2003 61 3, 376 381 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 376 381 N 2 Ξ Ξ ( 210093), N 2 (NNN) NNN ; NNN :NNN N N O NNN, N 2,,,, Temperature Programmed Surface Reaction of N 2Nitrosonornicotine on Zeolites and Molecular Sieves ZHOU, Shi2Lu ZHOU, Chun2Fang ZHU, Jian2Hua Ξ XU, Yang LIU, Hua2Dao WEI, Yi2Lun ( Department of Chemistry, Nanjing University, Nanjing 210093) Abstract The catalytic degradation of N 2nitrosonornicotine (NNN), the representative of tobacco special N 2 nitrosamines (TSNA), of which the molecular volume is much larger than the pore size of zeolites, was for the first time studied on zeolites catalysts by the use of temperature programmed surface reaction technique NNN could be adsorbed and catalytically decomposed by zeolites The pore structure and surface acidity of the zeolite were proven to be the important factors affecting the decomposition of NNN Moreover, simulation reveals that NNN might adsorb on zeolite through a manner of inserting in the channel of zeolites with N N O group With large pore size and high surface area, mesoporous molecular sieves were firstly applied to catalytically decompose NNN and they exhibited a catalytic function much better than that of zeolites Keywords N 2nitrosonornicotine (NNN), zeolite, mesoporous molecular sieve, catalytic degradation, temperature programmed surface reaction [1], 1956, [2] [4 6], [3], (temperature programmed surface reaction, TPSR) (tobacco2 : specific nitrosamines,tsna) N 2 ( N 2, [7] ; nitrosonornicotine, NNN), 42( N2 2N2 )212(32 )212 (42methylnitrosamino21232pyridyl212butanone, NNK), TSNA, / ( N2nitrosoanatabine, NAT), ( N2 nitrosoanabasine, NAB),? TSNA?, TSNA NNN, TPSR, Ξ E2mail :jhzhu @netra nju edu cn Received July 26, 2002 ; revised September 23, 2002 ; accepted November 23, 2002 863 (No 71520420120) (No 20273031)
No 3 : N 2 377, NNN NNN, SBA215 MCM248, 1 1 1 1, HZSM25 HL,BaKL NaZSM25 KL NNN ( Sigma ), [ 8 ],SP2 830 (Cole2Parmer) 1 2 NNN TPSR 7 mg NNN 5 ml CH 2 Cl 2, different pore sizes 20 mg, N 2 10 K/ min 773 K 2 h ; 423 K NNN 100 L, 0 2 h TPSR 10 K/ min 773 K 1 h, [6 NO x NNN,8] 1 3 NNN Gaussian 98W, GaussViewW, version 2 1 Gaussian 98W 3000 Unix C N, N N, N [9 ] 2 O CNN, NNO 1 NNN NaY, NaZSM25 NaA TPSR NO x NaY 493 K NO x, Figure 2 NO x desorption in the TPSR of NNN or NPYR on zeolite N N ( O) NO x [6] ;NO x 633 K (734 nmol/ g),, (NPYR) NaY TPSR [6] (NPYR 553 K,593 K NO x, 2),NNN NPYR H, 1) NaA NNN 473 K NO x, TPSR ( 2),,613 773 K 300 400 nmol/ g 1 NNN TPSR NO x Figure 1 NO x desorption in the TPSR of NNN on zeolites with NaZSM25 ; NaA ; NaY 2 NNN NPYR NaY TPSR NO x NaY NPYR 0 02 ; NNN NNN NaZSM25 473 K NO x, (790 nmol/ g) 593 K, NaY 40 K(, NPYR TPSR [6] NNN 0 74 nm, 0 56 nm, 0 42 nm 1 Table 1 Parameters of the zeolite molecular sieve samples used in test KA NaA NaZSM25 NaY KL MCM248 SBA215 Si/ Al 1 0 1 0 20 9 2 86 5 8 ( ) ( ) / (m 2 g - 1 ) 800 800 317 766 246 1110 1000 / nm 0 30 0 42 0 56 0 54 0 74 0 70 3 4 8 0
