Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 δ

18

19

20

21

22

23

24

25 α

26

27

28

29

30

31 ΦΦ

32

33

34

35

36

37

38

39

40

41

42

43 Δ

44 + = + Δ

45 ρ

46 = = =

47 = = = = = +

48 =

49

50 =

51 =

52

53

54

55

56

57 αμ μα

58 =

59

60

61 = +

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76 ± ± ρ

77

78

79

80

81

82 Π Σ

83

84

85

86

87 μ

88

89

90

91

92 Π Σ

93

94

95

96

97

98

99

100

101

102

103

104 =

105 = =

106 = =

107 = + = +

108

109 = + = = =

110 = = +

111

!"#$ %&#'($)"!"#$# %"& '(")*+#, )* +,-./0 ΖΖΖ.ΛΨ ΘςΩ ΠΗΘΡΨ.ΦΡΠ 2010

!#$ %&#'($)!#$# %& '()*+#, )* +,-./0 ΖΖΖ.ΛΨ ΘςΩ ΠΗΘΡΨ.ΦΡΠ 2010 ΖΖΖΛΨ ΘςΩ ΠΗΘΡΨΦΡΠ ± ±,6%1 ± ± ± ± ± ± ± ± ± ± ±± ± ± ± ± ± ± ± ±± ± ± ± ± ϕ ± ± ±± 9< + ± ± 9< +± ± ± ± ± ±± ± ± ± ±± ± ± ± ± ± ± ± Η ± ± ± ± ± ± ± ± ± ± ± ± ±±± ± ±± ± ± ± ± ± ± ± ± ± ± ± ± ±

Διαβάστε περισσότερα

?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :

Διαβάστε περισσότερα

! # % ) + +, #./ )

! # % ) + +, #./ ) ! # % & ( ) + +, #./0. 1 + 2 + 2 5 2 3 40. ) 6 1+ + + 7 ! # % (% ) + # #, %. / 0 # 1 2, 3 4 5 6 3 7 00 5 8, 6 8 3 9 0: 5.;, 6 #! #, 8, 3 04 5 6 < ; = >!? >, 3? 5! # % & ( Α! 1 6, 3 7 2 Α0 : 6 Β Χ Α :,

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ (άρθρο 21 παρ.11 του Ν.2190/94) ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ YΕ ΚΩΔΙΚΟΣ ΘΕΣΗΣ : 101. Ειδικότητα: ΥΕ ΚΑΘΑΡΙΟΤΗΤΑΣ ΚΡΙΤΗΡΙΑ

ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ (άρθρο 21 παρ.11 του Ν.2190/94) ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ YΕ ΚΩΔΙΚΟΣ ΘΕΣΗΣ : 101. Ειδικότητα: ΥΕ ΚΑΘΑΡΙΟΤΗΤΑΣ ΚΡΙΤΗΡΙΑ sort 26 Κ Σ -- Τ051676 Οχι 8 37 67 0 400 0 0 0 727 0 0 134 Οχι 1.261,00 1 68 Χ Π -- Σ134727 Οχι 14 2 72 225 0 0 60 0 972 0 0 0 Οχι 1.257,00 2 32 Κ Μ -- Σ617814 Οχι 10 5 3 39 175 250 0 60 0 741 0 0 0 Οχι

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α # & ( ) ) +,. /, 1 /. 23 / 4 (& 5 6 7 8 8 9, :;< = 6 > < 6? ;< Β Γ Η. Ι 8 &ϑ Ε ; < 1 Χ6 Β 3 / Κ ;Χ 6 = ; Λ 4 ϑ < 6 Χ ; < = = Χ = Μ < = Φ ; ϑ =

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Δεν αποδεικνύεται η τουλάχιστον πολύ καλή γνώση της αγγλικής ή της γαλλικής ή της γερμανικής γλώσσας.

Δεν αποδεικνύεται η τουλάχιστον πολύ καλή γνώση της αγγλικής ή της γαλλικής ή της γερμανικής γλώσσας. Πίνακας απορριπτέων A ομάδας (κωδ. 1-2 & 4-12) ΕΙΔΙΚΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΪΣΤΑΜΕΝΩΝ (ΕΙ.Σ.Ε.Π.) 1 AK152406 Παρέλκει η εξέταση της αίτησης υποψηφιότητας της εν λόγω υπαλλήλου, δεδομένου ότι κατέθεσε την

Διαβάστε περισσότερα

XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA

XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA ό π ω ς ε γ κ ρ ί θ η κ ε α π ό τ ο δ ι ο ι κ η τ ι κ ό σ υ μ β ο ύ λ ι ο τ η ς ε τ α ι ρ ί α ς τ η ν 30 η Μ α ρ τ ί ο υ 2 0 1

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

Υπ' αριθμ. Σ.Ο.Χ. : 2/2016

Υπ' αριθμ. Σ.Ο.Χ. : 2/2016 Φορέας : ΔΗΜΟΣ ΧΑΛΑΝΔΡΙΟΥ ΠΡΟΣΛΗΨΗ ΠΡΟΣΩΠΙΚΟΥ ΜΕ ΣΥΜΒΑΣΗ ΟΡΙΣΜΕΝΟΥ ΧΡΟΝΟΥ Ανακοίνωση : Υπηρεσία : Δομές ΤΜΗΜΑΤΩΝ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ (Παιδικοί Σταθμοί) του Δήμου Χαλανδρίου Έδρα Υπηρεσίας : ΧΑΛΑΝΔΡΙ Διάρκεια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 23 OKTΩΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. e γν.αύξουσα 1 e e 0 e 1 e 1 0 e 1 e 1

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 23 OKTΩΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. e γν.αύξουσα 1 e e 0 e 1 e 1 0 e 1 e 1 ΚΕΝΤΡΟ Αγίας Σοφίας 39 3044444 ΝΤΕΠΩ Β Όλγας 68 3048400 ΕΥΟΣΜΟΣ ΜΑλεξάνδρου 45 30770360 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 3 OKTΩΒΡΙΟΥ 06 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Θεωρία Σχολικού Βιβλίου

Διαβάστε περισσότερα

! #! # # % & % # # # # %!! ( &) & #& % %!! # # # # +,! % # )! #! ) # # # ( # % # # + ) # + # ( ( & ) # &! #!. % #! /! # ) & #! & # # ) ) # + # % # ( # ) & #!! # + & % # / # + # & #! ) 0. & ( %.1! 2 2 #

Διαβάστε περισσότερα

! #! # % &# # #!&! #!& #! # # % &# # ( ) +,.. / 0 / 1,&#

! #! # % &# # #!&! #!& #! # # % &# # ( ) +,.. / 0 / 1,&# ! #! # % &# # #!&! #!& #! # # % &# # ( ) +,.. / 0 / 1,&# 0 223334 #&4+ #4 12 &# 2!.. 2 ! #! # % &# # # &!!,! # #5#!&!! #!,+#,%! # #! #! &#! #! 223334 #&4+ #4 12 &# 2!.. 2 #,&% 3# +# + &% %! #!& # 4 6 #

Διαβάστε περισσότερα

Livros Grátis. Milhares de livros grátis para download.

