkey, O. H. (eds.), Geology of Continental Slope. Soc. Econ. Paleont. Mineral., Spec. Publ., no.,1, p.-*1 -,0. Hiscott, R. N. and Middleton, G. V. (+32*) Fabric of coarse deepwater sandstones, Tourelle Formation, Quebec, Canada. J. Sediment. Petrol., /*, 1*- 1,,. Kamata, H. and Mimura, K. (+32-) Flow directions inferred from imbrication in the Handa pyroclastic flow deposit in Japan. Bull. Volcanol.,.0,,11,2,. Kano, K. (+33*) An ash-flow tu# emplaced in shallow water, Early Miocene Koura Formation, Southwest Japan. J. Volcanol. Geotherm. Res.,.*, + 3. Kano, K (+330) A Miocene coarse volcaniclastic mass-flow deposit in the Shimane Peninsula, SW Japan : product of a deep submarine eruption? Bull. Volcanol., /2, +-+ +.-. Kano, K. (,**-) Subaqueous pumice eruptions and their deposits: A review. In White, J. D. L., Smellie, J. L. and Clague, D. (eds.), Subaqueous Explosive Volcanism, AGU Geophys. Monogr., +.*,,+-,,3. (+32,) / + -* p. - pls. Kano, K, Orton, G. J. and Kano, T. (+33.) A hot Miocene subaqueous scoria-flow deposit in the Shimane Peninsula, SW Japan. J. Volcanol. Geotherm. Res., 0*, + +.. Kano, K., Yamamoto, T. and Ono, K. (+330) Subaqueous eruption and emplacement of the Shinjima Pumice, Shinjima (Moeshima) Island, Kagoshima Bay, SW Japan. J. Volcanol. Geotherm. Res., 1+, +21,*0 Kiefer, S. W. and Sturtevant, B. (+322) Erosional furrows formed during the lateral blast at Mount St. Helens, May +2, +32*. J. Geophys. Res., 3-, +.13- +.2+0. Knellar, B. C. and Branney, M. J. (+33/) Sustained highdensity turbidity currents and the deposition of thick massive sands. Sedimentology,.,, 0*1 0+0. Kokelaar, B. P. and Busby, C. (+33,) Subaqueous explosive eruption and welding of pyroclastic deposits. Science,,/1, +30,*+. Kokelaar, B. P. and Köninger, S. (,***) Marine emplacement of welded ignimbrite: the Ordovician Pitt Head Tu#, North Wales. J. Geol. Soc. London, +/1, /+1 /-0. (+33*).. -0+ -12. Kurokawa, K. and Watanabe, T. (+33+) The SK*,* (Uonuma Pink) Ash and its grain-size characteristics : the early Pleistocene subaqueous ash containing accretionary lapilli in the Niigata region, central Japan. Mem. Fac. Educ., Niigata Univ., -,, 1/ +,+. Lacroix, A. (+3*.) La Montagne Pelée et ses éruption. Masson et Cie, Paris, 00, p. Manville, V. and Wilson C. J. N. (,**.) Vertical density currents : a review of their potential role in the deposition and interpretation of deep-sea ash layers. J. Geol. Soc., London, +0+, 3.1 3/2. Marsh, B. D. (+322) Crystal capture, sorting, and retention in convecting magmas. Geol. Soc. Am. Bull., +**, +1,* +1-1. Melosh, H. J. (+321) The mechanic of large rock avalanchee. In: Costa, J.E. and Wieczorek, G.F. (eds.), Debris flows/ Avalanches: Process, Recognition and Mitigation. Reviews in Engineering Geology, vol. IV, Geol. Soc. Am., p..+.3. Middleton G. V. and Hampton, M. A. (+31-) Sediment gravity flows: Mechanics of flow and deposition. In: G. V. Middleton and A.H. Bouma (eds.), Turbidites and Deep-water Sedimentation, Short Course, Soc. Econ. Paleont.Mineral., Pacific Section, p. + -2. Mimura, K. (+32.) Imbrication, flow direction and possible source areas of the pumice flow tu#s near Bend, Oregon, U.S.A. J. Volcanol. Geotherm. Res.,,+,./.0. (+31/),* 13 20. (+322) +32. -3.3/ /,-. Miyabuchi, Y. (+333) Deposits associated with the +33* +33/ eruption of Unzen Volcano, Japan. J. Volcanol. Geotherm. Res., 23, +-3 +/2. Mohrig, D., Whipple, K. X., Gondzo, M., Ellis, C. and Parker, G. (+332) Hydroplaning of subaqueous debris flowa. Geol. Soc. Am. Bull., ++*, -21-3.. Müeller, W. M. and White, J. D. L. (+33,) Felsic firefountaining beneath Archean sea : pyroclastic deposits of the,1-* Ma Hunter Mine Group, Quebec, Canada. J. Volcanol. Geotherm. Res., /., ++1 +-.. (,**/) :,**/ p. +/ +0. Pierson, T. C., Daag, A. S., Reyes, P. J. D., Regalado, M. T.

