ΑΚΡΙΒΕΙΑ ΕΝΟΣ ΔΙΤΙΜΟΥ ΔΙΑΓΝΩΣΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΟΥ ΕΞΑΡΤΑΤΑΙ ΑΠΟ ΤΟ ΧΡΟΝΟ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΚΡΙΒΕΙΑ ΕΝΟΣ ΔΙΤΙΜΟΥ ΔΙΑΓΝΩΣΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΟΥ ΕΞΑΡΤΑΤΑΙ ΑΠΟ ΤΟ ΧΡΟΝΟ"

Transcript

1 Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής (8), σελ 3-4 ΑΚΡΙΒΕΙΑ ΕΝΟΣ ΔΙΤΙΜΟΥ ΔΙΑΓΝΩΣΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΟΥ ΕΞΑΡΤΑΤΑΙ ΑΠΟ ΤΟ ΧΡΟΝΟ Μπαντής Λεωνίδας, Τσιμήκας Γιάννης, Γεωργίου Στέλιος Τμήμα Στατιστικής & Αναλογιστικών Χρημ/κών Μαθηματικών, Παν/μιο Αιγαίου Σχολή Θετικών Επιστημών, Σάμος. {lbants, tsmkas, ΠΕΡΙΛΗΨΗ Η χρήση διαγνωστικών ελέγχων με σκοπό την πρόβλεψη της μελλοντικής κατάστασης ενός ατόμου είναι αρκετά διαδεδομένη. Η αξιολόγηση ενός διαγνωστικού ελέγχου απαιτεί την πληροφορία της πραγματικής κατάστασης του ασθενούς που παρέχεται από την gold standard (ασφαλή) διαδικασία. Στην πραγματικότητα το αποτέλεσμα του διαγνωστικού ελέγχου ενός ατόμου εξαρτάται από τον χρόνο. Για αυτό θεωρούμε την ευαισθησία σαν συνάρτηση του χρονικού διαστήματος μεταξύ μέτρησης και γεγονότος, ενώ η ειδικότητα καθορίζεται από την απουσία του γεγονότος μέσα σε ένα μεγάλο χρονικό διάστημα [,τ] από τη στιγμή της μέτρησης του διαγνωστικού ελέγχου. Χρησιμοποιώντας γενικευμένα γραμμικά μοντέλα, η εκτίμηση των παραμέτρων γίνεται με μεγιστοποίηση της προσεγγιστικής συνάρτησης πιθανοφάνειας. Ταυτόχρονα εξετάζουμε την εκτίμηση του τ. Χρησιμοποιούμε προσομοιώσεις για να αξιολογήσουμε τους εκτιμητές μας.. ΕΙΣΑΓΩΓΗ Η αξιολόγηση ενός διαγνωστικού ελέγχου που έχει σκοπό την πρόβλεψη της μελλοντικής κατάστασης ενός ατόμου έχει ιδιαίτερο κλινικό ενδιαφέρον. Ένας διαγνωστικός έλεγχος για παράδειγμα που μπορεί να κάνει πρόβλεψη για έμφραγμα του μυοκαρδίου ή εγκεφαλικό είναι ο δείκτης Framngham (Wlson et al, ). Εξέταση των γονιδίων από προσβεβλημένους ιστούς είναι δυνατόν να είναι ενδεικτική του υπολειπόμενου χρόνου επιβίωσης των καρκινοπαθών στην περίπτωση του καρκίνου του μαστού (Veer et al, ). Η αξιολόγηση των μετρήσεων ενός διαγνωστικού ελέγχου (Y), γίνεται βάσει των αποτελεσμάτων της ασφαλούς διαδικασίας (gold standard). Η ευαισθησία (TPR) και η πιθανότητα ενός εσφαλμένα θετικού αποτελέσματος (FPR) αντίστοιχα, δίνονται από τις παρακάτω σχέσεις TPR( y) P( Y y ), FPR( y) P( Y y ), με = να δηλώνεται η παρουσία της νόσου, και με = η απουσία της. Έτσι η ειδικότητα (TNR) δίνεται από P ( Y y )

