Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes

Σχετικά έγγραφα
Stochastic Finite Element Analysis for Composite Pressure Vessel

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

ΣΥΝΘΕΤΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Παραμετρικά και Μη Παραμετρικά Διαγράμματα Ελέγχου στον Στατιστικό Έλεγχο Διεργασίας ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Generalized Linear Model [GLM]

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Downloaded from hakim.hbi.ir at 17:53 IRST on Thursday October 11th : . C.A.MAN AFP. 1 Acute Flaccid Paralysis (AFP)

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem


A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Multi-dimensional Central Limit Theorem

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Δ Ι Π Λ Ω Μ Α Τ Ι Κ Η Ε Ρ Γ Α Σ Ι Α ΕΠΙΔΡΑΣΗ ΤΗΣ ΕΚΤΙΜΗΣΗΣ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΔΙΑΓΡΑΜΜΑΤΩΝ ΕΛΕΓΧΟΥ ΓΙΑ ΤΗ ΜΕΣΗ ΤΙΜΗ

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ SHEWHART ΜΕ ΚΑΝΟΝΕΣ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗΣ ΠΟΥ ΒΑΣΙΖΟΝΤΑΙ ΣΤΗ ΘΕΩΡΙΑ ΡΟΩΝ


IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Power allocation under per-antenna power constraints in multiuser MIMO systems

Συνεχείς συναρτήσεις και συντελεστής µεταβλητότητας: Προσέγγιση µέσα από δειγµατοληψία

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

ΒΕΛΤΙΩΜΕΝΑ R ΑΠΟ M ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows

ΤΟ EWMA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

M ea sur ing the Fa irness of the W age D istr ibution of Urban W orkers in D ifferen t Industr ies of Ch ina

Phasor Diagram of an RC Circuit V R

α & β spatial orbitals in

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

ΠΟΛΥΔΙΑΣΤΑΤΑ ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ ΔΙΕΡΓΑΣΙΩΝ

Η αποτελεσµατικότητα. των δηµόσιων νοσοκοµείων, τα οποία, 2. Θεωρητικό υπόδειγµα. 1. Εισαγωγή. Ρωξάνη Καραγιάννη

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square

ΚΕΦΑΛΑΙΟ 3 ΜΗ ΠΑΡΑΜΕΤΡΙΚΑ ΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ

Exam Statistics 6 th September 2017 Solution

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΟΡΙΑ ΕΛΕΓΧΟΥ ΜΕ ΒΑΣΗ ΤΗ ΓΕΩΜΕΤΡΙΚΗ ΚΑΤΑΝΟΜΗ ΣΤΟ ΣΤΑΤΙΣΤΙΚΟ ΠΟΙΟΤΙΚΟ ΕΛΕΓΧΟ


UMI Number: All rights reserved

ΜΙΑ ΜΕΘΟΔΟΣ ΤΙΜΩΡΙΑΣ ΓΙΑ ΤΗΝ ΑΠΟΡΡΙΨΗ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΣΤΗΝ ΑΝΘΕΚΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

ΧΡΗΣΗ ΜΗ-ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΚΤΙΜΗΤΡΙΩΝ ΠΟΣΟΣΤΙΑΙΟΥ ΣΗΜΕΙΟΥ ΓΙΑ ΤΟΝ ΚΑΘΟΡΙΣΜΟ ΤΩΝ ΟΡΙΩΝ ΕΛΕΓΧΟΥ ΤΩΝ ΔΙΑΓΡΑΜΜΑΤΩΝ ΕΛΕΓΧΟΥ ΜΕΣΗΣ ΤΙΜΗΣ

Solution Series 9. i=1 x i and i=1 x i.

6.3 Forecasting ARMA processes

Archive of SID. (Tg)

ΑΚΡΙΒΕΙΑ ΕΝΟΣ ΔΙΤΙΜΟΥ ΔΙΑΓΝΩΣΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΟΥ ΕΞΑΡΤΑΤΑΙ ΑΠΟ ΤΟ ΧΡΟΝΟ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Nonparametric Bayesian T-Process Algorithm for Heterogeneous Gene Regulatory Network

35 90% %

Lecture 34 Bootstrap confidence intervals

Probabilistic Approach to Robust Optimization

Bayesian random effects model for disease mapping of relative risks

ΥΨΗΛΟΥ ΣΗΜΕΙΟΥ ΚΑΤΑΡΡΕΥΣΗΣ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ PENALIZED TRIMMED SQUARES

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Congruence Classes of Invertible Matrices of Order 3 over F 2

THREE-DIMENSIONAL VISCO-ELASTIC ARTIFICIAL BOUNDARIES IN TIME DOMAIN FOR WAVE MOTION PROBLEMS

Sydney 2052, Australia.