Livros Grátis.  Milhares de livros grátis para download. !! Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. !! ! # % & ( # ) + +, %! & +! #!! ! # # % # & ( )# & +,..# /010 / 2 30 4 5 6 # 5, 7 8 9 # 6 # 5 : : ;9 # 5 6 # 5

Διαβάστε περισσότερα

Αθήνα, 1/07/2016 Αρ. Πρωτ. ΕΣΔΥ/οικ1813

Αθήνα, 1/07/2016 Αρ. Πρωτ. ΕΣΔΥ/οικ1813 www.esdy.edu.gr ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ Λ.ΑΛΕΞΑΝΔΡΑΣ 196, 115 21 Αθήνα Τ. +30 213 2010105, 106, 108 Φ. +30 210 6460658 Ε. education@esdy.edu.gr Διεύθυνση Γραμματείας / Γραφείο Εκπαίδευσης

Διαβάστε περισσότερα

! #! # %&!(&!( ) ( ) + # #! # ) &, #!. ) / (

! #! # %&!(&!( ) ( ) + # #! # ) &, #!. ) / ( ! #! %& &!# %# ! #! # %&!(&!() ()+ # #! # )&, #!.) /( 01& #2 11! 1 # 31& #2 11 # ) /(+ /3403 56!/78&! 9:;7

Διαβάστε περισσότερα

ί α α I. Β α μ α π α μ α μ π φα α υ α υ αμ α ία ( α. μ3) : ία & α μα μα - αμ υ α ) α α Θ π μα α 79 (55) * 107

ί α α I. Β α μ α π α μ α μ π φα α υ α υ αμ α ία ( α. μ3) : ία & α μα μα - αμ υ α ) α α Θ π μα α 79 (55) * 107 / 3 ELECσδOWAσσ 10616000 10% I 1960 3 3 400 1220 1073000 2 εogδeah 1974 3 2 1 1 1966 1739/87 / 1 3 1966 I & 3 : 63 20 43 144 30 114 247 122 125 367 177 20 5 24 5 19 79 55 * 55 107 107 30 15 15 62 32 30

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

+ ) 1 2! 3 % !

+ ) 1 2! 3 % ! # % & (!! + + ) 1 2! 3 % + 5 1 2! !! #! % ( ) +,! %. # # # ) /0! 1 2 3 # 4 0 ) 5 # # & 4 & 6 #% 0 ## 7 8 & #+! #9 # : & 1 5 + ; < + 4 ) 3 4 Α Β 3# # < 4 Α Β 3 < 4 Α Β 39 + =>! ) 5# + 9# + & Α 9+9Β 9 Χ

Διαβάστε περισσότερα

Β Χ! Χ ( # %! Δ % ) %

Β Χ! Χ ( # %! Δ % ) % ! # % & ( ) #! % +,. /!, 0. 1 2 (( / 4 5 / 6 5 78 8 / #. 9. : ;. ( 1.< < =. 9 > :? 9 : Α Β Χ! Χ ( # %! Δ % ) % )! & %! Χ! Δ! Ε Χ % Ε &! Β & =! ) Χ Δ!! Δ ) % # # ( ) Δ Β Φ Α :? ) 9:? Γ Η Φ Α :? Ι 9: ϑ,.

Διαβάστε περισσότερα

Η πρώτη μου γραμματική

Η πρώτη μου γραμματική Η πρώτη μου γραμματική με εργασίες 1 ο τεύχος Φθόγγοι και γράμματα, το ελληνικό αλφάβητο, δίψηφα γράμματα, διπλά γράμματα, συνδυασμοί, δίφθογγοι, όμοια σύμφωνα Όνομα μαθητή/τριας:.. Δάσκαλος: Χρήστος Σαμαντζόπουλος

Διαβάστε περισσότερα

Υλικά με θετικό θερμικό συντελεστή αντίστασης Η εξάρτηση PTC

Υλικά με θετικό θερμικό συντελεστή αντίστασης Η εξάρτηση PTC Υλικά με θετικό θερμικό συντελεστή αντίστασης Η εξάρτηση PTC Ζάννα Βιργινία Αργίνη Επιβλέπων καθηγητής: Πίσσης Π. Η εξάρτηση της αντίστασης ενός υλικού από τη θερμοκρασία. Η εξάρτηση positive temperature

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΡΟΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΩΝ Α ΕΞΑΜΗΝΟΥ - ΜΑΘΗΜΑΤΑ ΚΟΡΜΟΥ

ΠΡΟΓΡΑΜΜΑ ΠΡΟΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΩΝ Α ΕΞΑΜΗΝΟΥ - ΜΑΘΗΜΑΤΑ ΚΟΡΜΟΥ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΩΝ Α ΕΞΑΜΗΝΟΥ - ΜΑΘΗΜΑΤΑ ΚΟΡΜΟΥ ΩΡΑ ΜΑΘΗΜΑ ΜΑΘΗΜΑ ΜΑΘΗΜΑ ΜΑΘΗΜΑ ΜΑΘΗΜΑ Management Information Management Information Τμήματα Ε1, Ε2, Ε4 Τμήματα Ε1, Ε2, Ε4 Τμήματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου

Διαβάστε περισσότερα

% & ( ) +, / & : ; < / 0 < 0 /

% & ( ) +, / & : ; < / 0 < 0 / !! #!! % & ( ) +, &. / + 0 0 0 1 2 3 0 1 0 4 5 44 6 & 0 5 7. + 8 3 0 + 4 0 5 9 + : + 0 8 0 ; 7 0 0 + + 0 0 < 0 0 4 0 6 0 / 0 < 0 / & 4... & 4 4... = > 5...? < 4.........Α # 6 1 4... 3 # Β 5... Χ... Χ Β

