What is SUSY? Supersymmetry is a boson-fermion symmetry that is aimed to unify all forces in Nature including gravity within a singe framework

Σχετικά έγγραφα
Quantum ElectroDynamics II

Journal of Theoretics Vol.4-5

α & β spatial orbitals in

Higher spin gauge field cubic interactions.

Multi-dimensional Central Limit Theorem

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

8.323 Relativistic Quantum Field Theory I

Multi-dimensional Central Limit Theorem

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α

The role of the Seiberg Witten field redefinition in renormalization of noncommutative chiral electrodynamics

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Space-Time Symmetries


The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Α Ρ Ι Θ Μ Ο Σ : 6.913

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Non-Gaussianity from Lifshitz Scalar

1 Complete Set of Grassmann States

An Introduction to Supersymmetry

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Higher Derivative Gravity Theories

Bridges of Low-E observables with Leptogenesis in mu-tau Reflection Symmetry

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

! # % ) + +, #./ )

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Dark matter from Dark Energy-Baryonic Matter Couplings

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet


Three coupled amplitudes for the πη, K K and πη channels without data

8.324 Relativistic Quantum Field Theory II

Derivation of Optical-Bloch Equations

Phasor Diagram of an RC Circuit V R

Particle Physics: Introduction to the Standard Model

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

The challenges of non-stable predicates

Parametrized Surfaces

DYNAMICS OF CHANGE WITHIN LIVESTOCK SUB-SECTOR IN CHAD : a key-study of raw milk commodity chain in N Djamena

Other Test Constructions: Likelihood Ratio & Bayes Tests

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

D-term Dynamical SUSY Breaking

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Math221: HW# 1 solutions

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Questions on Particle Physics

The Simply Typed Lambda Calculus

Lifting Entry (continued)

Second Order Partial Differential Equations

2 Lagrangian and Green functions in d dimensions

Geodesic Equations for the Wormhole Metric

Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Theory of the Lattice Boltzmann Method

Tutorial problem set 6,

arxiv: v1 [hep-th] 6 Sep 2017

Large β 0 corrections to the energy levels and wave function at N 3 LO

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Aerodynamics & Aeroelasticity: Eigenvalue analysis

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Higher spin gauge theories and their CFT duals

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Statistical Inference I Locally most powerful tests

Magnetized plasma : About the Braginskii s 1 macroscopic model 2

1 Poincare group and spinors

Srednicki Chapter 55

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

3+1 Splitting of the Generalized Harmonic Equations

Strain gauge and rosettes

Areas and Lengths in Polar Coordinates


4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

NOTES AND SOLUTIONS FOR QUANTUM FIELD THEORY BY MARK SREDNICKI.

A Class of Orthohomological Triangles

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Policy Coherence. JEL Classification : J12, J13, J21 Key words :

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

The ε-pseudospectrum of a Matrix

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

the total number of electrons passing through the lamp.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Constant Elasticity of Substitution in Applied General Equilibrium

6< 7 4) ==4>)? ) >) ) Α< = > 6< 7<)Β Χ< Α< = > ) = ) 6 >) 7<)Ε > 7 ) ) ) ; + ; # % & () & :,% 3 + ;; 7 8 )+, ( ! # % & % ( )! +, % & &.

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Second Order RLC Filters

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Transcript:

What s SUSY? Supersymmetry s a boson-fermon symmetry that s amed to unfy all forces n Nature ncludng gravty wthn a snge framework Q boson >= fermon > Q fermon >= boson > j = = { Q, Q } = δ ( σ ) [,] bb 0, { f, f} 0 j β P β Modern vews on supersymmetry n partcle physcs are based on strng paradgm, though low energy manfestatons of SUSY can be found (?) at modern collders and n non-accelerator experments 0.07.007 Pre-conference school, SUSY'07

Motvaton of SUSY n Partcle Physcs Unfcaton wth wth Gravty Unfcaton of gauge couplngs Soluton of the herarchy problem Dark spn matter n the spn Unverse 3/ spn 1 spn 1/ spn 0 Superstrngs Unfcaton of matter (fermons) wth forces (bosons) naturally arses from an attempt to unfy gravty wth the other nteractons j β β ε ε j { Q, Q } = δ ( σ ) P { δ, δ } = ( εσ ε) P ε = ε( x) local coordnate transformaton. Local translaton = general relatvty! Supertranslaton x x + θσ ξ ξσ θ, θ θ + ξ, θ θ + ξ 0.07.007 Pre-conference school, SUSY'07 3

