Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Σχετικά έγγραφα
Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

α & β spatial orbitals in

1 Complete Set of Grassmann States

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

8.324 Relativistic Quantum Field Theory II

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Solution Series 9. i=1 x i and i=1 x i.

6.3 Forecasting ARMA processes

Solutions to Exercise Sheet 5

Finite Field Problems: Solutions

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Srednicki Chapter 55

Section 7.6 Double and Half Angle Formulas

5.4 The Poisson Distribution.

derivation of the Laplacian from rectangular to spherical coordinates

Matrices and Determinants

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Other Test Constructions: Likelihood Ratio & Bayes Tests

2 Composition. Invertible Mappings

w o = R 1 p. (1) R = p =. = 1

Section 8.3 Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ST5224: Advanced Statistical Theory II

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Math221: HW# 1 solutions

Forced Pendulum Numerical approach

Dr. D. Dinev, Department of Structural Mechanics, UACEG

A Class of Orthohomological Triangles

Exercises to Statistics of Material Fatigue No. 5

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

EE512: Error Control Coding

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Higher Derivative Gravity Theories

LECTURE 4 : ARMA PROCESSES

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Example Sheet 3 Solutions

New bounds for spherical two-distance sets and equiangular lines

Homework 3 Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Calculating the propagation delay of coaxial cable

Second Order Partial Differential Equations

C.S. 430 Assignment 6, Sample Solutions

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

( y) Partial Differential Equations

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Generalized Linear Model [GLM]

Every set of first-order formulas is equivalent to an independent set

1) Formulation of the Problem as a Linear Programming Model

Math 6 SL Probability Distributions Practice Test Mark Scheme

ECON 381 SC ASSIGNMENT 2

Concrete Mathematics Exercises from 30 September 2016

The Simply Typed Lambda Calculus

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Lecture 2. Soundness and completeness of propositional logic

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

D Alembert s Solution to the Wave Equation

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

CRASH COURSE IN PRECALCULUS

( ) 2 and compare to M.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Estimators when the Correlation Coefficient. is Negative

Μηχανική Μάθηση Hypothesis Testing

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Second Order RLC Filters

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

8.323 Relativistic Quantum Field Theory I

Lecture 10 - Representation Theory III: Theory of Weights

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Approximation of distance between locations on earth given by latitude and longitude

Statistical Inference I Locally most powerful tests

EE101: Resonance in RLC circuits

Areas and Lengths in Polar Coordinates

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Homework 8 Model Solution Section

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Numerical Analysis FMN011

6.003: Signals and Systems. Modulation

Congruence Classes of Invertible Matrices of Order 3 over F 2

arxiv: v1 [stat.me] 20 Jun 2015

Lecture 21: Properties and robustness of LSE

Transcript:

Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton

Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton wth nbreedng coeffcent F (or a sngle ndvdual wth nbreedng coeffcent F ), the mean trat value s E(G F ) = µ GF = µ G + FH where µ G s the mean trat value n a non-nbreedng (or outbred) populaton and H = p δ were the δ terms are the domnance devaton for the non-nbreedng case. Inbred ndvduals are almost always less ft than progeny of nonrelatves The declne n the mean phenotype wth ncreasng homozygosty wthn populatons s known as nbreedng depresson H s the nbreedng depresson, and t s the change of outbred populaton mean value as a result of nbreedng.

Varance of Trat n an Inbred Populaton Trat Value Moments n Inbred Populatons We found the frst moment (the mean) for the trat value dstrbuton n an nbreed populaton. To obtan the trat varance, we need to obtan the second moment, whch s the expected value of the square of the lnear model for the trat values. Usng a smlar approach used to obtan the frst moment, we wll now obtan the second moment.

Varance of Trat n an Inbred Populaton Genetc Values Overvew As before, we denote the genetc value for genotype A A j as G j = µ G + α + α j + δ j where µ G = p p j G j = G.. j α = j p j G j µ G = G. G.. δ j = G j µ G α α j = G j G. G j. + G.. These mply that p α = 0 and p δ j = 0

Varance of Trat n an Inbred Populaton Genetc Varance of Trat Values wth Inbreedng For a random member of a populaton nbred to an extent F relatve to the reference populaton, the genotype frequences are P = p 2 + Fp (1 p ) So we have that E(G 2 F ) = = P j = 2p p j (1 F ) P j (µ G + α + α j + δ j ) 2 j [p 2 + Fp (1 p )](µ G + 2α + δ ) 2 + [p p j (1 F )](µ G + α + α j + δ j ) 2 j