2 Σε αυτήν την εργασία θα θεωρήσουμε κάποια μοντέλα για την ευαισθησία και τo FPR που θα λαμβάνουν υπόψη το χρόνο καθώς και μια συμμεταβλητή (παράγοντα κινδύνου) Ζ. Ο χρόνος Τ μπορεί να υποστεί δεξιά λογοκρισία. Θεωρούμε επίσης κάποιο μακρινό χρονικό σημείο τ. Άτομα που επιβιώνουν πέραν του χρονικού σημείου τ θα θεωρούνται υγιή (controls) ενώ άτομα που δεν καταφέρνουν να επιβιώσουν ως το τ θα θεωρούνται ασθενείς (cases). Έτσι για το -οστό άτομο με συμμεταβλητή Ζ η ευαισθησία τη χρονική στιγμή t και το FPR αντίστοιχα είναι: TPR FPR ( y) P( Y y T t, Z ), αν t Z, t ( y) P( Y y T, Z Z,. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΕΚΤΙΜΗΣΕΙΣ ΓΙΑ ΤΗΝ ΠΕΡΙΠΤΩΣΗ ΕΝΟΣ ΔΙΤΙΜΟΥ ΔΙΑΓΝΩΣΤΙΚΟΥ ΕΛΕΓΧΟΥ. ). Υποθέτουμε ότι ο διαγνωστικός έλεγχος (Υ) δίνει δίτιμα δεδομένα (Υ= σημαίνει θετικό αποτέλεσμα, Υ= αρνητικό αποτέλεσμα). Αν με C συμβολίσουμε τη μεταβλητή λογοκρισίας τότε η πληροφορία που έχουμε είναι η τ.μ. Χ=mn(T,C) και η δείκτρια δ=ι(τ C). Έτσι τα δεδομένα μας θα είναι της μορφής Y, Z, X,,,..., n. Υποθέτουμε τα ακόλουθα δύο μοντέλα (Ca et.al, 6) για την ευαισθησία και την ειδικότητα TPRt, Z g a t Z h FPR g b Z, c Z όπου g ( ) και g ( ) είναι συναρτήσεις σύνδεσης (π.χ. g ( )= g ( )=-Φ( )). Αν συμβολίσουμε όλες τις προς εκτίμηση παραμέτρους a,, b, c, h στα παραπάνω μοντέλα με ψ τότε η πιθανοφάνεια των δεδομένων θα είναι: όπου p ) : ( n Y p p Y, () - 3 -

3 TPR X Z X,, αν, TPRt, Z ds Z ( t) FPR Z S, Z ( ) X p ( ) αν X, () S Z ( X ) FPR, Z αν X Ο πρώτος κλάδος αφορά στους ασθενείς, ήτοι άτομα που απεβίωσαν πριν το χρονικό σημείο τ. Ο τρίτος κλάδος αφορά στους υγιείς, ήτοι άτομα που επέζησαν πέραν του χρονικού σημείου τ. Ο δεύτερος κλάδος αφορά σε άτομα που λογοκρίθηκαν πριν το τ, που έχει ως αποτέλεσμα να μην γνωρίζουμε την πραγματική τους κατάσταση (health status). Συνεπής εκτιμητής του ψ υπολογίζεται εύκολα με τη μεγιστοποίηση της πιθανοφάνειας που προκύπτει αν λάβουμε υπόψη μόνο τον πρώτο και τρίτο κλάδο της σχέσης (). Σε αυτήν την περίπτωση έχουμε ένα κλασσικό γενικευμένο γραμμικό μοντέλο και η εκτίμηση γίνεται με τη χρήση υπαρχόντων στατιστικών πακέτων. Εν αντιθέσει, αν λάβουμε υπόψη και τον δεύτερο κλάδο η εκτίμηση του ψ γίνεται δυσκολότερη καθότι χρειάζεται εκτιμήτρια της συνάρτησης επιβίωσης. Αν υποθέσουμε ένα μοντέλο ανάλογων κινδύνων για την T τότε μπορούμε να Z χρησιμοποιήσουμε το μοντέλο του Cox ( h( t) h ( t)exp( Z) ) και εκτιμούμε τη συνάρτηση επιβίωσης ως: S Z ( t) exp H ( t)exp Z (3) όπου ( t) είναι ο Breslow εκτιμητής της αθροιστικής συνάρτησης κινδύνου και είναι ο Εκτιμητής Μεγίστης Μερικής Πιθανοφάνειας για τον συντελεστή γ του μοντέλου του Cox. Έτσι χρησιμοποιώντας την () μπορούμε να εκτιμήσουμε τις παραμέτρους του ψ μεγιστοποιώντας την προσεγγιστική πιθανοφάνεια που ορίζεται από την () όπου τα (t) εκτιμούνται από την (3). Στην περίπτωση που η H SZ λογοκρισία δεν ήταν ανεξάρτητη από το χρόνο μέχρι το θάνατο θα μπορούσε να χρησιμοποιηθεί μη παραμετρική εκτίμηση της συνάρτησης επιβίωσης (Cheng, 989). 3. ΕΚΤΙΜΗΣΗ ΤΟΥ τ. Στα παραπάνω υποθέσαμε ότι γνωρίζουμε το μακρινό χρονικό σημείο τ το οποίο μας υπαγορεύει ποια άτομα νοσούν και ποια όχι. Είναι αναμενόμενο πως τα αποτελέσματα του διαγνωστικού ελέγχου θα διαφέρουν στις δύο ομάδες (υγιών και ασθενών). Από το χρονικό σημείο τ και μετά οι μετρήσεις του διαγνωστικού ελέγχου αλλάζουν «μοτίβο». Θα αναφερόμαστε στο τ σαν σημείο μεταβολής. Στην απλή

