Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Σχετικά έγγραφα
EE 570: Location and Navigation

EE 570: Location and Navigation

Reminders: linear functions

Inertial Navigation Mechanization and Error Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Spherical Coordinates

MAE 142 Homework #1 SOLUTIONS Due Friday, January 30, (a) Find the principle moments of inertia for each body.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CRASH COURSE IN PRECALCULUS

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Section 8.2 Graphs of Polar Equations

Rectangular Polar Parametric

Approximation of distance between locations on earth given by latitude and longitude

Γραφικά Υπολογιστών: 2D Μετασχηματισμοί (transformations)

Second Order Partial Differential Equations

Section 8.3 Trigonometric Equations

Sampling Basics (1B) Young Won Lim 9/21/13

CORDIC Background (2A)

Answer sheet: Third Midterm for Math 2339

Lecture 21: Scattering and FGR

Other Test Constructions: Likelihood Ratio & Bayes Tests

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

derivation of the Laplacian from rectangular to spherical coordinates

Περισσότερα+για+τις+στροφές+

Γραφικά Υπολογιστών: Θέαση στις 3D

Lifting Entry (continued)

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Notes on the Open Economy

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Trigonometric Formula Sheet

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

1 String with massive end-points

Matrices and Determinants

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Example Sheet 3 Solutions

Section 9.2 Polar Equations and Graphs

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Concrete Mathematics Exercises from 30 September 2016

Note: Please use the actual date you accessed this material in your citation.

Physics 339 Gibbs-Appell November 2017

CORDIC Background (4A)

Forced Pendulum Numerical approach

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Parametrized Surfaces

Trigonometry 1.TRIGONOMETRIC RATIOS

Chapter 7 Transformations of Stress and Strain

Lecture 26: Circular domains

Homework 8 Model Solution Section

Space-Time Symmetries

Lecture 6 Mohr s Circle for Plane Stress

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

w o = R 1 p. (1) R = p =. = 1

D Alembert s Solution to the Wave Equation

Three-Dimensional Rotations as Products of Simpler Rotations

Solutions - Chapter 4

Areas and Lengths in Polar Coordinates

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

6.4 Superposition of Linear Plane Progressive Waves

Geodesic Equations for the Wormhole Metric

4.6 Autoregressive Moving Average Model ARMA(1,1)

PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Durbin-Levinson recursive method

«Μνληέιν δηαζηαζηνπνίεζεο δηθηχνπ θνξκνχ επξπδσληθψλ δηθηχσλ βαζηδφκελν ζηελ εθαξκνγή»

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Tutorial Note - Week 09 - Solution

Solutions to Exercise Sheet 5

Local Approximation with Kernels


PARTIAL NOTES for 6.1 Trigonometric Identities

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Example 1: THE ELECTRIC DIPOLE

Solution to Review Problems for Midterm III

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CURVILINEAR COORDINATES

Section 7.6 Double and Half Angle Formulas

3.5 - Boundary Conditions for Potential Flow

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude

11.4 Graphing in Polar Coordinates Polar Symmetries

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Modelling the Furuta Pendulum

Tridiagonal matrices. Gérard MEURANT. October, 2008

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Srednicki Chapter 55

Transcript:

Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical Engineering Dept., New Mexico Tech In collaoration with Stephen Bruder, Electrical & Computer Engineering, Emry-Riddle Aeronautical University.1 Coordinate Frame Transformation Determine the detailed kinematic relationships etween the 4 major frames of interest The Earth-Centered Inertial (ECI) coordinate frame (i-frame) The Earth-Centered Earth-Fixed (ECEF) coordinate frame (e-frame) The Local Navigation (Nav) coordinate frame (n-frame) The Body coordinate frame (-frame).2 ECI/ECEF Relationship etween the ECI and ECEF frames ECI & ECEF have co-located orgins r ie = r ie = r ie = 0 The x, y, and z axis of the ECI & ECEF frames are coincident at time t 0 The ECEF frame rotates aout the common z-axis at a fixed rate (ω ie ) Ignoring minor speed variatins (precession & nutation) ω ie = 72.921151467µrad/sec (WGS84) which is 15 /hr.3 ECI/ECEF The angular velocity and acceleration are The angle of rotation is ω i ie = 0 0 i ω ie = ω ie θ ie = ω ie (t t 0 ) = ω ie t + θ GMST where GMST is the Greenwich mean sidereal time 0 0 0 1