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Quantum annealing inversion and its implementation

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log

Fractional Colorings and Zykov Products of graphs

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Aerodynamic Design Optimization of Aeroengine Compressor Rotor

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Simplex Crossover for Real-coded Genetic Algolithms

ΠΡΟΒΛΕΨΗ ΑΦΕΡΕΓΓΥΟΤΗΤΑΣ Η ΝΟΡΜΑ ΤΟΥ ΑΣΦΑΛΙΣΤΙΚΟΥ ΚΛΑΔΟΥ ΓΙΑ ΥΓΙΕΙΣ ΕΤΑΙΡΙΕΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΦΕΡΕΓΓΥΟΤΗΤΑΣ ΙΙ

Estimators when the Correlation Coefficient. is Negative

8.324 Relativistic Quantum Field Theory II

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Other Test Constructions: Likelihood Ratio & Bayes Tests

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Λέξεις Κλειδιά: Γεωγραφικά Σταθμισμένη Παλινδρόμηση (GWR), Γονιμότητα

Notes on the Open Economy

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Statistical Inference I Locally most powerful tests


Πολυδιάστατα Δεδομένα

DOI /J. 1SSN

ΣΧΕΔΙΑ ΣΥΝΕΧΟΥΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΠΑΡΑΓΩΓΗ

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΠΡΟΒΛΕΨΗΣ ΠΟΛΥΜΕΤΑΒΛΗΤΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕ ΜΟΝΤΕΛΑ ΔΥΝΑΜΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

Homomorphism of Intuitionistic Fuzzy Groups

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Applying Markov Decision Processes to Role-playing Game

4.6 Autoregressive Moving Average Model ARMA(1,1)

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Transcript:

Internatonal Journal of Industral Engneerng & Producton Management (22) March 22, Volume 22, Number 4 pp. 39-33 http://ijiepm.ust.ac.r/ Estmatng Tme of a Smple Step Change n Nonconformng Items n Hgh-Yeld Processes Rassoul Noorossana*, Kamran Peynabar & Mona Moradmanesh Rassoul Noorossana, Industral Engneerng epartment, Iran Unversty of Scence and Technology, Kamran Peynabar, Ph.. Student of Industral and Operatons Engneerng, Unversty of Mchgan, Ann Arbor, MI 489-27, Mona Moradmanesh, Industral Engneerng epartment, Islamc Azad Unversty South Tehran Branch, Tehran, Iran Keywords Statstcal Process Control (SPC), Change Pont, Smple Step Change, Bult-n Estmator, Cumulatve Sum control chart (), Exponental Weghted Movng Average control chart (), Average Run Length (ARL), Confdence Set ABSTRACT Knowng about the real tme of a change n the parameter(s) of a statstcal process would enable users to dentfy root causes more quckly and precsely. ue to the senstvty and mportance of reachng zero defects n hgh qualty processes, to be aware of the change tme would be so precous. In ths paper, we consder the performance of the Maxmum Lkelhood Estmator n comparson wth bult-n change pont estmators of Cumulatve Sum () and Exponental Weghted Movng Average () control charts. Usng lkelhood functon approach, we also proposed a confdence set for the change pont. The results of a Monte-Carlo smulaton have shown the prorty of the MLE n dentfyng the real tme of the change. 22 IUST Publcaton, IJIEPM. Vol. 22, No. 4, All Rghts Reserved * Correspondng author. Rassoul Noorossana Emal: rassoul@ust.ac.r

http://ijiepm.ust.ac.r/ ISSN: 8-487 * () () MLE MLE * rassoul@ust.ac.r 2 3 Bult-n Confdence Set m.moradmanesh@gmal.com

L(.) X MLE p MLE (-) (-) T,2,...,, 2,...,T () (ˆ) V 2 3 V-mask Tabular Observaton (MLE)