Motvaton of SUSY n Partcle Physcs Unfcaton of gauge couplngs Low Energy n SU (3) SU () U (1) G (or G + symm) c L Y gluons W, Z photon gauge bosons 3 1 Hgh Energy GUT quarks leptons fermons g g g g GUT Q = ( ) = (dstance) Λ 0.07.007 Pre-conference school, SUSY'07 4 Runnng of the strong couplng

Input 1 ( M ) = 18.978± 0.07 Z sn θ = 0.3146± 0.00017 MS ( M ) = 0.1184± 0.0031 s RG Equatons Z Motvaton of SUSY d dt b1 0 4/3 1/10 SM : b = b = /3 + NFam 4/3 + NHggs 1/6 b 11 4/3 0 M M SUSY GUT -1 GUT 3 Output 3.4± 0.9± 0.4 = 10 GeV = 15.8± 0.3± 0.1 10 GeV = 6.3± 1.9 ± 1.0 = b, = / 4 π = g /16 π, t=log(q / ) b1 0 3/10 MSSM : b = b = 6 + NFam + NHggs 1/ b 9 0 3 Unfcaton of the Couplng Constants n the SM and n the MSSM 0.07.007 Pre-conference school, SUSY'07 5 SUSY yelds unfcaton!

Motvaton of SUSY Soluton of the Herarchy Problem m H v 10 GeV 16 m Σ V 10 GeV Destructon of the herarchy by radatve correctons m H -14 10 1 m Σ Cancellaton of quadratc terms bosons m = fermons m 0.07.007 Pre-conference school, SUSY'07 6

Motvaton of SUSY Dark Matter n the Unverse The flat rotaton curves of spral galaxes provde the most drect evdence for the exstence of large amount of the dark matter. Spral galaxes consst of a central bulge and a very thn dsc, and surrounded by an approxmately sphercal halo of dark matter SUSY provdes a canddate for the Dark matter a stable neutral partcle 0.07.007 Pre-conference school, SUSY'07 7

Cosmologcal Constrants New precse cosmologcal data Ω h = Ω vacuum 1 73% Ω 3± 4% Ω DarkMatter Baryon 4% ρ = ρ crt Dark Matter n the Unverse: Supernova Ia exploson CMBR thermal fluctuatons Hot DM (not favoured by galaxy formaton) Cold DM (rotaton curves of Galaxes) SUSY 0.07.007 Pre-conference school, SUSY'07 8

Lorentz Algebra ( Super) Algebra [ P, P] = 0, [ P, M ] = ( g P g P), ν ρσ ρ σ σ ρ SUSY Algebra 1 β 1 ν ν β ν Superalgebra [ M, M ] = ( g M g M g M + g M ), ν ρσ νρ σ νσ ρ ρ νσ σ νρ [ Q, P] = [ Q, P] = 0, β [ Q, M ] = ( σ ) Q, [ Q, M ] = Q ( σ ), j β P β j j β β { Q, Q } = δ ( σ ) j { Q, Q } = δ ( σ ) P, ββ,,, = 1,; j, = 1,,..., N. β ν Superspace x x, θ, θ Grassmannan parameters, = 1, 0.07.007 Pre-conference school, SUSY'07 9 Q ϑ = 0, ϑ = 0 SUSY Generators = ϑ σ θ Q = + θσ ϑ Q = 0, Q = 0 Ths s the only possble graded Le algebra that mxes nteger and half-nteger spns and changes statstcs

Quantum States Quantum states: Vacuum = E, λ > Q E, λ >= 0 [ Q, P ] = [ Q, P ] = 0 Energy helcty State Expresson # of states vacuum 1 1-partcle -partcle N-partcle E, λ > Q E, λ >= E, λ+ 1/> QQ E, λ >= E, λ+ 1> j QQ...,, / 1 QN E λ >= E λ+ N > ( N ) 1 = N ( N ) N( N 1) = ( N ) N = 1 N ( N) N N 1 N 1 k = = bosons + fermons k = 0 0.07.007 Pre-conference school, SUSY'07 10 Total # of states:

Chral multplet Vector multplet SUSY Multplets N N = 1, λ=0 = 1, λ=1/ helcty # of states helcty # of states -1/ 0 1/ 1 1-1 -1/ 1/ 1 1 1 1 1 Members of a supermultplet are called superpartners scalar spnor ( ϕ, ψ ) ( λ, A ) spnor vector N=4 SUSY YM helcty -1 1/ 0 1/ 1 λ = -1 # of states 1 4 6 4 1 N=8 SUGRA helcty - 3/ 1 1/ 0 1/ 1 3/ N 4S λ = - # of states 1 8 8 56 70 56 8 8 1 spn N 4 N 8 For renormalzable theores (YM) For (super)gravty 0.07.007 Pre-conference school, SUSY'07 11