4 περίπτωση χωρίς συμμεταβλητές υποθέτουμε δύο απλά γενικευμένα γραμμικά μοντέλα οντέλο Ι, αν t Ε(Y t )= οντέλο ΙΙ, αν t Τότε κάτω από την υπόθεση της συνέχειας στο τ είναι δυνατή η εκτίμηση του σημείου μεταβολής τ. Στην περίπτωση που δεν έχουμε συνέχεια, δεν είναι δυνατή η εκτίμηση του σημείου μεταβολής και το μόνο που μπορούμε να κάνουμε είναι να μετρήσουμε πόσα άτομα εμπίπτουν σε κάθε περίπτωση (Seber & Wld, 989). Αλγόριθμο για την εκτίμηση ενός σημείου μεταβολής που αφορά σε δύο κανονικά γραμμικά μοντέλα με την παρουσία συμμεταβλητών είχε προτείνει ο Ηudson (966). Ο αλγόριθμος αυτός γενικεύθηκε για την εκτίμηση ενός σημείου μεταβολής και στην περίπτωση γενικευμένων γραμμικών μοντέλων από τον Kuchenhoff (997). 3.. ΕΚΤΙΜΗΣΗ ΤΟΥ ΣΗΜΕΙΟΥ ΜΕΤΑΒΟΛΗΣ ΓΙΑ ΔΥΟ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Έστω ότι έχουμε n, n n άτομα που ανήκουν αντίστοιχα στα γραμμικά μοντέλα που είναι συνεχή στο. Y Y T, T, a Ta a T, n T,,, n, T, n T, n T, n, n, n, n με ~N(,), a [ a a], [ ]. Έτσι η πιθανοφάνεια των δεδομένων θα είναι n n fy ( y ; a, ) fy ( y ;, ) n, και πρέπει να μεγιστοποιηθεί κάτω από τον περιορισμό aˆ aˆ ˆ ˆ. Σαρώνοντας για όλα τα πιθανά μπορούμε να πάρουμε το γράφημα της profle πιθανοφάνειας. Ωστόσο θα ήταν προτιμότερη η χρήση κάποιου ακριβούς αλγορίθμου ,

