AdS black disk model for small-x DIS

Σχετικά έγγραφα
NLO BFKL and anomalous dimensions of light-ray operators

Space-Time Symmetries

Higher Derivative Gravity Theories

Three coupled amplitudes for the πη, K K and πη channels without data

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Graded Refractive-Index

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Higher spin gauge theories and their CFT duals

Hadronic Tau Decays at BaBar

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

6.4 Superposition of Linear Plane Progressive Waves

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Math221: HW# 1 solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 21: Scattering and FGR

Dark matter from Dark Energy-Baryonic Matter Couplings

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Second Order RLC Filters

Areas and Lengths in Polar Coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

Approximation of distance between locations on earth given by latitude and longitude

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Large β 0 corrections to the energy levels and wave function at N 3 LO

Constitutive Relations in Chiral Media

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

On the Galois Group of Linear Difference-Differential Equations

ECE 468: Digital Image Processing. Lecture 8

Example Sheet 3 Solutions

F19MC2 Solutions 9 Complex Analysis

Analytical Expression for Hessian

Statistical Inference I Locally most powerful tests

Srednicki Chapter 55

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Partial Differential Equations in Biology The boundary element method. March 26, 2013

is like multiplying by the conversion factor of. Dividing by 2π gives you the

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Uniform Convergence of Fourier Series Michael Taylor

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Areas and Lengths in Polar Coordinates

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

CONSULTING Engineering Calculation Sheet

CRASH COURSE IN PRECALCULUS

Duality Symmetry in High Energy Scattering

Answer sheet: Third Midterm for Math 2339

Eulerian Simulation of Large Deformations

Oscillatory Gap Damping

Finite Field Problems: Solutions

Instruction Execution Times

4.4 Superposition of Linear Plane Progressive Waves

The Simply Typed Lambda Calculus

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

PARTIAL NOTES for 6.1 Trigonometric Identities

Matrices and Determinants

Derivation of Optical-Bloch Equations

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Durbin-Levinson recursive method

CE 530 Molecular Simulation

Solutions to Exercise Sheet 5

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Computing the Macdonald function for complex orders

1 String with massive end-points

Parametrized Surfaces

Lifting Entry (continued)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Solar Neutrinos: Fluxes

Galatia SIL Keyboard Information

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Concrete Mathematics Exercises from 30 September 2016

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Α Ρ Ι Θ Μ Ο Σ : 6.913

Quantum Electrodynamics

Non-Gaussianity from Lifshitz Scalar

Tridiagonal matrices. Gérard MEURANT. October, 2008

Section 8.3 Trigonometric Equations

D Alembert s Solution to the Wave Equation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Local Approximation with Kernels

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Reminders: linear functions

The Pohozaev identity for the fractional Laplacian

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Transcript:

AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March 2010

Motivation QCD is approximately conformal at high energies, for very small probes with r probe Λ QCD 1 Regge limit of high center of mass energy with other kinematic invariants fixed corresponds to low Bjorken - x in DIS.

Motivation QCD is approximately conformal at high energies, for very small probes with r probe Λ QCD 1 Regge limit of high center of mass energy with other kinematic invariants fixed corresponds to low Bjorken - x in DIS. Use conformal symmetry and AdS/CFT to make general predictions for conformal limit of DIS in QCD (weak coupling).

Deep Inelastic Scattering e γ e Q 2 = q 2 Q>1 Gev α s small X P

Deep Inelastic Scattering e γ e Q 2 = q 2 Q>1 Gev α s small X P Optical theorem γ 2 γ γ s = (q + P ) 2 Q2 x X P X = Im P P Regge limit of large s small x

Hadronic tensor structure functions F i ( x,q 2 ) = 1 2π Im Π i T ab = i d 4 ye iq y P T { j a (y 1 ) j b (y 3 ) } P (η ab qa q b ) (p a + qa )(p b + qb ) T ab = q 2 Π 1 (x,q 2 ) 2x Q 2 2x 2x Π 2 (x,q 2 )

Hadronic tensor structure functions F i ( x,q 2 ) = 1 2π Im Π i T ab = i d 4 ye iq y P T { j a (y 1 ) j b (y 3 ) } P (η ab qa q b ) (p a + qa )(p b + qb ) T ab = q 2 Π 1 (x,q 2 ) 2x Q 2 2x 2x Π 2 (x,q 2 ) Simulate proton with scalar operator O of dimension and off-shellness p 2 = M 2 Λ 2 QCD ( kj ) (2π) d δ T ab (k j )= j a (k 1 ) O(k 2 ) j b (k 3 ) O(k 4 ) j a with dimension ξ =3

Regge limit in CFTs F.T. T ab (k i ) A ab (y i ) C.T. B mn (p, p) A mn (x, x) F.T.