Διαβάστε περισσότερα

! # # % & () # + (,. # # %%% # & ( % &

! # # % & () # + (,. # # %%% # & ( % & !! # # % & () # + (,. # # %%% # & ( % & !! # %& ( ) % + +,../ 0 ! # 10230../4 & 5 / 6 6 00 ( 00 0 7 8 00 0 0 + 9! + 8 00 0 +! ( 8 0 0 :! ; 0< + + 9 0= ((!. 0 6 >!. 0 0? 6 >. 0 Α. 0 : + 6 > 0 0 : 0 + 0

Διαβάστε περισσότερα

Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Α Τ Ρ Ω Ν ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 2017 (28/8-22/9)

Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Α Τ Ρ Ω Ν ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 2017 (28/8-22/9) ΗΜ/ΝΙΑ ΕΙΔΟΣ ΜΑΘΗΜ. Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Α Τ Ρ Ω Ν ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 2017 (28/8-22/9) ΜΑΘΗΜΑ ΩΡΑ ΔΙΔΑΣΚΩΝ ΕΠΙΤΗΡΗΤΕΣ ΑΙΘΟΥΣΕΣ Μικροοικονομική Ι 9:00-11:00

Διαβάστε περισσότερα

ΠΡΟΣΛΗΨΗ ΠΡΟΣΩΠΙΚΟΥ ΜΕ ΣΥΜΒΑΣΗ ΟΡΙΣΜΕΝΟΥ ΧΡΟΝΟΥ ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ ΠΕ ΚΩ ΙΚΟΣ ΘΕΣΗΣ : 102

ΠΡΟΣΛΗΨΗ ΠΡΟΣΩΠΙΚΟΥ ΜΕ ΣΥΜΒΑΣΗ ΟΡΙΣΜΕΝΟΥ ΧΡΟΝΟΥ ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ ΠΕ ΚΩ ΙΚΟΣ ΘΕΣΗΣ : 102 ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & Σ ΚΥΡΙΑ ΠΡΟΣΟΝΤΑ / ΣΕΙΡΑ ΕΠΙΚΟΥΡΙΑΣ 5 ΑΛΕΞΟΥ Η ΒΑΣΙΛΙΚΗ ΘΕΟ ΩΡΟΣ ΑΖ926075 Ναι 1 7 2 Οχι Οχι 44 175 40 0 0 600 1 Ναι 815,00 1 17 ΓΚΟΥΓΚΗ ΕΛΕΟΝΩΡΑ ΗΜΗΤΡΙΟΣ ΑΖ922084 Ναι 1 0 2 Οχι Οχι

Διαβάστε περισσότερα

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A δ ` 3kς 3qz 3{9 ` ]l 3 # ~-?1 [ve 3 3*~ /[ [ ` ο `` ο ~ ο ```` ξα ~ ``` Πα```` α ` τρι ```ι ``` ι ` ι ~ και ``αι [D # ` 4K / [ [D`3k δδ 13` 4K[ \v~-?3[ve

Διαβάστε περισσότερα

x y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου

x y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου ΚΥΚΛΟΣ Εξίσωση Κύκλου Έστω Oy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο O(, ) και ακτίνα ρ έχει εξίσωση y y ε Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου y ρ στο σημείο του

Διαβάστε περισσότερα

Livro Eletrônico. Aula 00. Gestão de Pessoas p/ INSS (código ADMIN) Professor: Alyson Barros DEMO

Livro Eletrônico. Aula 00. Gestão de Pessoas p/ INSS (código ADMIN) Professor: Alyson Barros DEMO Livro Eletrônico Aula 00 Gestão de Pessoas p/ INSS (código ADMIN) Professor: Alyson Barros ! # % &! ( ) + ( +,. / 0 1 ( 2 1 & 3 45 6 7 8 7 4 # 9 ( : 5 / / ( ; 7 < 7 ( (= : 4 / > =& / > =&?

Διαβάστε περισσότερα

2.1 Εξίσωση ευθείας-συντελεστής διεύθυνσης

2.1 Εξίσωση ευθείας-συντελεστής διεύθυνσης 1 Εξίσωση ευθείας-συντελεστής διεύθυνσης 1 Έστω η ευθεία (ε) η οποία διέρχεται από τα σημεία Α(, μ), Β(5, μ), όπου Να βρείτε το μ σε καθεμιά από τις παρακάτω περιπτώσεις : α) η(ε) σχηματίζει γωνία 135

Διαβάστε περισσότερα

Γενικές ασκήσεις σχ. Βιβλίου σελίδας

Γενικές ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις σχ. Βιβλίου σελίδας 9 94 Γ οµάδας. Να αποδείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f() και g() +, (0, + ) έχουν κοινή εφαπτοµένη στο σηµείο Α(, ) Να βρείτε τη σχετική θέση των

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β MΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Αν Α(x 1, y 1 ) και Β(x, y ) είναι σημεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγμένες

Διαβάστε περισσότερα

ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ Αριθμός Πρωτοκόλου Ηλεκτρονικής Α/Α Αίτησης

ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ Αριθμός Πρωτοκόλου Ηλεκτρονικής Α/Α Αίτησης ΚΩΔ. ΘΕΣΗΣ: 251 ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ 1 21/29449 ΕΛΛΙΠΗ Ή ΕΣΦΑΛΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ 2 21/24230 X373738 ΕΛΛΙΠΗ Ή ΕΣΦΑΛΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ 3 21/3495

Διαβάστε περισσότερα

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ Α Ρ Η Θ Μ Ο : 6.984 ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ ΔΙΑΓΩΝΙΜΟΤ η ε λ Π ά η ξ α ζ ή κ ε ξ α ζ η η ο ε ί θ ν ζ η κ ί α ( 2 1 ) η ν π κ ή λ α Μ α ξ η ί ν π, ε κ έ ξ α Γ ε π η έ ξ α, η ν π έ η ν π ο δ

Διαβάστε περισσότερα

«Προµήθεια νέων πυροσβεστήρων» (Κ.Α )