Varance of Trat n an Inbred Populaton Genetc Varance of Trat Values wth Inbreedng = [p 2 (1 F ) + Fp ](µ 2 G + 4α2 + δ 2 + 4µ G α + 2µ G δ + 4α δ ) + j [p p j (1 F )](µ 2 G + α2 + α 2 j + δ 2 j + 2µ G α + 2µ G α j +2µ G δ j + 2α α j + 2α δ j + 2α j δ j ) = Fp (µ 2 G + 4α2 + δ 2 + 4µ G α + 2µ G δ + 4α δ ) + [p p j (1 F )](µ 2 G + α2 + αj 2 + δj 2 + 2µ G α + 2µ G α j j +2µ G δ j + 2α α j + 2α δ j + 2α j δ j )

Varance of Trat n an Inbred Populaton Genetc Varance of Trat Values wth Inbreedng Let s focus on the frst term nvolvng F We have that p α = 0 and p δ j = 0. So ( F µ 2 G + 4 p α 2 + p δ 2 + 4µ G p α +2µ G p δ + 4 ) p α δ = F ( µ 2 G + 4 p α 2 + p δ 2 + 2µ G p δ + 4 p α δ )

Varance of Trat n an Inbred Populaton Genetc Varance of Trat Values wth Inbreedng Now focus on the frst term nvolvng 1 F [p p j (1 F )](µ 2 G + α2 + αj 2 + δj 2 + 2µ G α + 2µ G α j +2µ G δ j + 2α α j + 2α δ j + 2α j δ j ) Smplfy ths term usng p α = 0 and p δ j = 0.

Varance of Trat n an Inbred Populaton Genetc Varance of Trat Values wth Inbreedng = (1 F ) µ 2 G + p p j α 2 + p p j αj 2 + p p j δj 2 + 2µ G p p j α + 2µ G p p j α j +2µ G p p j δ j + 2 p p j α α j + 2 p p j α δ j +2 p p j α j δ j

Varance of Trat n an Inbred Populaton Genetc Varance of Trat Values wth Inbreedng = (1 F ) µ 2 G + p j p α 2 + p p j αj 2 j + p p j δj 2 + 2µ G p j p α + 2µ G p p j α j j +2µ G p p j δ j + 2 p α p j α j + 2 p α p j δ j +2 p j α j p δ j j = (1 F ) µ 2 G + 2 p α 2 + p p j δ 2 j

Varance of Trat n an Inbred Populaton Genetc Varance of Trat Values wth Inbreedng Combnng the smplfed two terms together we have that ( E(GF 2 ) = F µ 2 G + 4 p α 2 + p δ+ 2 2µ G p δ + 4 ) p α δ +(1 F ) µ 2 G + 2 p α 2 + p p j δ 2 j = µ 2 G + 2(1 + F ) p α 2 + (1 F ) p p j δj 2 +F p δ 2 + 4F p α δ + 2F µ G p δ

Varance of Trat n an Inbred Populaton Genetc Varance of Trat Values wth Inbreedng So E(G 2 F ) = µ2 G + 2(1 + F ) +F p δ 2 + 4F p α 2 + (1 F ) p α δ + 2F µ G p δ Now calculate the varance of G F notng that E(G F ) = µ G + FH where H = p δ p p j δj 2 j

Varance of Trat n an Inbred Populaton Genetc Varance of Trat Values wth Inbreedng We have that Var(G F ) = E(GF 2 ) [E(G F )] 2 = (1 + F )2 p α 2 + (1 F ) p p j δj 2 +F p δ 2 + 4F p α δ F 2 H 2 = (1 + F )σ 2 A + (1 F )σ2 D + 4FD 1 + FD 2 + F (1 F )H 2 where H = p δ, D 1 = p α δ, and D 2 = p δ 2 H2. Note that D 2 s the varance of the δ s So the genetc varance for an nbreed populatons can be wrtten n terms of fve components For a non-nbreed populaton, F = 0 and the genetc varance s σa 2 + σ2 D, as we prevously showed.

Varance of Trat n an Inbred Populaton Termnology and Expressons for Varance of Trat The followng terms are commonly used for expressng the varances and covarances of trat values Components Mult-allelc B-allelc Addtve Varance σa 2 = 2 p α 2 σa 2 = 2pqα2 Domnance Varance σd 2 = j p p j δj 2 σd 2 = (2pqd)2 Inbreedng depresson H = p δ H=-2qpd Covarance of α s and δ s D 1 = p α δ D 1 = 2pqdα(p q) Varance of δ s D 2 = p δ 2 H2 D 2 = 4pq(1 4pq)d 2 where α = α 1 α 2 for the b-allelc case. For the b-allelc case, f the frequency of the two alleles are the same, what s D 1 and D 2? For the b-allelc case, f the trat s addtve, what s H, D 1, and D 2?