Regge limit in CFTs F.T. Amplitude depends on 2 cross ratios T ab (k i ) A ab (y i ) B mn = B mn (S, ) C.T. S =4 p p B mn (p, p) F.T. A mn (x, x) H 3 p p + cosh = p p p p Regge limit is S large, fixed

Regge limit in CFTs F.T. Amplitude depends on 2 cross ratios T ab (k i ) A ab (y i ) B mn = B mn (S, ) C.T. S =4 p p B mn (p, p) F.T. A mn (x, x) H 3 p p + cosh = p p p p Regge limit is S large, fixed Current conservation p m B mn =0 B i j matrix on H 3 polarization space

Regge limit in CFTs F.T. Amplitude depends on 2 cross ratios T ab (k i ) A ab (y i ) B mn = B mn (S, ) C.T. S =4 p p B mn (p, p) F.T. A mn (x, x) H 3 p p + cosh = p p p p Regge limit is S large, fixed Current conservation p m B mn =0 B i j matrix on H 3 polarization space ( )] Regge theory B i j 2πi dν S j(ν) 1 [β 1 (ν) δ i j + β 4 (ν) i j 1 3 δi j Ω iν ()

Regge limit in CFTs F.T. Amplitude depends on 2 cross ratios T ab (k i ) A ab (y i ) B mn = B mn (S, )? C.T. S =4 p p B mn (p, p) F.T. A mn (x, x) H 3 p p + cosh = p p p p Regge limit is S large, fixed Current conservation p m B mn =0 B i j matrix on H 3 polarization space ( )] Regge theory B i j 2πi dν S j(ν) 1 [β 1 (ν) δ i j + β 4 (ν) i j 1 3 δi j Ω iν ()

AdS/CFT in Regge limit T ab (k j ) 2is d 2 l e iq l dr r 3 d r r 3 (ψ in) a i(r)(ψ out ) bj (r) φ( r) φ ( r) B i j(s, )

[1 e iδ(s,l ) ] ab AdS/CFT in Regge limit T ab (k j ) 2is d 2 l e iq l dr r 3 d r r 3 (ψ in) a i(r)(ψ out ) bj (r) φ( r) φ ( r) B i j(s, )

[1 e iδ(s,l ) ] ab AdS/CFT in Regge limit T ab (k j ) 2is d 2 l e iq l dr r 3 d r r 3 (ψ in) a i(r)(ψ out ) bj (r) φ( r) φ ( r) B i j(s, ) r l S = r rs, AdS energy squared r R 2 H 3 cosh = r2 + r 2 + l 2 2r r, impact parameter

[1 e iδ(s,l ) ] ab AdS/CFT in Regge limit T ab (k j ) 2is r d 2 l e iq l dr r 3 d r r 3 (ψ in) a i(r)(ψ out ) bj (r) φ( r) φ ( r) B i j(s, ) AdS gauge field wave function l S = r rs, AdS energy squared r R 2 H 3 cosh = r2 + r 2 + l 2 2r r, impact parameter

AdS/CFT in Regge limit T ab (k j ) 2is r d 2 l e iq l dr r 3 d r AdS gauge field wave function AdS scalar wave function r 3 (ψ in) a i(r)(ψ out ) bj (r) φ( r) φ ( r) B i j(s, ) [1 e iδ(s,l ) ] ab l S = r rs, AdS energy squared r R 2 H 3 cosh = r2 + r 2 + l 2 2r r, impact parameter

AdS/CFT in Regge limit T ab (k j ) 2is r d 2 l e iq l dr r 3 d r AdS gauge field wave function AdS scalar wave function r 3 (ψ in) a i(r)(ψ out ) bj (r) φ( r) φ ( r) B i j(s, ) [1 e iδ(s,l ) ] ab l S = r rs, AdS energy squared r R 2 H 3 cosh = r2 + r 2 + l 2 2r r, impact parameter CFT impact parameter representation (AdS phase shift)

AdS/CFT in Regge limit T ab (k j ) 2is r d 2 l e iq l dr r 3 d r AdS gauge field wave function AdS scalar wave function r 3 (ψ in) a i(r)(ψ out ) bj (r) φ( r) φ ( r) B i j(s, ) [1 e iδ(s,l ) ] ab l S = r rs, AdS energy squared r R 2 H 3 cosh = r2 + r 2 + l 2 2r r, impact parameter CFT impact parameter representation (AdS phase shift) Graviton/Pomeron trajectory [Brower, Polchinski, Strassler, Tan 06] j = j(ν, ᾱ s ), β = β(ν, ᾱ s )