«Προµήθεια νέων πυροσβεστήρων» (Κ.Α ) ΣΥΓΓΡΑΦΗ ΥΠΟΧΡΕΩΣΕΩΝ ΑΡΘΡΟ 1ο Αντικείµενο Προµήθειας. Η παρούσα συγγραφή αφορά την προµήθεια νέων πυροσβεστήρων και πυροσβεστικού υλικού για τις ανάγκες του δήµου Πειραιά. Η παράδοση του πυροσβεστικού

Διαβάστε περισσότερα

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ Ε4 ΘΕΜΑ 1 Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο δ = ( β, α). (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ 1. Η απόσταση του 0(0,0) από την x + y + = 0 είναι.. Η εξίσωση y = xy παριστάνει

Διαβάστε περισσότερα

ΑΝΑΠΗΡΙΑ ΓΟΝΕΑ, ΤΕΚΝΟΥ (Ποσοστό Αναπηρίας) (αριθµ. ανήλικων τέκνων) ΕΜΠΕΙΡΙΑ ΗΜΟΣΙΟΥ. ΑΝΑΠΗΡΙΑ ΥΠΟΨΗΦΙΟΥ (Ποσοστό Αναπηρίας) ΕΜΠΕΙΡΙΑ Ι ΙΩΤΙΚΟΥ

ΑΝΑΠΗΡΙΑ ΓΟΝΕΑ, ΤΕΚΝΟΥ (Ποσοστό Αναπηρίας) (αριθµ. ανήλικων τέκνων) ΕΜΠΕΙΡΙΑ ΗΜΟΣΙΟΥ. ΑΝΑΠΗΡΙΑ ΥΠΟΨΗΦΙΟΥ (Ποσοστό Αναπηρίας) ΕΜΠΕΙΡΙΑ Ι ΙΩΤΙΚΟΥ Φορέας : Γ. Ν. Ρεθύμνου ΠΡΟΣΛΗΨΗ ΠΡΟΣΩΠΙΚΟΥ ΜΕ ΣΥΜΒΑΣΗ ΕΡΓΑΣΙΑΣ Ι.Δ.Ο.Χ. Ανακοίνωση : Υπηρεσία : Γ. Ν. Ρεθύμνου & των φορέων του ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & Σ Υπ' αριθμ. Σ.Ο.Χ. : 1/2018 Έδρα Υπηρεσίας : Ρέθυμνο

Διαβάστε περισσότερα

< ; = >! # %& # ( )%!) +, & % &#. &/ %) 012& #1%)%& 30%1% &0%&# 4) ) 5.&0 + %.6.!7 %& #4&81)71#.) &9 &:&#) % 0#!91% ;

< ; = >! # %& # ( )%!) +, & % &#. &/ %) 012& #1%)%& 30%1% &0%&# 4) ) 5.&0 + %.6.!7 %& #4&81)71#.) &9 &:&#) % 0#!91% ; ! # %& #( )%!) +,& % &#. &/%) 012& #1%)%& 30%1% &0%&#4) ) 5.&0 + %.6.!7 %&#4&81)71#.)&9 &:&#)% 0#!91% ; 0 ( ):1))4 &#&0.)%))! # %& #( )%!) +, & % &#. &/ %) 012& #1%)%& 30%1% &0%&# 4) ) 5.&0 + %.6.!7

Διαβάστε περισσότερα

teliko2011 sel84-160_layout 1 10/30/2011 3:18 PM Page 104

teliko2011 sel84-160_layout 1 10/30/2011 3:18 PM Page 104 teliko2011 sel84-160_layout 1 10/30/2011 3:18 PM Page 104 teliko2011 sel84-160_layout 1 10/30/2011 3:18 PM Page 105 ΑΛΟΥΜΙΝΙΟΥ teliko2011 sel84-160_layout 1 10/30/2011 3:22 PM Page 106 106 ΑΠΛΙΚΕΣ - ΚΡΕΜΑΣΤΑ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 70 Κεφάλαιο ο: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Λ 8. Σ 33. i) Σ. Λ 9. Λ 33. ii) Σ 3. Λ 0. Σ 33. iii) Λ 4. Σ. Σ 34. Λ 5.

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 2

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 2 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 2 Πάτρα 2008 Εμπειρικός προσδιορισμός συνάρτησης μεταφοράς

Διαβάστε περισσότερα

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μανόλης Παπαδρακάκης Καθηγητής ΕΜΠ Εργαστήριο Στατικής & Αντισεισμικών Ερευνών 008-009 Μητρωικές Μέθοδοι Μετατοπίσεων και Δυνάμεων Ανάλυσης Κατασκευών

Διαβάστε περισσότερα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά

Διαβάστε περισσότερα

Σ. ΖΑΦΕΙΡΗΣ Α.Ε. ΑΡ.ΜΑΕ 70501/10/Β/10/07. Π Ρ Α Κ Τ Ι Κ Ο.Σ Της

Σ. ΖΑΦΕΙΡΗΣ Α.Ε. ΑΡ.ΜΑΕ 70501/10/Β/10/07. Π Ρ Α Κ Τ Ι Κ Ο.Σ Της Π Ρ Α Κ Τ Ι Κ Ο.Σ Της 30-11-2015 Σήµερα στο ηµοτικό ιαµέρισµα Παναιτωλίου Θέση Αµπάρια την 30η Νοεµβρίου του έτους 2015 ηµέρα της εβδοµάδος ευτέρα ώρα 05:30 µ.µ. συνήλθαν µετά προσκλήσεως του Προέδρου

Διαβάστε περισσότερα

Τ,νέα (9) -Θέσεις ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥ8ΕΡΝΗΣΕΩΣ '(ΤΕΥΧΟΣ ΠΡΩΤΟΝ) 321 Έκπαιδευτικων ΈπαηελματικΥιiO Έκ- 2. 0::) T1jc,; Ύπηρεσί«ς 'Eκπαt~εooεως τ~ς αύτ~ς Γενικ~ς Διεu-&.Uνσεως, 'ιtροτστιχται Γενικος 'ΕΠ'ι-&.εωρητης

Διαβάστε περισσότερα

Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Α Τ Ρ Ω Ν ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΙΑΝΟΥΑΡΙΟΥ-ΦΕΒΡΟΥΑΡΙΟΥ (22/1-9/2)

Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Α Τ Ρ Ω Ν ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΙΑΝΟΥΑΡΙΟΥ-ΦΕΒΡΟΥΑΡΙΟΥ (22/1-9/2) Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Α Τ Ρ Ω Ν ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΙΑΝΟΥΑΡΙΟΥ-ΦΕΒΡΟΥΑΡΙΟΥ 2017-2018 (22/1-9/2) ΗΜ/ΝΙΑ ΕΙΔΟΣ ΜΑΘΗΜ. ΜΑΘΗΜΑ ΩΡΑ ΔΙΔΑΣΚΩΝ ΕΠΙΤΗΡΗΤΕΣ ΑΙΘΟΥΣΕΣ Μικροοικονομική

Διαβάστε περισσότερα

ΟΝΟΜΑΣΤΙΚΗ ΚΑΤΑΣΤΑΣΗ

ΟΝΟΜΑΣΤΙΚΗ ΚΑΤΑΣΤΑΣΗ () Υποψήφιοι Δ.Ε. Τεχνιτών Υδραυλικών, θέσεις δύο (2), με Κωδικό θέσης 101, που υπέβαλαν αίτηση για την ανακοίνωση υπ αριθμ. ΣΟΧ 1/2016 με αρ. πρωτ. 3734/20-10-2015 για την πρόσληψη προσωπικού με σύμβαση

Διαβάστε περισσότερα

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις Εφαρμογή 9 Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής για συνδυασμό φόρτισης.5g.5q. Xάλυβας συνδετήρων S400 Λύση Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις περιπτώσεις φόρτισης που αναφέρονται

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 5

Λύσεις Σειράς Ασκήσεων 5 Άσκηση Λύσεις Σειράς Ασκήσεων 5 Έστω P και Q συνθήκες και S ένα πρόγραμμα. Να εξηγήσετε με λόγια τις πιο κάτω προδιαγραφές (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της ολικής ορθότητας.

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

1 O ΛΥΚΕΙΟ ΡΟ ΟΥ ) ( ) = ) ( ) = 2 3, ) ( ) = 4, i f x x x x ii f x x iii f x x. x 4x. iv f x x v f x x vi f x vii f x

1 O ΛΥΚΕΙΟ ΡΟ ΟΥ ) ( ) = ) ( ) = 2 3, ) ( ) = 4, i f x x x x ii f x x iii f x x. x 4x. iv f x x v f x x vi f x vii f x 1 O ΛΥΚΕΙΟ ΡΟ ΟΥ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΕ ΙΟ ΟΡΙΣΜΟΥ - ΟΡΙΣΜΟΣ, ΤΙΜΕΣ ΣΥΝΑΡΤΗΣΗΣ 1. ίνονται τα σύνολα A= (,5], B= [2,7], Γ= (6, + ) µε σύνολο αναφοράς το R Να βρείτε τα σύνολα : A, B, A B, A Β,( B

Διαβάστε περισσότερα

! # % & ( ) & + #, +. ! # + / 0 / 1 ! 2 # ( # # !! ( # 5 6 ( 78 ( # ! /! / 0, /!) 4 0!.! ) 7 2 ## 9 3 # ## : + 5 ; )!

! # % & ( ) & + #, +. ! # + / 0 / 1 ! 2 # ( # # !! ( # 5 6 ( 78 ( # ! /! / 0, /!) 4 0!.! ) 7 2 ## 9 3 # ## : + 5 ; )! ! # % & ( ) + ! # % & ( ) & + #, +.! # + / 0 / 1! 2 # ( # 1 3 4 3 #!! ( # 5 6 ( 78 ( # 6 4 6 5 1! /! #! / 0, /!) 4 0!.! ) 7 2 ## 9 3 # 78 78 0 ## : + 5 ; )! 0 / )!! < # / ).

Διαβάστε περισσότερα

Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες

Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες 102-107 (Να απαντηθούν γραπτά και να παραδοθούν το αργότερο μέχρι την Παρασκευή 28 Νοεμβρίου). Διαμόρφωση πλάτους ΑΜ με

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α A1. 1. Σωστό 2. Λάθος 3. Λάθος 4. Σωστό 5. Λάθος ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΝΔΕΙΚΤΙΚΕΣ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΠΑΝΤΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΠΑΝΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. 1. ΣΩΣΤΟ 2. ΛΑΘΟΣ 3. ΛΑΘΟΣ 4. ΣΩΣΤΟ 5. ΛΑΘΟΣ Α2. Σχολικό Βιβλίο σελ. 56 Α3. (α) 6, 8, 10 (β) 7 (γ) 1, 3 Α4. α) β) εντολές ΝΑΙ συνθήκη

Διαβάστε περισσότερα

Πολλαπλασιασμός αριθμού με διάνυσμα

Πολλαπλασιασμός αριθμού με διάνυσμα Μαθηματικά Προσανατολισμού Β Λυκείου Επανάληψη Χριστουγέννων Αφού κάνετε μια επανάληψη στο πρώτο κεφάλαιο και θυμηθείτε όλους τους τύπους και τις μεθοδολογίες, να λύσετε τις παρακάτω ασκήσεις από την τράπεζα

Διαβάστε περισσότερα

Θ+!& ;/7!127# 7 % :!+9. + %#56 /+.!/;65+! 3# 76. +!+ % 2&/ :2!,Γ 0 :9#+ #2:.2 #+Ι 7#+.&/ #2:.2 / /&7 + < & /!! Ω 6. Α./& /&7 + 622#. 6!

Θ+!& ;/7!127# 7 % :!+9. + %#56 /+.!/;65+! 3# 76. +!+ % 2&/ :2!,Γ 0 :9#+ #2:.2 #+Ι 7#+.&/ #2:.2 / /&7 + < & /!! Ω 6. Α./& /&7 + 622#. 6! ! # %!! #!#%& ()! +,.! + /!#012!!# )3 # #4 +!#567 8%+#%/!,917#,.! + 9: %# ;:/%&. + # 9/ = 2>3/!#012!!# )3 #? +.:;/7/&7 + Α./&Β# 7. +;# 2/># 7 ΧΧ67< %#+ΧΧ #+.#17/+/ #

Διαβάστε περισσότερα

!!# % & ( % ) % % +,,. / 0 1!!# 2 / 3 (. +,,

!!# % & ( % ) % % +,,. / 0 1!!# 2 / 3 (. +,, !!# % & ( % ) % % +,,. / 0 1!!# 2 / 3 (. +,,! 454 454 6 7 #! 89 : 3 ; &< 4 =>> ; &4 + ! #!!! % & ( ) ) + + ) 3 +, +. 0 1 2. # 0! 3 2 &!.. 4 3 5! 6., 7!.! 8 7 9 : 0 & 8 % &6 0 9 ( 6! ;

Διαβάστε περισσότερα

Μερικοί υπολογισμοί ροπής αδράνειας.