5 Ο αλγόριθμος που πρότεινε ο Hudson τo 966 βρίσκει τις θέσεις στις οποίες βρίσκονται όλα τα πιθανά μέγιστα της profle πιθανοφάνειας και έπειτα επιλέγεται η θέση στην οποία επιτυγχάνεται το ολικό μέγιστο. Πιθανό μέγιστο έχουμε σε όλα τα σημεία στα οποία έχουμε δεδομένα (x ), καθώς και στα σημεία εκείνα στα οποία οι εκτιμημένες ευθείες παλινδρόμησης τέμνονται, αρκεί αυτή τους η τομή να συμβαίνει στο ( x x ). Αν η τομή των εκτιμημένων ευθειών παλινδρόμησης συμβαίνει στο n n x n, x n, ( ) τότε έχουμε τοπικό μέγιστο και υποψήφιο ολικό μέγιστο της profle ˆ πιθανοφάνειας στο ( ) /( ). Έτσι για όλες τις πιθανές τιμές που μπορεί να πάρει το n ( n =,3,...n-) βρίσκουμε πεπερασμένο πλήθος υποψήφιων μεγίστων και κατά συνέπεια το ολικό μέγιστο της profle πιθανοφάνειας που αντιστοιχεί στην εκτίμηση του ˆ. Στην περίπτωση των δίτιμων δεδομένων η γενίκευση είναι άμεση. Κάνουμε την ίδια διαδικασία προσαρμόζοντας κατάλληλα γενικευμένα γραμμικά μοντέλα αντί για γραμμικά για κάθε πιθανή τιμή του. Ωστόσο χρειάζεται προσοχή κατά την εύρεση των πιθανών τιμών που μπορεί να πάρει το a,. 4. ΠΡΟΣΟΜΟΙΩΣΕΙΣ τ γνωστό n n για να είναι δυνατή η εύρεση των Αρχικά προσομοιώσαμε δεδομένα και εκτιμήσαμε τις παραμέτρους του ψ ως εξής: Προσομοιώσαμε τη συμμεταβλητή Ζ από την U(,) και τους χρόνους επιβίωσης Τ από το μοντέλο των ανάλογων κινδύνων του Cox με συντελεστή.5. Για την αναφορική συνάρτηση κινδύνου χρησιμοποιήσαμε μια Webull(,) με πιθανότητα.3 και μια Webull(,) με πιθανότητα.7. Η μεταβλητή λογοκρισίας είναι Webull(,.5) με πιθανότητα.7 και με πιθανότητα.3. Ορίσαμε το 5. Έτσι περίπου το 7% των ασθενών λογοκρίνεται πριν τα 5 χρόνια, δηλαδή εμπίπτει στην περίπτωση του δεύτερου κλαδιού. Αυτό γίνεται για να διαπιστωθεί η διαφορά της εκτίμησης όταν λάβουμε υπόψη μας όλα τα άτομα με αυτή που δεν λαμβάνονται υπόψη άτομα που λογοκρίθηκαν πριν τα 5 χρόνια (δεύτερος κλάδος της ()). Οι μετρήσεις του διαγνωστικού ελέγχου προσομοιώθηκαν για τους ασθενείς από το μοντέλο h ( Y ) (/ ) T Z, (4) με από την τυπική κανονική κατανομή, και h ( y) 3log( y ). Για τους υγιείς από c ( Y ) Z, (5)

6 με τυπική κανονική και c ( y) log( y ). Για τη δημιουργία δίτιμων δεδομένων του διαγνωστικού ελέγχου θέσαμε ως σημείο απόφασης το w=.77. Έτσι Υ>.77 σημαίνει θετικό αποτέλεσμα. Βάσει των παραπάνω οι πραγματικές τιμές των παραμέτρων a,, b, c, h είναι αντίστοιχα {.5,,,.477, -.784}. Για επαναλήψεις με δείγμα n=4 άτομα, πήραμε τα ακόλουθα αποτελέσματα για τις δύο μεθόδους (με και χωρίς τον δεύτερο κλάδο στην ()). Οι εκτιμήσεις των δύο μεθόδων έγιναν με το ίδιο δείγμα σε κάθε επανάληψη. Πίνακας. Εκτίμηση παραμέτρων αν λάβουμε υπόψη όλα τα άτομα, δείγμα n=4, σετ δεδομένων. Παράμετροι Εκτίμηση Μεροληψία Διακύμανση MSE a b c h Πίνακας. Εκτίμηση παραμέτρων αν δε λάβουμε υπόψη τα άτομα που λογοκρίθηκαν πριν το, δείγμα n=4, σετ δεδομένων. Παράμετροι Εκτίμηση Μεροληψία Διακύμανση MSE a b c h Παρατηρούμε ότι παρόλο που δεν λαμβάνεται υπόψη το 7% του δείγματος (πίνακας ) τα αποτελέσματα στις εκτιμήσεις δε δείχνουν ότι κερδίζουμε αρκετά ως προς την εκτίμηση των παραμέτρων όταν χρησιμοποιούμε όλα τα άτομα στην ανάλυση. Πολλαπλές μετρήσεις, τ γνωστό Προχωράμε στην περίπτωση που είναι δυνατόν να μετρήσουμε δύο φορές τον ίδιο ασθενή (Ca et.al., 6). Συμβολίζουμε τη χρονική στιγμή που μετράμε τον -οστό ασθενή με s k, όπου k=, ανάλογα με το αν αναφερόμαστε στην πρώτη ή δεύτερη μέτρηση αντίστοιχα. Έτσι τα μοντέλα που θα χρησιμοποιηθούν τώρα είναι h( Y ) (/ )( T s ) (3/ ) Z, k k k

