V ol. 24 N o. 2 2 0 0 3 2 CHEM ICAL JOU RNAL O F CH IN ESE UN IV ERS IT IES 226 231, (, 100875) BSA R ase A, : 1 330 1 290 cm - 1 Α2 ; 1 295 1 265 cm - 1 Β2 ; 1 270 1 245 cm - 1 ; 1 250 1 220 cm - 1 Β2.,, X. (FT IR ); ; ; O 657. 7 A 025120790 (2003) 0220226206 [1, 2 ].,. X ; ; ; ( T rp, T yr ) [3, 4 ] ;,, [5 ]., [6 ]., (FT IR ) [7, 8 ].., FT IR,,., (1 600 1 700 cm - 1 ). H 2O 1 640 cm - 1. [9 ],.,, H 2O,.,.,.. : Byler [10 ], Surew icz [11, 12 ]. [11 ],,.,,, [12 14 ]., Α2 Β2 [13, 15 ], Β2. Cai Sinh [16 ] 1 270 1 295 cm - 1 Β2, 1 270 1 255 cm - 1, X.,,,, X. : 2002202205. : ( : 39825112). : (1962 ),,,,. E2m ail: m enxia2xie@ 263. net
N o. 2 : 227 1 1. 1 N exus 670 (N icolet ) ; (A TR, ZnSe ), D T GS, OM N IC 5. 2, Galactic Peak solve. (BSA ) A (R nase A ) A (Concanavalin A ) Si2 m a ; (T ryp sin, G IBCO ) ; C (Cytoch rom e C, ) ; G ( IG, ). N ah 2PO 4 (, ), N aoh (, ), ( F isher, ), M illi2q. 1. 2 1. 2. 1 20 mmoll N ah 2PO 4, N aoh ph 7. 4,, 2%., N ah 2PO 4 20 mmoll,, 2%. 1. 2. 2, 4 cm - 1 2 048, OM N IC 5. 2., A TR ZeSe, 4 cm - 1, 512,. 1. 2. 3, 1 800 2 200 cm - 1 [11 ]. ( 1 600 1 700 cm - 1 ; 1 220 1 330 cm - 1 ), 5 Savitsk2Golay,,., Gausse,.,,. 2 2. 1,.,, [17 19 ].,,. Α2 BSA Β2 R nase A. BSA, 20%, 30%, 40% 50%, R nase A 20%, 30% 40%. R nase A Β2, 40%,,,. BSA 50%. BSA 50% R nase A 40% 1 2. 1 BSA R nase A. 1 3 ( ), 2 cm - 1. 2. 1. 1 Α2 BSA, 1 324, 1 316, 1 305 1 293 cm - 1 Α2, 48%, [9, 17 ]., Α2, 0 50%, BSA 48. 4% 38. 3%, ( 2), 1 330 1 295 cm - 1 [ 1 (B) ]. R nase A X 23%,
228 V ol. 24, 1 320, 1 312 1 297 cm - 1 Α2, Α2 23%., R nase A Α2 23. 3% 19. 2%, ( 2). 1 330 1 294 cm - 1 [ 2 (B ) ]. Table 1 The inf luence of oran ic solven t on the secondary structure of BSA and Rna se A Peak Position cm - 1 A rea (% ) A ssinm ent of the component peaks secondary structure(% ) BSA 1 324 1. 80 0. 2 Α2Helix 48. 4 1. 1 1 316 12. 17 0. 3 Α2Helix 1 305 12. 45 0. 5 Α2Helix 1 293 21. 94 0. 1 Α2Helix 1 282 6. 29 0. 4 Β2Turn 0. 6 1 271 12. 84 0. 2 Β2Turn 1 262 4. 97 0. 3 Random 11. 8 0. 4 1 254 6. 83 0. 1 Random 1 245 12. 88 0. 5 Β2Sheet 0. 8 1 237 5. 58 0. 1 Β2Sheet 1 229 2. 25 0. 2 Β2Sheet BSA 2 1 323 2. 8 0. 3 Α2Helix 44. 3 2. 1 20% CH 3OH 1 316 9. 0 0. 4 Α2Helix 1 307 10. 2 1. 3 Α2Helix 1 296 22. 1 0. 1 Α2Helix 1 284 9. 2 0. 7 Β2Turn 18. 9 0. 9 1 275 9. 8 0. 2 Β2Turn 1 265 8. 2 0. 4 Random 16. 5 0. 6 1 256 8. 3 0. 2 Random 1 244 13. 6 0. 2 Β2Sheet 20. 