Μερικοί υπολογισμοί ροπής αδράνειας. Μερικοί υπολογισμοί ροπής αδράνειας Παρακάτω ας δούμε μερικά παραδείγματα υπολογισμού της ροπής αδράνειας στερεών Άσκηση η : Στα άκρα μιας αβαρούς ράβδου μήκους lm έχουν προσδεθεί δυο σημειακές μάζες των

Διαβάστε περισσότερα

ΑΝΑΚΑΤΑΣΚΕΥΗ ΚΤΙΡΙΟΥ ΠΑΛΑΙΟΥ ΑΠΕΝΤΟΜΩΤΗΡΙΟΥ ΕΝΤΟΣ ΤΟΥ ΛΙΜΕΝΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΧΡΗΜΑΤΟΔΟΤΗΣΗ : ΟΛΘ Α.Ε. Αριθμός Μελέτης ΑΜ298/2017 ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ

ΑΝΑΚΑΤΑΣΚΕΥΗ ΚΤΙΡΙΟΥ ΠΑΛΑΙΟΥ ΑΠΕΝΤΟΜΩΤΗΡΙΟΥ ΕΝΤΟΣ ΤΟΥ ΛΙΜΕΝΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΧΡΗΜΑΤΟΔΟΤΗΣΗ : ΟΛΘ Α.Ε. Αριθμός Μελέτης ΑΜ298/2017 ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΕΡΓΟ: ΑΝΑΚΑΤΑΣΚΕΥΗ ΚΤΙΡΙΟΥ ΠΑΛΑΙΟΥ ΑΠΕΝΤΟΜΩΤΗΡΙΟΥ ΕΝΤΟΣ ΤΟΥ ΛΙΜΕΝΑ ΘΕΣΣΑΛΟΝΙΚΗΣ Αριθμός Μελέτης ΑΜ298/2017 ΧΡΗΜΑΤΟΔΟΤΗΣΗ : ΟΛΘ Α.Ε. ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΘΕΣΣΑΛΟΝΙΚΗ, ΙΟΥΝΙΟΣ 2017 1 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π

Διαβάστε περισσότερα

MLS : 34194/06/ /95/14

MLS : 34194/06/ /95/14 Φ ML S Ε Ε ΑΑ αα ΣΣ AE ΑΑ ΑΑ 11 αα αα ίί ωω αα Ε Ε Ε ΕΣΣ 22001166 ωω 30 ίί 22001166 55 33555566//22000077 MLS 34194/06/ /95/14 57957704000 1 MLS 34194/06/ /95/14 57957704000 MLS 3556/2007 1 Έ 3556/2007

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς

Διαβάστε περισσότερα

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJAL hp_a*a n n 1/2 n (n 1) 0/1 l 2 E x X X x X E x X g(x) := 1 g(x). X f : X C L p f p := (E x X f(x) p ) 1/p f,g := E x X f(x)g(x) x X X X X := {f : X [0, ) : f 1 =1}. X µ A A X x X µ A (x) :=α 1 1 A (x) 1 A A α

Διαβάστε περισσότερα

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Για αρχή 598 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Για αρχή 598 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Παράγωγοι Κώστας Γλυκός Για αρχή 598 ασκήσεις και τεχνικές σε 4 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 7 / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-00.88.88

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΜΕ RTD

ΜΕΤΡΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΜΕ RTD ΜΕΤΡΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΜΕ TD ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΑΜ ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ: / / 0 ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: / / 0 ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΑΝΤΙΚΕΙΜΕΝΟ της εργαστηριακής άσκησης είναι

Διαβάστε περισσότερα

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ

Διαβάστε περισσότερα

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Για αρχή 598 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Για αρχή 598 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Παράγωγοι Κώστας Γλυκός Για αρχή 598 ασκήσεις και τεχνικές σε 4 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglyks.gr 8 / / 0 9 εκδόσεις Καλό πήξιμο Τα πάντα είναι παράγωγοι Παραγώγιση

Διαβάστε περισσότερα

# % & % ( ) + ),, .//0

# % & % ( ) + ),, .//0 ! # % & % ( ) + ),,.//0 & 1 2 1 (, %, (, %, 3 4 ( 5 ( 6 (! ) 1 % % 1 (, %, 3 5.7, 4.//0 2 3 (, %, 6 8, ) %, 6 +!8!! 6 6, 9 ) 6 & : 6 + # ; 8 , %? 6 6 77Α, 5 9 Β

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ & ΚΟΙΝ. ΑΣΦΑΛΙΣΗΣ ΟΡΓΑΝΙΣΜΟΣ ΑΣΦΑΛΙΣΗΣ ΕΛΕΥΘΕΡΩΝ ΕΠΑΓΓ/ΤΙΩΝ (ΟΑΕΕ) ΔΙΕΥΘΥΝΣΗ:. ΤΜΗΜΑ: ΤΑΧ. Δ/ΝΣΗ:.

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ & ΚΟΙΝ. ΑΣΦΑΛΙΣΗΣ ΟΡΓΑΝΙΣΜΟΣ ΑΣΦΑΛΙΣΗΣ ΕΛΕΥΘΕΡΩΝ ΕΠΑΓΓ/ΤΙΩΝ (ΟΑΕΕ) ΔΙΕΥΘΥΝΣΗ:. ΤΜΗΜΑ: ΤΑΧ. Δ/ΝΣΗ:. ΔΙΑΤΗΡΗΤΕΟ ΜΕΧΡΙ.... / /20.. ΓΕΝΙΚΗ Δ/ΝΣΗ. ΠΡΟΣ:. ΔΙΕΥΘΥΝΣΗ:. ΤΜΗΜΑ: ΤΑΧ. Δ/ΝΣΗ:. ΤΗΛ.:. Ε-ΜΑΙL:. FAX:... ΚΟΙΝ: Συν/να: 1 ατομικός φάκελος ΑΠΟΦΑΣΗ ΑΝΑΚΑΤΑΤΑΞΗΣ Του ασφαλισμένου.... (ΕΑΜ: ) σύμφωνα με της