7 c( Y k ) (3/ ) Z k,. με k ~ N,.. Επίσης αλλάξαμε τη μεταβλητή της λογοκρισίας ώστε να είναι Webull(,.5) με πιθανότητα.3 και με πιθανότητα.7. Έτσι τώρα οι ασθενείς που δεν λογοκρίνονται πριν τα 5 χρόνια είναι περίπου το 7% του δείγματος. Αυτοί είναι και οι ασθενείς που χρησιμοποιούνται για την εκτίμηση. Επίσης στην ανάλυση δεν συμπεριλαμβάνονται ασθενείς που η δεύτερη μέτρηση έπεται του χρόνου θανάτου τους, που είναι περίπου το %. Προσομοιώσαμε τη χρονική στιγμή της δεύτερης μέτρησης από την ομοιόμορφη κατανομή στο διάστημα (.5,.5). Τα αποτελέσματα της προσομοίωσης φαίνονται στον παρακάτω πίνακα, αφορούν αρχικό δείγμα n=4 και σετ δεδομένων. Τα αποτελέσματα αφορούν στα ίδια σετ προσομοιωμένων δεδομένων έτσι ώστε η σύγκριση να είναι άμεση. Πίνακας 3. Εκτίμηση παραμέτρων για μια και δύο μετρήσεις, περίπου το 8% των ασθενών που λογοκρίνονται πριν τα 5 χρόνια όπως και ασθενείς που η δεύτερη μέτρηση έπεται του θανάτου δε λαμβάνονται υπόψη, αρχικό δείγμα n=4, επαναλήψεις. K= K= Εκτίμηση Μεροληψία MSE Εκτίμηση Μεροληψία MSE a b c h τ άγνωστο, χωρίς λογοκρισία Τα μοντέλα (4), (5) είναι ασυνεχή στο τ=5 και έτσι δεν είναι δυνατή η εκτίμηση του τ. Για αυτό θεωρούμε τα ακόλουθα συνεχή (στο τ = 5) μοντέλα Για τους ασθενείς h ( Y ) (/ ) T (3/ ) Z, με ~ (,) και h ( y) 3log( y ), και για τους υγιείς c ( Y ) (3/ ) Z, με ~ (,) και c ( y) 3log( y ) 3/

8 Προσομοιώσαμε σετ δεδομένων για δείγμα n=4 με σκοπό την εκτίμηση του σημείου μεταβολής, υποθέτοντας ότι είναι δυνατόν να παρατηρηθούν όλοι οι ακριβείς χρόνοι θανάτων. Η εκτίμηση μας για το σημείο μεταβολής ήταν , με μεροληψία και ΜΤΣ -.4 και.74 αντίστοιχα. Γράφημα.: Ιστόγραμμα για το τ, δείγμα n=, σετ δεδομένων. Μέσος=4.9486, Τυπική απόκλιση= frequency tau Πίνακας 4. Εκτίμηση των παραμέτρων αν γίνεται χρήση του τ=5 ή χρήση της εκτίμησης του τ για την εκτίμηση των παραμέτρων. =5 (γνωστό) ˆ Εκτίμηση Μεροληψία MSE Εκτίμηση Μεροληψία MSE a b c h ΣΥΝΟΨΗ Στην παρούσα εργασία μελετάται ένα ρεαλιστικό σενάριο εξάρτησης των αποτελεσμάτων του διαγνωστικού ελέγχου από το χρόνο. Υπάρχουν περιπτώσεις ασθενειών που η αξιολόγηση των διαγνωστικών ελέγχων γίνεται χρησιμοποιώντας για gold standard διαδικασία την επιβίωση ή όχι του ατόμου πέραν κάποιου γνωστού χρονικού σημείου. Κάτω από την προϋπόθεση της συνέχειας των μοντέλων, πριν και μετά αυτού του χρονικού σημείου, γίνεται η εκτίμηση του τελευταίου. Η εκτίμηση του σημείου της μεταβολής των μοντέλων εμπεριέχει μεγάλο ενδιαφέρον τόσο για τον φαρμακευτικό τομέα όσο και γενικότερα για βιολογικά-ιατρικά δεδομένα ιδιαίτερα αν μπορεί να ληφθεί υπόψη και η λογοκρισία. Τι γίνεται όμως με άγνωστο τ και με λογοκρισία;