,ˆ ARL (C) Z X Z X (Z ) LCL E Z L Var Z, UCL E Z L Var Z Var Z E Z L H max, H k H X L mn, L k L X X.25 L hl H hh H u, u hh Q L v, hl v kh, kl (SPRT) ARL ARL ˆ max : H, ˆ max : L. L, k kl kh Z loge loge 2 L 2 UCL CL LCL kber c, hber h, uber w c c. 2 L 2 k H c, hh ch c, u w 3 Robustness 2 Corrected ffuson Sequental Probablty Rato Tests

N ˆ ˆ seˆ seˆ se T ˆ max : Z ˆ max : Z T f Z UCL, f Z LCL.,ˆ T τ MLE T ˆ ˆ ˆ ˆ ˆ ARL τ (C) ˆ ˆ

Type u kh hh.5 Lower-sde.3 2554.894 5.5 Upper-sde.7-6822 6823.756 5. Lower-sde.6 277.95 5. Upper-sde.3-549 5492.5 Lower-sde.3 2554.2523 5.9 5.5 Upper-sde.7-68 682.749 5 E T ˆ E T ARL seˆ se ˆ E T (PPM) E T se ˆ seˆ 3.54 99.83.5 96.82.26 5 5.54 8.47..7.2.28 97.33 98.9.26.28 25 3.8 2.4.38 99.82.32 35 2.48 6.25.58 4.45.48 39.25 6.66. 8.7.99 4 85.32 49.42.27 64.4.249 45 55 3.5 34.3 27.33 265.69.66.64 29.25 266.97.656.64 6 2.59 62.35.277 57.5.29 65 68.26 28.5.6 6.33.5 7 48.84 4.3..8.95 75 38.29 7.5.85 94.53.72 8 32. 3.94.7 9.97.62 85 9 27.86 24.86.77.4.6.52 9.55 89.8.58.56 95 22.62 2.5 99.52 99..47.43 89.2 89..55.55 ˆ ˆ seˆ seˆ MLE

ˆ ˆ ˆ ˆ (PPM) 45 55 5 25 35 4 6 65 7 75 8 85 9 95.459..326.94.224.8.46.67.87.49.46.29.9.3.6.5.5.6.2.5.25.27.38.4.53.5.7.6.9.68.4.73.24.76.37.82.74.48.555.47.44.344.293.265.88.86.8.4.49.43.7.5.5.7.35.44.64.84.95.25.28.6.64.9.99.24.23.233.26.247.288.263.88.626.685.575.54.497.398.4.267.286.59.66.76.69.27.24.25.28.55.7.98.27.42.86.9.233.237.269.283..322.32.362.333.393.35.88.7.77.667.63.599.48.5.332.367.24.28.99.94.36.33.34.39.74.92.28.66.84.238.242.294.298.334.35.367.395.385.439.399.475.44.97.746.826.726.698.672.546.576.388.434.242.264.2.5.44.4.42.49.92.4.55.2.22.284.288.345.35.388.47.42.454.438.52.45.54.465.939.779.866.768.75.725.62.637.436.49.277.34.4.36.52.49.5.58.9.33.8.232.255.323.329.389.395.434.454.466.56.484.555.497.594.57.977.874.953.878.893.866.779.85.6.68.47.454.224.27.9.85.9.3.82.22.289.365.389.48.48.555.559.6.624.628.68.639.725.644.762.652.987.924.977.928.948.925.87.897.723.788.59.558.293.282.23.5.25.4.244.292.372.466.487.59.588.666.668.75.73.726.783.733.822.735.85.739.992.953.986.956.97.954.923.94.8.856.6.635.354.335.53.43.57.77.297.352.443.545.566.673.67.745.747.779.85.794.85.799.883.797.95.8.995.97.99.972.98.97.952.965.856.9.667.695.47.382.8.68.86.29.345.46.54.6.632.738.735.84.88.833.86.843.897.846.922.844.939.847.996.982.993.982.986.982.969.979.896.93.723.745.456.424.27.92.24.238.388.45.556.662.69.788.787.848.855.872.9.88.93.882.948.879.96.882.997.989.994.989.989.988.979.987.925.952.769.785.498.462.23.24.238.265.428.49.64.76.738.828.83.883.892.93.928.97.952.99.964.97.972.99.998.993.996.993.992.993.985.992.945.967.86.87.538.498.254.235.262.289.465.527.646.744.779.86.866.99.99.925.948.928.966.929.975.929.98.929 ˆ ˆ ˆ E T seˆ seˆ MLE ARL E T ARL