Διαβάστε περισσότερα

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x Η ΑΝΕΠ Η Η Ν Ω Ν Ω ΑΘΗ Α ΑΝIV Ε ε ά ει Ν επ ε β ί 5 (3-9-5) Επώ : Ό α: ΑΝ Ν: ΘΕ ΑΝ Τα π α Chebyshev T ( ) α π ω μ ( ) y y y (,,, ) π [,] Η ω α α α π α μ / d d T ( ) Tm ( ) [ T ( )] Α απ f ( ) 3, [,], α

Διαβάστε περισσότερα

) (+ 89 / >9691 /) 01)> 59 )2 >9691 /) (=12) (=12) 2 1< /. )1,9 Ε 1(Χ(,)2 /,.96 Β ) 2 8=,. Ι

) (+ 89 / >9691 /) 01)> 59 )2 >9691 /) (=12) (=12) 2 1< /. )1,9 Ε 1(Χ(,)2 /,.96 Β ) 2 8=,. Ι ! # % & & # () + (,.)/ 01)0)2,34 2 # ) (.,5)2678,()2 9: 695 1/9/ # ) /,3;) ( 22,(,. # 9=.)6)8,9 ).19/,3;) )., 8? (,9 # =,596? (,92678,(92 # % & % 6

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΤΑΞΗ: Γ ΔΙΑΡΚΕΙΑ: 2 ώρες (μαζί με τη Βιολογία) ΗΜΕΡΟΜΗΝΙΑ: 06/06/2014

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΤΑΞΗ: Γ ΔΙΑΡΚΕΙΑ: 2 ώρες (μαζί με τη Βιολογία) ΗΜΕΡΟΜΗΝΙΑ: 06/06/2014 ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013 2014 Γ Ρ Α Π Τ Ε Σ Α Π Ο Λ Υ Τ Η Ρ Ι Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ Ι Ο Υ Ν Ι Ο Υ 2 0 1 4 ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΤΑΞΗ: Γ ΔΙΑΡΚΕΙΑ: 2 ώρες (μαζί με τη Βιολογία) ΗΜΕΡΟΜΗΝΙΑ: 06/06/2014

Διαβάστε περισσότερα

α α α α α α α α α α α α α α α α α α α α α α α α α α α α β χ δ ε φ γ η ι ϕ κ λ µ ν ο π θ ρ σ τ υ ϖ ω ξ ψ ζ αα ββ χχ δδ εε φφ γγ ηη ιι ϕϕ κκ λλ µµ νν οο

Διαβάστε περισσότερα

Ασκήσεις Πράξεις ιανυσµάτων

Ασκήσεις Πράξεις ιανυσµάτων Ασκήσεις Πράξεις ιανυσµάτων 1 ίνονται τα διανύσµατα α,, x, y για τα οποία ισχύουν: x+ y= α+ 4 και 4x y= α+ Nδο τα διανύσµατα x, y είναι οµόρροπα Αν ισχύει η ισότητα MA+ 5ΡΑ = 3ΡΜ+ ΡΒ 4ΓΜ νδο τα σηµεία

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΣΦΟΡΑΣ (κατά το σύστηµα µε επί µέρους ποσοστά έκπτωσης άρθρο 95 παρ. 2α του Ν.4412/16)

ΕΝΤΥΠΟ ΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΣΦΟΡΑΣ (κατά το σύστηµα µε επί µέρους ποσοστά έκπτωσης άρθρο 95 παρ. 2α του Ν.4412/16) ΕΡΓΟ: ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΕΙΑΣ ΣΤΟΝ K.X. 1265 ΤΟΥ ΗΜΟΥ ΧΑΛΑΝ ΡΙΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΗΜΟΣ ΧΑΛΑΝ ΡΙΟΥ ΤΕΧΝΙΚΗ ΥΠΗΡΕΣΙΑ Ταχ. /νση : Φ. Λίτσα 29 & Αγ. Γεωργίου 34 ΧΡΗΜΑΤΟ ΟΤΗΣΗ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

Aula 00. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes

Aula 00. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes Aula 00 Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes ! # # % & () ++,. /0,1 234,5 0 6 +7+,/ /894,5 8 5 8,045, :4 50,8,59;/0 8,04 + 8 097,4 8,0?5 4 59 8,045, :4 50,8,

Διαβάστε περισσότερα

(K.A ) Προϋπολογισµός: 2.152,50 ΣΥΜΠΕΡΙΛΑΜΒΑΝΟΜΕΝΟΥ Φ.Π.Α. 23%

(K.A ) Προϋπολογισµός: 2.152,50 ΣΥΜΠΕΡΙΛΑΜΒΑΝΟΜΕΝΟΥ Φ.Π.Α. 23% ΠΙΣΤΟΠΟΙΗΣΗ ΤΑΧΟΓΡΑΦΩΝ ΟΧΗΜΑΤΩΝ - ΜΗΧΑΝΗΜΑΤΩΝ ΤΟΥ ΑΡΘΡΟ 1 Ο Αντικείµενο Συγγραφής ΣΥΓΓΡΑΦΗ ΥΠΟΧΡΕΩΣΕΩΝ Η παρούσα συγγραφή υποχρεώσεων αφορά στην έκδοση πιστοποιητικού ασφαλούς και σωστής λειτουργίας των

Διαβάστε περισσότερα

Άσκηση. υπολογιστούν τα Ω, F, T, φ, So, και P. Λύση: Το σήμα πρέπει να τροποποιηθεί ώστε να έλθει στη μορφή S(t)=So sin(ωt+φ)

Άσκηση. υπολογιστούν τα Ω, F, T, φ, So, και P. Λύση: Το σήμα πρέπει να τροποποιηθεί ώστε να έλθει στη μορφή S(t)=So sin(ωt+φ) Ένα σήμα περιγράφεται από τις σχέσεις: S(t)= sin(ωt+φ) (πλάτος) με Ω κυκλική συχνότητα Ω = πf = /R (ισχύς) με R αντίσταση φόρτου. Επίσης ισχύει Ι(t) = Io sin (Ωt +φ) και = Io R. και Άσκηση Δίνεται σήμα

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΗ 1η Να βρείτε το πεδίο ορισμού των συναρτήσεων: 5 α) f β) f 1 1 9 γ) f δ) f log 1 4 ημ ημ συν ε) f α) Για να ορίζεται η f() πρέπει και αρκεί + (1) Έχουμε: (1).(

Διαβάστε περισσότερα

(x - 1) 2 + (y + 1) 2 = 8.