9 ΕΥΧΑΡΙΣΤΙΕΣ Οι συγγραφείς θέλουν να ευχαριστήσουν τον ανώνυμο κριτή για τα χρήσιμα σχόλια. ABSTRACT The use of bomarkers to predct future health events s commonplace. The evaluaton of a bomarker requres the true status of an ndvdual whch s provded by the gold standard procedure. It s reasonable to assume that the marker values of dseased ndvduals may be a functon of tme. Thus, we consder senstvty as a functon of the tme between the measurement and the event, whle specfcty s determned by the absence of the event n a large nterval [, τ]. Usng generalzed lnear models, we estmate the parameters va maxmzaton of the approxmate lkelhood functon. We smultaneously study the estmaton of τ. The estmatons of the parameters are evaluated through smulatons. ACKNOWLEGEMENTS The authors would lke to thank the anonymous referee for the valuable comments. ΑΝΑΦΟΡΕΣ Ca, T., Pepe, M.S., Lumley, T., Zheng, Y., Jenny, N.S. (6). The senstvty and specfcty of markers for event tmes. Bostatstcs, 7, Cheng, P.E., (989). Nonparametrc of survval curve under dependent censorng. Journal of Statstcal Plannng and Inference. 3, 8-9. Hnkley, V.. (969). Inference about the ntersecton n two phase regresson. Bometrka, 56, Hnkley, V.. (97). Inference n two phase regresson. Journal of the Amercan Statstcal Assocaton, 66, Hudson, J.,. (966). Fttng segmented curves whose jon ponts have to be estmated. Journal of the Amercan Statstcal Assocaton, 6, Küchenhoff, H. (997). An exact algorthm for estmatng breakponts n segmented generalzed lnear models. Computatonal Statstcs,, Pepho, H.P., Ogutu, J.O. (3). Inference for the break pont n segmented regresson wth applcaton to longtudnal data. Bometrcal Journal, 45, Seber, G.A.F., Wld, C.J. (989). Nonlnear Regresson. John Wley & Sons, New York. Van t, Veer,L., a, H. et al. (). Gene expresson proflng predcts clncal outcome of breast cancer. Nature, 45, Wlson, P., Agostno, R., Levy,., Belanger, A., Slbershatz,H., Kannel,W. (998). Predcton of coronary heart dsease usng rsk factor categores. Crculaton 97,

10

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Παραμέτρων

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Τομέας Μαθηματικών, Τηλέφωνο: (210) 772-1702, Φαξ: (210) 772-1775.

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 13 Μαρτίου /31

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 13 Μαρτίου /31 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 13 Μαρτίου 2017 1/31 Βασικοί ορισμοί. Ορισμός 1: Τυχαίο δείγμα. Τυχαίο δείγμα μεγέθους n από

Διαβάστε περισσότερα

ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ

ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ Ιωάννα Τζουλάκη Κώστας Τσιλίδης Ιωαννίδης: κεφάλαιο 2 Guyatt: κεφάλαιο 18 ΕΠΙςΤΗΜΟΝΙΚΗ ΙΑΤΡΙΚΗ Επιστήμη (θεωρία) Πράξη (φροντίδα υγείας) Γνωστικό μέρος Αιτιό-γνωση Διά-γνωση Πρό-γνωση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΣΥΓΚΡΙΣΗΣ ΥΠΟΚΕΙΜΕΝΩΝ ΚΑΜΠΥΛΩΝ ΕΠΙΒΙΩΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΜΕ ΤΥΧΑΙΑ ΑΠΟΚΟΠΗ

ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΣΥΓΚΡΙΣΗΣ ΥΠΟΚΕΙΜΕΝΩΝ ΚΑΜΠΥΛΩΝ ΕΠΙΒΙΩΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΜΕ ΤΥΧΑΙΑ ΑΠΟΚΟΠΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.7-80 ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΣΥΓΚΡΙΣΗΣ ΥΠΟΚΕΙΜΕΝΩΝ ΚΑΜΠΥΛΩΝ ΕΠΙΒΙΩΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΜΕ ΤΥΧΑΙΑ ΑΠΟΚΟΠΗ Αγγελική Αραπάκη,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ F3W.PR09 Όνομα: Επίθετο: Ημερομηνία: 7/0/07 Πρωί: Απόγευμα: Θεματική ενότητα: Αναλογιστικά Πρότυπα Επιβίωσης Ερώτηση Εάν η τυχαία μεταβλητή Τ έχει συνάρτηση πυκνότητας f ep 3 3 να υπολογίσετε το 90 ο εκατοστημόριο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ

ΓΕΝΙΚΕΥΜΕΝΑ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΓΕΝΙΚΕΥΜΕΝΑ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Άσκηση. Να απαντήσετε στα ερωτήματα -7 της άσκησης χρησιμοποιώντας c-log-log lnk (χρησιμοποιήστε το πολύ 4 επαναλήψεις της επαναληπτικής μεθόδου. Ποιο είναι το καλύτερο μοντέλο

Διαβάστε περισσότερα

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n) ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) Θέμα ο (Παρ..3.4, Παρ..4.3, Παρ..4.8.) Εάν = ( ) τυχαίο δείγμα από την ομοιόμορφη ( 0, ) X X,, X. Δείξτε ότι η στατιστική συνάρτηση T = X = το δειγματικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ... ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Τυχαίο δείγμα και στατιστική συνάρτηση Χ={x 1, x,, x n } τυχαίο δείγμα μεγέθους n προερχόμενο από μια (παραμετρική) κατανομή με σ.π.π. f(x;θ).

Διαβάστε περισσότερα

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη Σημειακή εκτίμηση και εκτίμηση με διάστημα 11 η Διάλεξη Εκτιμήτρια Κάθε στατιστική συνάρτηση που χρησιμοποιείται για την εκτίμηση μιας παραμέτρου ενός πληθυσμού (π.χ. ο δειγματικός μέσος) Σημειακή εκτίμηση

Διαβάστε περισσότερα

ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης

ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης Από την περασμένη φορά... Πληθυσμός (population): ένα σύνολο ατόμων Παράμετρος (parameter): χαρακτηριστικό του

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

X = = 81 9 = 9

X = = 81 9 = 9 Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης

10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης 10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης Διαστήματα εμπιστοσύνης για τον μέσο ενός πληθυσμού (Μικρά δείγματα) Άσκηση 10.7.1: Ο επόμενος πίνακας τιμών δείχνει την αύξηση σε ώρες ύπνου που είχαν

Διαβάστε περισσότερα

Στατιστική. Εκτιμητική

Στατιστική. Εκτιμητική Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III 0 TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III Νοέμβριος Eστω,,, τυχαίο δείγμα από κατανομή f( x; ), όπου συμβολίζει άγνωστη παράμετρο (a) Να ορισθεί η έννοια του επαρκούς στατιστικού

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 5 ου κεφαλαίου Ελεγχοσυναρτήσεις για τις Παραμέτρους της Κανονικής Κατανομής Σταύρος Χατζόπουλος 08/05/207, 5/05/207 Εισαγωγή Στις παραγράφους που ακολουθούν παρουσιάζονται

Διαβάστε περισσότερα

Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο:

Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο: Ένας Πληθυσμός, μεγάλο δείγμα, άγνωστη κατανομή Έλεγχος για την μέση τιμή, με άγνωστη διασπορά Δίνονται ομαδοποιημένες οι ημερήσιες καταναλώσεις ηλεκτρικής ενέργειας (σε 100-άδες κιλοβατώρες) μιας χημικής

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0 ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης

Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Εκτιμητική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης

Διαστήματα Εμπιστοσύνης Διαστήματα Εμπιστοσύνης 00 % Διαστήματα Εμπιστοσύνης για τη μέση τιμή ενός πληθυσμού Κατανομή Διασπορά Μέγεθος δείγματος Διάστημα Εμπιστοσύνης Κανονική Γνωστή Οποιοδήποτε Οποιαδήποτε Γνωστή Μεγάλο 30 Z