The orientation of frame {e} wrt frame {i} ecomes Ce i = R ( z,θie) = cos θ ie sin θ ie 0 sin θ ie cos θ ie 0 0 0 1 Note: ω i ie = ω e ie.4 Description of the navigation frame Orientation of the n-frame wrt the e- frame z e z i Cn e = R ( z,λ )R ( y, L 90 ) cos λ sin λ 0 sin L 0 cos L = sin λ cos λ 0 0 1 0 0 0 1 cos L 0 sin L sin L cos λ sin λ cos L cos λ = sin L sin λ cos λ cos L sin λ cos L 0 sin L where geodetic Lat = L and Geodetic Lon = λ Vernal Equinox x i x n NMT θ lat y n z n N ω e θlon Greenwichhh y e y i x e.5 Angular velocity of the n-frame wrt the e-frame resolved in the e-frame as a skewsymmetric matrix Ċn e = CnΩ e n en = Ω e encn e Ω e en = Ċe n [Cn] e T s L s λ λ c L c λ L c λ λ c λ s L L + c L s λ λ = c L s λ L c λ s L λ s λ λ s L s λ L c L c λ λ [Ce n] T s L L 0 c L L 0 λ L cos(λ ) = λ 0 L sin(λ ) L cos(λ ) L sin(λ ) 0.6 The angular velocity vector sin(λ) L ω e en = cos(λ) L λ cos(λ) λ ω n en = [Cn] e T ω e en = L sin(l ) λ.7 2

ECI/ Hence the orientation of the n-frame wrt the i-frame ecomes c θie s θie 0 s L c λ s λ c L c λ Cn i = CeC i n e = s θie c θie 0 s L s λ c λ c L s λ 0 0 1 c L 0 s L sin(l ) cos(θ ie + λ ) sin(θ ie + λ ) cos(l ) cos(θ ie + λ ) = sin(l ) sin(θ ie + λ ) cos(θ ie + λ ) cos(l ) sin(θ ie + λ ) cos(l ) 0 sin(l ).8 ECI/ The angular velocity of the n-frame wrt the i-frame resolved in the i-frame is ω i in = ω i ie + Ce ω i e en 0 cos(θ ie ) sin(θ ie ) 0 sin(λ ) L = 0 + sin(θ ie ) cos(θ ie ) 0 cos(λ ) L ω ie 0 0 1 λ sin(θ ie + λ ) L = cos(θ ie + λ ) L ω ie + λ The vector from the origin of the e-frame to the n-frame origin resolved in the e-frame (from the last lecture) (R E + h ) cos(l ) cos(λ ) r e e = (R E + h ) cos(l ) sin(λ ) = r e en (R E (1 e 2 ) + h ) sin(l ).9 Origins of the n-frame and the -frame are the same The velocity of the n-frame wrt the e-frame resolved in the e-frame v e en = d dt r e en = r e en L + r e en λ + r e en ḣ L λ h sin(l ) cos(λ ) sin(λ ) cos(l ) cos(λ ) (R N + h ) L = sin(l ) sin(λ ) cos(λ ) cos(l ) sin(λ ) cos(l )(R E + h ) λ cos(l ) 0 sin(l ) ḣ.10 Recalling the form of Cn e suggests that (R N + h ) L v e en = Cn e cos(l )(R E + h ) λ = Ce n v n en ḣ 3

and hence, Restating v n en as and recalling that suggests that (R N + h ) L v n en = cos(l )(R E + h ) λ ḣ (R N + h ) L v n en = cos(l )(R E + h ) λ = ḣ v n en,n v n en,e v n en,d cos(l ) λ ω n en = L sin(l ) λ v n en,e /(R E + h ) ω n en = v n en,n /(R N + h ) tan(l ) v n en,e /(R E + h ).11.12 Description wrt the ody frame Orientation of the -frame wrt the n-frame in terms of relative yaw (ψ), pitch (θ), then roll (φ) angles c ψ s ψ 0 c θ 0 s θ 1 0 0 C n = R ( z,ψ) R ( y,θ) R ( x,φ) = s ψ c ψ 0 0 1 0 0 c φ s φ 0 0 1 s θ 0 c θ 0 s φ c φ c θ c ψ c ψ s θ s φ c φ s ψ c φ c ψ s θ + s φ s y ψ pitch = c θ s ψ c φ c ψ + s θ s φ s ψ c φ s θ s ψ c ψ s φ s θ c θ s φ c θ c φ roll Center of Gravity x yaw z.13 The angular velocity of the -frame wrt the i-frame resolved/coordinatized in the i- frame ω i i = ω i in + C i n ω n n = ω i ie + C i e ω e en + C i n ω n n.14 4

Position vectors to the origin of the ody frame The origins of the ody and Nav frames are co-incident r n = 0 The origins of the ECI and ECEF frames are co-incident r e = r i = r en = r in Velocity of the -frame wrt the i-frame resolved in the i-frame A moving point in a rotation frame v i i = d dt r i i = d dt Ci e r e e = C i eω e ie r e e + C i e v e e = C i e (Ω e ie r e e + v e e).15 Acceleration of the -frame wrt the i-frame resolved in the i-frame A moving point in a rotation frame a i i = d dt v i i = d dt ( C i e (Ω e ie r e e + v e e) ) = Ċi e (Ω e ie r e e + v e e) + Ce i ω = 0 Ω e ie r e e + Ω e r ie e e + v e e = C i eω e ie (Ω e ie r e e + v e e) + C i e (Ω e ie v e e + a e e) = C i e (Ω e ieω e ie r e e + 2Ω e ie v e e + a e e).16 5