E T.5,. ARL MLE ˆ MLE L.5.5 2.5427.5..995..5 2.5426...9885.5.5 2.5427.5..995 ˆ ˆ ˆ MLE PPM PPM ˆ ˆ E T seˆ MLE.2 se ˆ ˆ ˆ ˆ.5,.5 E T (PPM) E T 5 se ˆ seˆ 3.46 99.79.5 96.7.36 5.33.8.9 96.57.37 8..8.25 97.38.38 25 2.8 2.6.34 98.83.4 8.64 6.54.5.86.48 35 3.32 6.9.82.24.75 4 6.73 42.23.66 36.9.64 45 243.43 224.32.426 22.79.429 55 726.53 42.24.72 68.79.966 6 49.36 9.67.445 345..932 65 259.8 34.97.225 75.4.395 7 96.82 6.25.43 8.8.8 75 67.89 7.97.4.3. 8 52.8 3.99.82 95.6.74 85 42.8.53.69 93.67.67 9 36.64..6 92.73.64 95 32.28 99.3.54 92.9.63 29.7 98.6.49 9.74.63

.5,. E T E T se ˆ seˆ 4.74 99.74.6 89.46.7 5 7.46 99.87.22 9.8.72.4.4.29 9.5.74 25 6.47.83.39 92.72.77 24.59 5.33.56 95..83 35 38.83 4.64.9.72.97 4 69.63 4.35.73 7.52.54 45 259.8 228.95.448 94..43 55 35.5 258.22.562 22.84.535 26.69 59.84.253 5.72.24 72.9 26.73.56 96.22.38 55.93 2.95.2 9.24.9 75 46.49 5.99.88 87.48.2 8 4.45 2.4.72 86..8 85 36.33.37.62 85.3.6 33.25 99.5.55 84.57.4 95 3.9 98.55.49 84..3 29.4 98.9.45 84.2.2 (PPM) 6 65 7 9.5 ˆ (PPM) 5 25 35 4 45 55 6 65 7 75 8 85 9 95.46.47.328.44.227.4.47.36.9.29.48.23.2.3.7.6.4.2..5.22.3.36.23.52.3.7.35.88.38.3.4.9.45.37.43.75.383.557.299.42.233.296.79.95.3..86.53.47.2.9..6.3.5.58.4.88.7.23.94.6..93.2.225.3.256.39.285.4.82.564.69.47.546.382.42.296.273.22.63.45.8.78.32.32.6..47.25.88.65.34.4.82.54.23.79.274.98.36.23.355.225.39.232.882.66.773.585.636.497.486.396.339..29.2.6.7.42.44.23.4.63.36.5.89.72.55.232.2.29.243.34.27.387.288.432.34.47.37.97.77.829.662.74.585.554.48.396.37.25.25.29.36.52.55.29.7.78.45.4.3.27.96.276.26.34.33.396.336.446.358.494.378.534.392.939.75.87.74.756.65.6.552.445.434.287.299.5.62.62.67.34.2.92.55.63.36.238.234.33.3.384.359.443.396.495.422.545.442.587.457.976.834.955.833.899.82.79.769.626.659.432.49.24.278.4.8.59.38.54.97.26.234.363.393.458.54.542.57.67.64.664.64.7.657.749.668.986.884.978.885.953.884.882.864.745.789.54.62.35.369.4.6.83.54.24.33.336.39.455.54.557.628.644.696.7.73.76.749.82.756.836.76.99.98.987.99.975.92.933.92.825.864.629.75.383.445.75.2.4.67.248.64.398.37.527.585.633.7.79.773.78.798.826.89.862.8.888.82.994.942.99.942.984.943.96.94.88.9.7.78.442.57.29.236.23.8.287.9.452.42.587.644.693.768.775.823.832.843.872.85.9.849.92.85.995.959.993.958.989.959.976.959.98.94.759.83.495.56.24.269.42.9.323.23.499.46.637.689.742.8.82.86.87.876.94.88.927.879.944.88.997.97.995.97.992.97.985.972.945.96.86.869.543.66.269.298.59..357.233.54.494.68.727.782.843.854.887.899.92.928.94.946.92.958.93.998.98.996.979.994.98.99.98.963.973.843.897.588.647.297.326.75..387.252.577.523.79.757.88.869.883.99.922.92.945.923.959.92.968.922