Διαβάστε περισσότερα

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών να αντιληφθούν τη σημασία της εν λόγω κατανομής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

Διάστημα εμπιστοσύνης της μέσης τιμής

Διάστημα εμπιστοσύνης της μέσης τιμής Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΙΓΑΙΟΥ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΙΓΑΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ «ΛΕΙΑΝΣΗ ΕΠΙΦΑΝΕΙΩΝ ROC ΜΕ ΧΡΗΣΗ ΠΥΡΗΝΩΝ» ΕΙΣΗΓΗΤΡΙΑ: ΛΙΑΠΑΤΗ ΑΦΡΟΔΙΤΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 5 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες

Διαβάστε περισσότερα

Έλεγχος των Phillips Perron

Έλεγχος των Phillips Perron ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΦΡΑΓΜΑΤΩΝ ΑΞΙΟΠΙΣΤΙΑΣ *

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΦΡΑΓΜΑΤΩΝ ΑΞΙΟΠΙΣΤΙΑΣ * Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 259-266 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΦΡΑΓΜΑΤΩΝ ΑΞΙΟΠΙΣΤΙΑΣ Φ. Μηλιένος, Μ. Κούτρας Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης,

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 7.1 Πολυσυγγραμμικότητα: Εισαγωγή Παραβίαση υπόθεσης Οι ανεξάρτητες μεταβλητές δεν πρέπει

Διαβάστε περισσότερα

Ανάλυση επιβίωσης (survival analysis)

Ανάλυση επιβίωσης (survival analysis) Hippokratia 2014 Ανάλυση επιβίωσης (survival analysis) Κων/νος Α. Τουλής, MD MRes MSc PhD Ενδοκρινολόγος, 424 ΓΣΝΕ Τι είναι η ανάλυση επιβίωσης; Η ανάλυση επιβίωσης (survival analysis) είναι μια ομάδα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 7-8 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

ΙΜΕΤΑΒΛΗΤΑ ΜΟΝΤΕΛΑ ΓΙΑ ΙΑΧΡΟΝΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΕΙΚΤΩΝ ΤΗΣ HIV-1 ΛΟΙΜΩΞΗΣ, ΠΑΡΟΥΣΙΑ ΕΝΟΣ ΜΗ-ΑΓΝΟΗΣΙΜΟΥ ΜΗΧΑΝΙΣΜΟΥ ΠΑΡΑΓΩΓΗΣ ΕΛΛΕΙΠΟΥΣΩΝ ΜΕΤΡΗΣΕΩΝ

ΙΜΕΤΑΒΛΗΤΑ ΜΟΝΤΕΛΑ ΓΙΑ ΙΑΧΡΟΝΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΕΙΚΤΩΝ ΤΗΣ HIV-1 ΛΟΙΜΩΞΗΣ, ΠΑΡΟΥΣΙΑ ΕΝΟΣ ΜΗ-ΑΓΝΟΗΣΙΜΟΥ ΜΗΧΑΝΙΣΜΟΥ ΠΑΡΑΓΩΓΗΣ ΕΛΛΕΙΠΟΥΣΩΝ ΜΕΤΡΗΣΕΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 17 ου Πανελληνίου Συνεδρίου Στατιστικής (2004), σελ. 349-357 ΙΜΕΤΑΒΛΗΤΑ ΜΟΝΤΕΛΑ ΓΙΑ ΙΑΧΡΟΝΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΕΙΚΤΩΝ ΤΗΣ HIV-1 ΛΟΙΜΩΞΗΣ, ΠΑΡΟΥΣΙΑ ΕΝΟΣ ΜΗ-ΑΓΝΟΗΣΙΜΟΥ ΜΗΧΑΝΙΣΜΟΥ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #3: Εκτιμητική Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Συσχέτιση (Correlation) - Copulas Σημασία της μέτρησης της συσχέτισης Έστω μία εταιρεία που είναι εκτεθειμένη σε δύο μεταβλητές της αγοράς. Πιθανή αύξηση των 2 μεταβλητών

Διαβάστε περισσότερα