(x - 1) 2 + (y + 1) 2 = 8. ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Θέµα 1 Για τις διάφορες τιµές του λ R να βρεθούν οι σχετικές θέσεις της ευθείας ε: y=λx-2 και του κύκλου C: x 2 +y 2 =1 Θέµα 2 Να βρεθεί ο γεωµετρικός τόπος των σηµείων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013. ΘΕΜΑ 1 ο

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013. ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 7/01/013 ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

teliko2011 sel4-83ok_layout 1 10/31/2011 2:45 AM Page 70

teliko2011 sel4-83ok_layout 1 10/31/2011 2:45 AM Page 70 teliko2011 sel4-83ok_layout 1 10/31/2011 2:45 AM Page 70 teliko2011 sel4-83ok_layout 1 10/31/2011 2:45 AM Page 71 ΠΛΑΣΤΙΚΑ teliko2011 sel4-83ok_layout 1 10/31/2011 2:45 AM Page 72 72 ΑΠΛΙΚΕΣ - ΚΡΕΜΑΣΤΑ

Διαβάστε περισσότερα

13.161,29 ΤΕΛΙΚΟ ΣΥΝΟΛΟ

13.161,29 ΤΕΛΙΚΟ ΣΥΝΟΛΟ ΔΗΜΟΣ : ΑΡΓΙΘΕΑΣ ΠΡΟΣΩΠΑ. Α.Μ.16/2016 ΕΝΔΕΙΚΤΙΚΟΣ ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ Αντικείμενο προμήθειας -Προϋπολογισμός. A) Τα υπό προμήθεια είδη για το Δήμο Αργιθέας (Δημοτική Ενότητα Αργιθέας-δημοτική Ενότητα Αχελώου-

Διαβάστε περισσότερα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

Διαβάστε περισσότερα

Page 1 ENGLISH / METRIC UNITS SECTION 240 HALLIBURTON TECHNICAL DATA CALCULATIONS, FORMULAE AND SLURRY TABLES Copyright 1985, 1999, 2001 HaIliburton Company ALL RIGHTS RESERVED ρ

Διαβάστε περισσότερα

ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ

ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ Βαθμολόγιo για το ακαδ. έτος 2016-2017 και περίοδο ΕΞ(Χ) 2016-2017 Για το μάθημα ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ (12421) Διδάσκoντες:Χ.Αθανασιάδης,Ι.Εμμανουήλ,

Διαβάστε περισσότερα

( ( ξ π ) & = ξ % ' $ # π θ $ # = $ θ + # θ!!"

( ( ξ π ) & = ξ % ' $ # π θ $ # = $ θ + # θ!! ( ) ( % + " H A R D W A R E C-arm with flat panel detector 3D scanner Navigation platform The MI3 project Minimal Invasive Interventional Imaging 3D reconstruction based on deformable models and a priori

Διαβάστε περισσότερα

Ε Λ Λ Η Ν Ι Κ Η Δ Η Μ Ο Κ Ρ Α Τ Ι Α

Ε Λ Λ Η Ν Ι Κ Η Δ Η Μ Ο Κ Ρ Α Τ Ι Α Ε Λ Λ Η Ν Ι Κ Η Δ Η Μ Ο Κ Ρ Α Τ Ι Α ΓΕΝΙΚΗ ΔIEΥΘΥΝΣΗ ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΑΚΥΒΕΡΝΗΣΗΣ & ΑΝΘΡΩΠΙΝΟΥ ΔΥΝΑΜΙΚΟΥ ΔΙΕΥΘΥΝΣΗ ΔΙΑΧΕΙΡΙΣΗΣ ΑΝΘΡΩΠΙΝΟΥ ΔΥΝΑΜΙΚΟΥ ΤΜΗΜΑ Β - ΠΟΛΙΤΙΚΗΣ, ΣΧΕΔΙΑΣΜΟΥ ΑΝΘΡΩΠΙΝΩΝ ΕΠΕΙΓΟΝ ΠΡΟΘΕΣΜΙΑ

Διαβάστε περισσότερα

Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν

Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν Ψ η φ ί σ τ η κ ε α π ό τ η Γ ε ν ι κ ή Σ υ ν έ λ ε υ σ η τ ω ν Μ ε λ ώ ν τ ο υ Σ Ε Π Ε τ η ν 24 η Μ α ΐ ο υ 2003 Δ ι ά τ α ξ η Ύ λ η ς 1. Π

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήµα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν Α ΒΓ, Ε ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 11 Ιανουαρίου 21 Η δεσµευµένη µέση τιµή µιας τυχαίας µεταβλητής Y σε δεδοµένο σηµείο µιας άλλης τυχαίας µεταϐλητής X = x, συµϐολιϲόµενη

Διαβάστε περισσότερα

2 (4! ((2 (5 /! / Β ;! + %ΧΑ + ((5 % # &

2 (4! ((2 (5 /! / Β ;! + %ΧΑ + ((5 % # & !! # % & # () %# + (, # &,. /01 2 23 () 0 &. 04 3 23 (5 6787%.9 : ; 3!.&6< # (5 2!.& 6 < # ( )!.&+ < # 0= 1 # (= 2 23 0( >? / #.Α( 2= 0( 4 /

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 4 Πάτρα 2008 Ντετερμινιστικά Moving Average Μοντέλα Ισχύει:

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ. Θέμα: Τελική βαθμολογία υποψηφίων και πίνακας εισακτέων για φοίτηση στο Π.Μ.Σ. Διοίκησης Υπηρεσιών Υγείας, ακ.

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ. Θέμα: Τελική βαθμολογία υποψηφίων και πίνακας εισακτέων για φοίτηση στο Π.Μ.Σ. Διοίκησης Υπηρεσιών Υγείας, ακ. www.esdy.edu.gr ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ Λ.ΑΛΕΞΑΝΔΡΑΣ 196, 115 21 Αθήνα Τ. +30 213 2010105, 106, 108 Φ. +30 210 6460658 Ε. education@esdy.edu.gr Διεύθυνση Γραμματείας / Γραφείο Εκπαίδευσης

Διαβάστε περισσότερα