3 1. 2 1 235 5. 3 0. 4 Β2Sheet 1 227 1. 4 0. 6 Β2Sheet BSA 2 1 324 2. 3 0. 4 Α2Helix 42. 5 1. 1 30% CH 3OH 1 316 9. 0 0. 1 Α2Helix 1 306 15. 0 0. 2 Α2Helix 1 295 16. 2 0. 4 Α2Helix 1 286 9. 9 0. 8 Β2Turn 20. 2 0. 9 1 276 10. 4 0. 1 Β2Turn 1 266 9. 2 0. 1 Random 17. 1 0. 3 1 255 8. 0 0. 2 Random 1 243 15. 8 0. 4 Β2Sheet 20. 2 1. 1 1 234 3. 0 0. 5 Β2Sheet 1 229 1. 3 0. 2 Β2Sheet BSA 2 1 323 1. 7 0. 1 Α2Helix 41. 3 0. 8 40% CH 3OH 1 316 11. 5 0. 2 Α2Helix 1 307 9. 2 0. 1 Α2Helix 1 296 18. 9 0. 4 Α2Helix 1 284 12. 6 0. 4 Β2Turn 20. 8 1. 1 1 275 8. 2 0. 7 Β2Turn 1 264 9. 5 0. 1 Random 18. 3 0. 2 1 253 8. 8 0. 1 Random 1 243 12. 7 0. 2 Β2Sheet 19. 6 0. 6 1 234 5. 5 0. 2 Β2Sheet 1 227 1. 4 0. 2 Β2Sheet BSA 2 1 322 3. 8 0. 1 Α2Helix 38. 3 1. 0 50% CH 3OH 1 316 6. 5 0. 3 Α2Helix 1 309 10. 0 0. 2 Α2Helix 1 299 18. 1 0. 4 Α2Helix Peak Position cm - 1 A rea (% ) A ssinm ent of the component peaks secondary structure (% ) BSA 2 1 287 13. 8 0. 5 Β2Turn 22. 1 0. 7 50% CH 3OH 1 276 8. 3 0. 2 Β2Turn 1 265 13. 2 0. 2 Random 23. 4 0. 8 1 251 10. 2 0. 6 Random 1 242 9. 9 0. 5 Β2Sheet 16. 1 1. 0 1 235 4. 4 0. 3 Β2Sheet Rnase A 1 228 1. 8 0. 2 Β2Sheet 1 320 4. 7 0. 2 Α2Helix 23. 3 0. 8 1 312 11. 8 0. 5 Α2Helix 1 297 6. 8 0. 1 Α2Helix 1 286 7. 3 0. 3 Β2Turn 18. 6 0. 9 1 270 11. 3 0. 6 Β2Turn 1 261 8. 7 0. 1 Random 11. 6 0. 4 1 255 2. 9 0. 3 Random 1 245 31. 9 0. 4 Β2Sheet 46. 5 0. 7 1 235 10. 6 0. 2 Β2Sheet 1 228 4. 1 0. 1 Β2Sheet Rnase A 2 1 318 10. 2 0. 4 Α2Helix 21. 2 1. 8 20% CH 3OH 1 306 7. 5 0. 4 Α2Helix 1 294 3. 5 1. 0 Α2Helix 1 285 7. 0 1. 3 Β2Turn 21. 2 1. 8 1 270 14. 2 0. 5 Β2Turn 1 262 4. 6 0. 4 Random 13. 4 1. 2 1 256 8. 7 0. 8 Random 1 245 29. 7 0. 5 Β2Sheet 44. 3 2. 0 1 236 11. 5 0. 2 Β2Sheet 1 228 3. 0 1. 3 Β2Sheet Rnase A 2 1 322 2. 8 0. 1 Α2Helix 20. 5 1. 6 30% CH 3OH 1 312 14. 1 0. 7 Α2Helix 1 298 3. 7 0. 8 Α2Helix 1 286 7. 2 1. 0 Β2Turn 22. 2 1. 1 1 272 15. 0 0. 1 Β2Turn 1 262 6. 9 0. 8 Random 17. 0 1. 0 1 253 10. 0 0. 2 Random 1 244 29. 3 1. 2 Β2Sheet 40. 4 2. 1 1 234 6. 7 0. 2 Β2Sheet 1 228 4. 4 0. 7 Β2Sheet Rnase A 2 1 322 3. 2 0. 5 Α2Helix 19. 2 1. 3 40% CH 3OH 1 314 11. 6 0. 7 Α2Helix 1 302 4. 4 0. 1 Α2Helix 1 288 10. 8 0. 6 Β2Turn 23. 1 0. 6 1 270 12. 3 0. 0 Β2Turn 1 261 10. 3 0. 7 Random 22. 7 2. 6 1 252 12. 3 1. 9 Random 1 244 23. 1 0. 8 Β2Sheet 35. 1 2. 3 1 236 9. 3 0. 9 Β2Sheet 1 228 2. 6 0. 6 Β2Sheet 2. 1. 2 Β2 Β2,.