378 Vol 61, 2003, NO x NaA NaZSM25, (3 4 m), NNN NaZSM25 (7 8 m), NNN2TPSR :NaY 533 673 K NNN, NaZSM25 ;, NaA KA, NO x (4205 nmol/ g) (4844 nmol/ g) 86 %, NaZSM25 72 % NO x (3160 nmol/ g) NNN2TPSR, NaA NNN, 4 NNN HZSM25 NO x (4574 nmol/ g) 53 %, NaZSM25 NNN ( 473 K), NO x 553 K( 593 K), [10],, NNN 7699 nmol/ g, 1 75 L ( NO x ) NNN HL NNN 553 K NO x,, 633 K( BaKL 653 K), NO x, NNN 0 3 nm KA,, NO x 613 633 K, NNN NO x, 533 673 K 3335 nmol/ g, 5002 NO x, nmol/ g 67 % 3, NPYR, N N (NHMI) KA, [3,6] (0 56 0 59 nm [8] ) KA NHMI TPSR NO x NNN,, / [6], /, ; HZSM25 NNN2TPSR [8], KA 733 K NO x, HZSM25 NNN, NPYR NHMI TPSR, 2TPD [11], NaA ; [6] Y,L, ZSM25,, ( NNN2TPSR NO x NNN NO x ZSM25 NaA ) ZSM25 80 K NNN L NNN N N O, NO x L,, [5,6,8], 3 : NPYR, NHMI NNN NaZSM25 HZSM25, 10109 nmol/ g, BaKL (6004 nmol/ g) 1 68,, 3 NNN, NPYR NHMI KA TPSR NO x Figure 3 NO x desorption in the TPSR of NNN, NPYR or NHMI on zeolite KA NNN ; NPYR ; g NHMI 4 NNN TPSR NO x Figure 4 NO x desorption in the TPSR of NNN on the zeolite with different surface acid2basicity HZSM25 ; NaZSM25 ; HL ; g BaKL NNN TPSR 5 MCM248 SBA2 15, NNN : (1) NNN MCM248 473 K NO x,
No 3 : N 2 379 573 K, NaY 60 K, [8] NNN NPYR ( 6) H(13) (4232 nmol/ g) NaY(734 nmol/ g) 5 (2) 533 673,, H(17) K NO x 15603 nmol/ g (18010 nmol/ H(10) 01798 nm H(19) H(10) g) 86 %, NaY, NO x NaY 0175 nm 7 NNN 3 7, NNN,, SBA215 NNN, NO x 16434 nmol/ g, NaY ; 7 C(2) 81 % 533 673 K, MCM248 SBA215 NNN C(11), C(14), C(15) C(2) ( NO x ) MCM248, C(11), N(12), N(23) 90, MCM248, [12], SBA215 H, (8 nm),nnn - C 7, C(14) C(13) / MCM248, C(13), C(14) NNN, ( NNN, 8 10 nm NNN2TPSR N O,, ) NNN NNN,, (0 8 (1) NNN nm) MCM248 SBA215, /,, H (7) H (8) NNN, 0143 nm ;,NNN TPSR NO x, HZSM25 HL,,, :, ; NNN, MCM248 ; SBA215 6 NPYR NNN NPYR,NNN, ( ) Hyper Chem (MM + force field), 0156 nm [8] Derouane nest effect [10], 0142 nm NaA [5,8], N N O, NNN (2) NNN N(23) O(24) 01123 nm, NNN KA NaA, N (23) O (24), N O,, NNN NNN H(10) H(17) 01798 nm, 01798 nm, NNN (3) NNN H(22) O (24) 5 NNN TPSR NO x 01541 nm, ; Figure 5 NO x desorption in the TPSR of NNN on mesoporous 01798 nm, NNN molecular sieves, NNN,,,NNN, N N O,
380 Vol 61, 2003 6 NPYR( ) NNN( ) Figure 6 Simulation on the structure of NPYR (left) and NNN (right) 7 NNN ( ) ( ) Figure 7 Simulation on the (left) frontispiece and (right) side face of optimized molecular structure of NNN van der Waals, [13],, NNN / 3 (1) N 2 References 3000 (NNN), ; NNN 1 Magee, P N ; Barnes, J M Br J Ind Med 1956, 10, (2) NNN 114 NNN, 2 Shank, R C ; Magee, P N In Mycotoxins and N2nitroso N N O Compounds : Environmental Risks, Vol 1, CRC Press, Florida, (3) 1981, pp 186 206 NNN, 3 Xu, H2X In N 2Nitroso Compounds in Environment, Science NNN,
No 3 : N 2 381 Press, Beijing, 1988 (in Chinese) (, N 2,,, 1988 ) 4 Meier, M W ; Siegmann, K Microporous Mesoporous Mater 1999, 33, 307 5 Zhu, J 2H ; Shen, B ; Wang, Y ; Yan, D Chin Sci Bull 2001, 46, 705 6 Zhu, J 2H ; Shen, B ; Xu, Y ; Xue, J ; Ma, L2L ; Xu, Q 2H Stud Surf Sci Catal 2001, 135, 320 7 Shen, B ; Ma, L2L ; Zhu, J 2H ; Xu, Q2H Chem Lett 2000, (4), 380 8 Zhu, J 2H ; Yan, D ; Xia, J 2R ; Ma, L2L ; Shen, B Chemosphere 2001, 44, 949 9 Weast, R C In CRC Handbook of Chemistry and Physics, 63rd Ed, CRC Press, Florida, 1982 1983 10 Derouane, E G J Catal 1986, 100 (2), 541 11 Zhu, J 2H ; Xu, Q 2H Chin Sci Bull 1989, 34 (5), 384 12 Alfredsson, V ; Anderson, M W Chem Mater 1996, 8 (5), 1141 13 Fyfe, C A ; Kennedy, G L ; de Schutter, C T ; Kokotailo, G T J Chem Soc, Chem Commun 1984, 541 (A0207266 CHENG, B ; DONG, L J )