- 5 25.9 efectve Percent (PPM) 35.8 Coverage Probablty.6 45 2.97.5 2.75.4 2.5.3 2.25 2..2.75 2 4 6 8 2 4 6 8 22 24 Value.5.35. 26 28 32 Average Cardnalty, 5, CS t : loge L t loge L ˆ loge L ˆ.353,.5,.75,2.,2.25,2.5,2.75,2.97 9.9 8 75 efectve Percent (PPM) 7 65.8 6 Coverage Probablty 4.7.7.6 95 55 85 2.97.5 2.75.4 2.5 2.25.3 2..75.2 Value.5.35. 2 4 6 8 2 4 6 8 22 24 26 28 32 34 36 38 Average Cardnalty, 5, Confdence Set

5 25.9 efectve Percent (PPM) 35 Coverage Probablty.8 4.7 45.6 2.97.5 2.75 2.5.4 2.25.3 2..75.2.5 Value.35. 2 4 6 8 2 4 6 8 22 24 26 Average Cardnalty, 5PPM,,.5.5, efectve Percent (PPM) 9.9 8 7.8 [] Noorossana, R., Abd, S., Saghae, A., Paynabar, K., Identfyng the Tme of a Change n Hgh Yeld Processes, Proceedng of 4th Internatonal Industral Engneerng Conference, Tehran, Iran, 5. Coverage Probablty.353,.5,.75,2.,2.25,2.5,2.75,2.97 65 6.7.6 95 55 85 2.97.5 75 2.75 2.5.4 2.25 2..3.75 [2] Noorossana, R., Saghae, A., Peynabar, K., Abd, S., Identfyng the Perod of a Step Change n HghYeld Processes, Qualty and Relablty Engneerng Internatonal, 9; 25: pp. 875-883. [3] Pgnatello, J., Samuel, R., Estmaton of the Change Pont of a Normal Mean n SPC Applcatons..5.2.35 Value. 2 4 6 8 2 4 6 8 22 24 26 28 32 34 36 38 4 42 44 46 48 5 52 54 Average Cardnalty, 5,,.5

Qualty Technology and Quanttatve Management, 6; 3(3): pp. 325-344. [4] Perry, M.B., Pgnatello, J.J., JR., Smpson, R., Estmatng the Change Pont of a Posson Rate Parameter for SPC Applcatons, (under revew). [5] Perry M.B., Pgnatello, J.J., JR., Estmaton of the Change Pont of the Process Fracton Nonconformng n SPC Applcatons, Internatonal Journal of Relablty, Qualty and Safety Engneerng, 5; 2(2): pp. 95-. [6] Xe, M., Goh, T.N., Kuralman, V., Statstcal Models and Control Charts for Hgh-Qualty Processes, Kluwer Academc Publshers, Norwell, 2. [7] Brook,., Evans,.A., An approach to the probablty dstrbuton of run length. Bometrka, 99; 59: 539-549 [8] Reynolds, M.R., Jr. Stoumbos, Z.G.. A Chart for Montorng a Proporton when Inspectng Contnuously. Journal of Qualty Technology. 999; 3: 87 8 [9] Chang, T.C., Gan F.F., Chartng Technques for Montorng a Random Shock Process, Qualty and Relablty Engneerng Internatonal, 999; 5: pp. 295-3 [] Page, E.S. Cumulatve Sum Control Charts. Technometrcs 96; 3(): -9. [] Roberts, S.V., Control Chart tests Based on Geometrc Movng Averages, Technometrcs 959; : pp. 239-25 [2] Quesenberry, C.P., Geometrc Q Charts for Hgh Qualty Process Journal of Qualty Technology, 995; 27(4): pp. 333 343 [3] Borror, C.M., Montgomery,.C., Runger, G.C., Robustness of the Control Cchart to NonNormalty. Journal of Qualty Technology, ;3(3): pp. 39-36. [4] Nshna, K., A Comparson of Control Charts from the Vewpont of Change Pont Estmaton, Qualty and Relablty Engneerng Internatonal, 992; 8: pp. 537-54 [5] Box, G.E.P., Cox,.R., An Analyss of Transformatons, Journal of the Royal Statstcal Socety. Seres B (Methodologgal), 964; 26(2): pp. 2-252 [6] Segmond,., Boundary Crossng Probabltes and Statstcal Applcatons, The Analyss of Statstcs, 986; 4(2): pp. 36-44.