S272 M., Solidum, R. U. and Tubianosa, B. S. (+330) Flow and deposition of posteruption hot lahars on the east side of Mount Pinatubo, July-October +33+. In: Newhall, C. G. and Punongbayan, R. S. (eds.), Fire and Mud: Eruption and Lahars of Mount Pinatubo, Philippines. Philippine Inst. Volcanol. Seismol. and Univ. Washington Press, p. 3,+ 3/*. Sato, H., Fujii, T. and Nakada, S. (+33,) Crumbling of dacite dome lava and generation of pyroclastic flows at Unzen volcano. Nature, -0*, 00. 000. Sohn, Y. K. (+331) On traction-carpet sedimentation. J. Sediment. Res., 01, /*, /*3. Sparks, R. S. J. (+310) Grain size variations in ignimbrite and implications for the transport of pyroclastic flows. Sedimentology,,-, +.1 +22. Sparks, R. S. J. (+313) Gas release rates from pyroclastic flow: An assessment of the role of fluidization in their emplacement. Bull. Volcanol.,.+, + 3. Sparks, R. S. J. and Walker, G. P. L. (+31-) The ground surge deposits: a third type of pyroclastic rock. Nature,,.+, 0, 0.. Sparks, R. S. J., Self, S. and Walker, G. P. L. (+31-) Products of ignimbrite eruptions. Geology, +, ++/ ++2. (,**,) +32* +32..1 + 1. Suzuki, K. and Ui, T. (+32,) Grain orientation and depositional ramps as flow direction indicators of largescale pyroclastic flow deposits, Japan. Geology, +*,.,3.-,. Takahashi, T. (,**+) Mechanics and simulatin of snow avalansches, pyroclasic flows and debris flows. In: McCa#rey, W.D., Knellar, B. C. and Peakall, J. (eds.), Particle Gravity Currents, Int. Assoc. Sedimentol. Spec. Publ., no. -+, p.++.-. (+33-) +33+ 3, 0-2.. ++,.. (+330) -/ (+-3) ++,*. Uhira, K. and Yamasato, H. (+33.) Source mechanism of seismic waves excited by pyroclastic flows observed at Unzen volcano, Japan. J. Geophys Res., 33, +11/1 +111-. Ui, T., Takarada, S. and Yoshimoto, M. (,***) Debris Avalanche. In: Sigurdsson, H., Houghton, B., McNutt, S. R., Rymer, H. and Stix, J. (eds), Encyclopedia of Volcanoes. Academic Press, San Diego, p. 0+1 0,0. Ui, T., Matsuo, N., Sumita, M., Fujinawa, A. (+333) Generation of block and ash flows during the +33* +33/ eruption of Unzen Volcano, Japan. J. Volcanol. Geotherm. Res., 23, +,- +-1. Voight, B., Janda, R. J., Glicken, H. and Douglas, P. M. (+32-) Nature and mechanics of the Mount St. Helens rock-slide avalanche of +2 May +32*. Geotechnique, --,,.-,1-. White, J. D. L. (,***) Subaqueous eruption-fed density currents and their deposits. Precamb. Res. +*+, 21 +*3. White, J. D. L., Smellie, J. L. and Clague, D. (eds.) (,**-) Subaqueous Explosive Volcanism, AGU Geophys. Monogr., +.*, -13p. Wilson, C. J. N. and Walker, G. P. L. (+32,) Ignimbrite depositional facies : the anatomy of pyroclastic flow. J. Geol. Soc. London, +-3, /2+ /3,. Woods, A. W. and Bursik, M. I. (+33.) A laboratory study of ash flows. J. Geophys. Res., 33,.-1/.-3.. Wright, I. C., Gamble, J. A. and Shane P. A. R. (,**-) Submarine silicic volcanism of the Healy caldera, southern Kermadec arc (SW Pacific) : I volcanology and eruption mechanisms. Bull. Volcanol., 0/, +/,3. Wright, J. V., Smith, A. L. and Self, S. (+32*) A woking terminology of pyroclastic deposits. J. Volcanol. Geotherm. Res., 2, -+/ --0. Yamada, E. (+32.) Subaqueous pyroclasic flows: their development and their deposits. In: Kokelaar, B. P. and Howells, M. F. (eds.), Marginal Basin Geology : Volcanic and Associated processes in Modern and Ancient Basins. Geol. Soc. London Spec. Publ., no. +0, p.,3 -/. (+31.) no..0, p.0-03. (+33.)./ +-/ +//. Yamamoto, T., Takada, A., Ishizuka, Y., Miyaji, N. and Tajima, Y., (,**/) Basaltic pyroclastic flows of Fuji volcano, Japan : characteristics of the deposits and their origin. Bull. Vocanol., 01, 0,, 0--. Yuasa, M. and Kano, K. (,**-) Submarine silicic calderas on the northern Schichito-Iwojima Ridge, Izu-Ogasawara (Bonin) Arc, western Pacific. In White, J. D. L., Smellie, J. L. and Clague, D. (eds.), Subaqueous Explosive Volcanism, AGU Geophys. Monogr., +.*,,-+,.-.