N o. 2 : 229 F i. 1 The curve-f ittin results of am ides (A) and (B) of BSA in 50% CH3OH in volume fraction F i. 2 The curve-f ittin results of am ides (A) and (B) of Rna se A in 40% CH3OH in volume fraction BSA Β2. 0 40%, Β2 1% ; 50%, Β2 4. 6%. 3 Β2 3 cm - 1, 1 245 1 227 cm - 1. R nase A Β2, 40% 11%. 3, 1 245 1 228 cm - 1. 1 245 cm - 1 Β2, 1 220 1 245 cm - 1. 2. 1. 3 Β2 Β2,. BSA Β2 2, 1 282 1 271 cm - 1. Table 2 The result of am ide and am ide curve-f ittin Volum e fraction (% ) 3 Band Α2Helix Β2Sheet Β2Turn Random BA S 0 20 30 40 50 Rnase A 0 20 30 40 3 Volum e ratio: V CH 3 OHV total., Β2. 0% 50%, 3%. 2 2 5 cm - 1 ( 1). R nase A,, (1 286 1 270 cm - 1 ) Β2, 18. 6%, X 21%., 4%, 2 2 cm - 1., Β2 1 270 1 290 cm - 1, 1 270 1 290 cm - 1 Β2. 2. 1. 4. BSA 2 47. 9 48. 4 44. 8 44. 3 41. 5 42. 5 40. 2 41. 3 38. 7 38. 3 24. 9 23. 3 22 21. 2 20. 4 20. 5 18. 4 19. 2 22. 0 22. 1 20. 3 20. 4 20. 2 18. 9 19. 6 17. 4 16. 1 45. 1 46. 5 43. 2 44. 3 39. 1 40. 4 35. 4 35. 1 20. 2 18. 9 20. 2 22. 4 20. 8 23. 0 22. 1 20. 6 18. 6 22. 2 21. 2 22. 5 22. 2 23. 1 23. 1 11. 0 11. 8 12. 9 16. 5 17. 4 17. 1 18. 5 18. 3 20. 9 23. 4 9. 4 11. 6 12. 6 13. 4 18. 0 17 23. 0 22. 7
230 V ol. 24 (1 262 1 254 cm - 1 ),,,, 4 cm - 1. 11%, ( 2). R nase A 2 1 261 1 255 cm - 1, 11. 6%, X 10%., 11. 6% 22. 7%,, 3 cm - 1.,,., 1 250 1 265 cm - 1., : 1 330 1 290 cm - 1 Α2 ; 1 295 1 265 cm - 1 Β2 ; 1 270 1 245 cm - 1 ; 1 250 1 220 cm - 1 Β2. 1 290 1 295 cm - 1, 1 265 1 270 cm - 1 1 245 1 250 cm - 1 3,.,. Α2,. 2. 2, 1 650 1 658 cm - 1 Α2 ; 1 640 1 610 cm - 1 Β2 ; 1 700 1 660 cm - 1 Β2 ; 1 650 1 640 cm - 1 [8 ]. BSA [17 ] R nase A [20 ] [ 1 (A ) 2 (A ) ],, 2., S : S = [ (x i - y i ) 2 (N - 1) ] 12, x i, y i ; N., S, S,. Α2 Β2 Β2 S R nase A 0. 019, 0. 022, 0. 023, 0. 026; BSA 0. 008, 0. 013, 0. 012, 0. 022; 0. 03,,. 2. 3 X, X. X, 3.,, S. Α2 Β2 Β2, S 0. 013, 0. 014, 0. 017, 0. 013; X S 0. 020, 0. 008, 0. 004, 0. 010., S 0. 004 0. 020,, X,. Table 3 Compar ison of the results obta ined by am ides and and X-ray da ta M ethod BSA Reḟ [ 9, 17 ] RN ase A T ryp sin Concanavalin A IG Cytochrom e C Α2Helix (% ) 50 47. 9 48. 4 23 25. 0 23. 3 9 8. 6 8. 8 3 4. 4 5. 6 3 5. 7 4. 3 48 45. 7 44. 4 Β2Sheet (% ) 21 22. 0 46 45. 1 46. 5 56 56. 1 57. 7 60 59. 2 58. 1 67 62. 5 63. 9 10 10. 6 11. 5 Β2Turn (% ) Random (% ) 19 21 20. 6 18. 6 24 23. 7 21. 2 22 21. 4 18 22. 0 17. 9 17 17. 3 18. 1 10 11. 0 11. 8 10 9. 4 11. 6 11 11. 6 12. 3 15 15. 1 15. 7 12 9. 8 13. 9 25 26. 4 26. 1
N o. 2 : 231 [ 1 ] YAN G Chi2M in ( ). Chem. J. Chinese U niversities( ) [J ], 2002, 23 (2) : 243 250 [ 2 ] J IAN G Jun2Guan ( ), WAN G Zhen2Xin ( ), L IU Chan2W ei( ) et al.. Chem. J. Chinese U niversities( ) [J ], 2001, 22 (7) : 1 131 1 133 [ 3 ] L I Xiao2J in ( ), ZHAN G Shan2Ron ( ), ZHAN G Shu2Gon ( ) et al.. Chem. J. Chinese U niversities( ) [J ], 1999, 20 (1) : 127 131 [ 4 ] ZHAO Chen2Guan ( ), L IU L an2yin ( ), Q IU A i2don ( ) et al.. Chem. J. Chinese U niversities( ) [J ], 1997, 18 (5) : 744 747 [ 5 ] Parvez İ H., Feride S.. J. M olecular Catalysis B, Enzym atic[j ], 1999, 7: 207 221 [ 6 ] X IE M en2xia ( ), L IU Yuan ( ). Chinese J. A nalysis L aboratory ( ) [J ], 2001, 20 (Supp l. ) : 197 198 [ 7 ] Xie M. X.. Spectroscopy L etters[j ], 1996, 29 (1) : 53 60 [ 8 ] Xie M. X., L iu Y.. Spectrochim ica A cta, Part A [J ], 2002, 58 (13) : 2 817 2 826 [ 9 ] Fu F. N., DeO liveria D. B., T rum ble W. R. et al.. App l. Spectrosc. [J ], 1994, 48: 1 432 1 441 [ 10 ] Byler D. M., B rouillette J. N., Susi H.. Spectroscopy[J ], 1986, 1 (3) : 29 32 [ 11 ] Surew iczw. K., M oscarello M. A., M antsch H. H.. J. B iochem. [J ], 1987, 262 (18) : 8 598 8 602 [ 12 ] Surew iczw. K., Szabo A., M antsch H. H.. Euṙ J. B iochem. [J ], 1987, 167 (3) : 519 523 [ 13 ] Don A., Huan P., Cauhey W. S.. B iochem istry[j ], 1990, 29: 3 303 3 308 [ 14 ] Kaiden K., M atsui T., Tanaka S.. Spectroscopy[J ], 1987, 41: 180 188 [ 15 ] Sinh B. R., Fuller M. P., Schiavo G.. B iophyṡ Chem. [J ], 1990, 36: 155 161 [ 16 ] Cai S., Sinh B. R.. B iophysical Chem. [J ], 1999, 80: 7 20 [ 17 ] Cyril R.. J. M olecular Structure[J ], 1999, 478: 185 191 [ 18 ] Jam esm. P., Heino S.. J. B iochem ical and B iophysicalm ethods[j ], 1984, 9: 193 199 [ 19 ] WAN G B in ( ), WAN G J in ( ), YU J ian ( ) et al.. Spectroscopy and Spectral A nalysis( ) [J ], 1999, 19 (5) : 674 676 [ 20 ] N eault J. F., Tajim ir2r iahi H. A.. B iochim ica et B iophysica A cta[j ], 1998, 1 384: 153 159 Stud ies on Infrared Bands for the Secondary Structure D eterm ination of Prote in s X IE M en2x ia 3, L IU Yuan (A naly tical & T estin Center, B eij in N orm al U niversity, B eij in 100875, Ch ina) Abstract Fourier transform infrared spectroscopy is increasinly becom in an important m ethod for quan2 titatively determ inin the secondary structure of p roteinṡ band (1 600 1 700 cm - 1 ) and am ide (1 220 1 330 cm - 1 ) are two m ain bands for th is purposeṡ w as nelected because of its rela2 tively w eak in sinals, but there is not interference from w ater and w ater vapor vibration bands and it is more sensitive to the chanes of p rotein secondary structure. In th is paper, p roteins BSA and RN ase A w ere denatured by m ethanol. T he component bands of secondary structure in am ide w ere assined by com binin the quantitative results of am ide band. Α2H elix 1 330 1 290 cm - 1 ; Β2turn 1 295 1 265 cm - 1 ; R andom coil 1 270 1 245 cm - 1 and Β2sheet 1 250 1 220 cm - 1. T he overlapp in area betw een the neihborin bands of different structures, such as 1 290 1 295 cm - 1, 1 265 1 270 cm - 1, 1 245 1 250 cm - 1, can be determ ined accordin to quantitative results of am ide band. By usin above assinm ents, the quantitative analysis results of the p roteins in w h ich the secondary structures have been know n w ere consistent w ith that of X2ray data and am ide band. Keywords FT IR; band; Secondary structure of p roteins; Solvent denaturation (Ed. : A, G)