Smplest (N=1) SUSY Multplets Bosons and Fermons come n pars ( ϕ, ψ ) ( λ, A ) ( g, g) Spn 0 Spn 1/ Spn 1/ Spn 1 Spn 3/ Spn 0.07.007 Pre-conference school, SUSY'07 1

SUSY Transformaton N=1 SUSY Chral supermultplet: spn=0 spn=1/ δ A = εψ, ε δ ψ = σ ε A+ εf, ε δ F = εσ ψ ε parameter of SUSY transformaton (spnor) Auxlary feld (unphyscal d.o.f. needed to close SYSY algebra ) SUSY multplets Φ ( y, θ) = A( y) + θψ( y) + θθf( y) superfeld = Ax ( ) + θσ θ Ax ( ) + θθθθ Ax ( ) Superfled n Superspace + θψ ( x) / θθ ψ ( x) σ θ + θθ F( x) θ = θθ, θ = θ = 0! 1 4 ( y = x+ θσθ) Expanson over grassmannan parameter component felds 1 1 0.07.007 Pre-conference school, SUSY'07 13

Gauge superfeld Gauge superfelds + V( x, θθ, ) = C( x) + θχ( x) θχ( x) + θθm( x) θθm ( x) θσ θv ( x) + θθθ[ λ( x) + σ χ( x)] θθθ [ λ( x) + σ χ( x)] + θθθθ[ Dx ( ) + Cx ( )] 1 1 Gauge transformaton C C+ A+ A χ χ ψ M M F v v A A * ( ) λ λ D D * V Feld strength tensor V +Φ+Φ Wess-Zumno gauge C = χ = M = 0.07.007 Pre-conference school, SUSY'07 14 0 physcal felds W = 1 4 V V D e De Covarant dervatves ν W = + D Fν + D D D = ϑ + σ ϑ = θσ λ θ ( ) σ σ θ θ σ λ θ

How to wrte SUSY Lagrangans 1 st step Take your favorte Lagrangan wrtten n terms of felds nd step Replace Feld ( ϕ, ψ, A ) Superfeld ( Φ, V ) 3 rd step Acton = 4 d x L x ( ) Replace d x d 4 4 θ L( x, θθ, ) Grassmannan ntegraton n superspace dθ = 0, θ dθ = δ β β 0.07.007 Pre-conference school, SUSY'07 15

Superfelds SUSY Lagrangan (Matter) L = d θd θ ΦΦ+ d θ ( λφ+ m ΦΦ + y ΦΦΦ ) + hc..] + 1 1 j j 3 jk j k Components Knetc term Superpotental * * L= ψ σψ + A A + F F no dervatves + [ λf + m ( AF ψψ ) + y ( AA F ψψ A ) + hc..] 1 j j j jk j k j k Constrant δ L δ F k = F + λ + m A + y AA = * k k k jk j 0 F k * 1 1 * j j j j L= ψ σψ+ A A mψψ m ψψ y ψψ A y ψ ψ A V( A, A ) * * jk j k jk j k j V = F F * k k 0.07.007 Pre-conference school, SUSY'07 16

SUSY Lagrangans (gauge) Gauge felds 1 1 1 ν 4 4 ν L d θ W W d θ W W D F F λσ D λ = + = Gauge transformaton gλ + + gλ + Φ e Φ, Φ Φ e, V V + ( Λ Λ ) + Gauge nvarant nteracton wth matter (covarant dervatve) + + gv Φ Φ Φ e Φ 0.07.007 Pre-conference school, SUSY'07 17

Gauge Invarant SUSY Lagrangan L = d θ Tr(W W ) + d θ Tr(W W ) SUSY YM 1 1 4 4 + d θd θ Φ ( e ) Φ + d θ W( Φ ) + d θ W( Φ) SUSY YM gv a b a b 1 a aν a a 1 a a 4 ν λσ λ L = F F D + D D a a a a a a ( A gv T A) ( A gv T A) ψ σ ( ψ gv T ψ) + a a a a a a λψ ψ λ DgAT A gat + g T A+ FF W W W W + + A A A A A A 1 1 F F ψψ j j j a a 1 a a A 0.07.007 Pre-conference school, SUSY'07 18 ψ ψ W D = ga T A, F = V= D D + F F j

Spontaneous Breakng of SUSY Energy E =< 0 H 0> j β P β j { Q, Q } = δ ( σ ) 1 j 1 4 0 {, } 0 4 0 0 = 1, = < >= > E Q Q Q E =< 0 H 0> 0 f and only f Q 0> 0 0.07.007 Pre-conference school, SUSY'07 19