AdS black disk model for small-x DIS T ab (k j ) = 2is d 2 l e iq l [ 1 e iδ(s,l ) ] ab

AdS black disk model for small-x DIS T ab (k j ) = 2is d 2 l e iq l [ 1 e iδ(s,l ) ] ab r [ ] 1 e iδ(s,l ab ) dr d r = r 3 r 3 Ψab j (r) Φ( r) i [1 e iχ(s,)] i j l R 2 H 3 r S = r rs cosh = r2 + r 2 + l 2 2r r

AdS black disk model for small-x DIS T ab (k j ) = 2is d 2 l e iq l [ 1 e iδ(s,l ) ] ab r [ ] 1 e iδ(s,l ab ) dr d r = r 3 r 3 Ψab j (r) Φ( r) i [1 e iχ(s,)] i j l R 2 H 3 r Ψ ab j i (r) =(ψ in ) a i(r)(ψ out ) bj (r) non-normalizable, localized around 0 < r < 1/Q S = r rs cosh = r2 + r 2 + l 2 2r r

AdS black disk model for small-x DIS T ab (k j ) = 2is d 2 l e iq l [ 1 e iδ(s,l ) ] ab r [ ] 1 e iδ(s,l ab ) dr d r = r 3 r 3 Ψab j (r) Φ( r) i [1 e iχ(s,)] i j l R 2 H 3 r Ψ ab j i (r) =(ψ in ) a i(r)(ψ out ) bj (r) non-normalizable, localized around 0 < r < 1/Q S = r rs cosh = r2 + r 2 + l 2 2r r Φ( r) = φ( r) 2 normalizable, localized around r 1/M

AdS black disk model for small-x DIS T ab (k j ) = 2is d 2 l e iq l [ 1 e iδ(s,l ) ] ab r [ ] 1 e iδ(s,l ab ) dr d r = r 3 r 3 Ψab j (r) Φ( r) i [1 e iχ(s,)] i j l R 2 H 3 r Ψ ab j i (r) =(ψ in ) a i(r)(ψ out ) bj (r) non-normalizable, localized around 0 < r < 1/Q S = r rs cosh = r2 + r 2 + l 2 2r r Φ( r) = φ( r) 2 normalizable, localized around r 1/M S Q x ln Q M

AdS black disk model for small-x DIS T ab (k j ) = 2is d 2 l e iq l [ 1 e iδ(s,l ) ] ab r [ ] 1 e iδ(s,l ab ) dr d r = r 3 r 3 Ψab j (r) Φ( r) i [1 e iχ(s,)] i j l R 2 H 3 r Ψ ab j i (r) =(ψ in ) a i(r)(ψ out ) bj (r) non-normalizable, localized around 0 < r < 1/Q S = r rs cosh = r2 + r 2 + l 2 2r r Φ( r) = φ( r) 2 normalizable, localized around r 1/M S Q x ln Q M At zero momentum transfer d 2 l 2πr r ln r r d sinh

At weak coupling T ab =4πs dr d r r 3 r 3 Ψab j (r) Φ( r) i ln r r d sinh χ i j(s, )

At weak coupling T ab =4πs dr d r r 3 r 3 Ψab j (r) Φ( r) i ln r r d sinh χ i j(s, ) Can estimate growth with linear pomeron exchange. Saddle point gives χ i j 1 N 2 dνβ(ν) e (j(ν) 1) ln S (1+iν) j (ν) ln S = i

At weak coupling T ab =4πs dr d r r 3 r 3 Ψab j (r) Φ( r) i ln r r d sinh χ i j(s, ) Can estimate growth with linear pomeron exchange. Saddle point gives χ i j 1 N 2 dνβ(ν) e (j(ν) 1) ln S (1+iν) j (ν) ln S = i Non-linear effects become important for Im χ i j(s, ) 1 This happens when phase in saddle vanishes ln S S Q x s (S) ω ln S ln Q M s (S) ω ln S B B

At weak coupling T ab =4πs dr d r r 3 r 3 Ψab j (r) Φ( r) i ln r r d sinh χ i j(s, ) Can estimate growth with linear pomeron exchange. Saddle point gives χ i j 1 N 2 dνβ(ν) e (j(ν) 1) ln S (1+iν) j (ν) ln S = i Non-linear effects become important for Im χ i j(s, ) 1 This happens when phase in saddle vanishes ln S S Q x s (S) ω ln S ln Q M s (S) ω ln S inear pomeron gives ω = ij (ν s ) = 2.44ᾱ s B B

At weak coupling T ab =4πs dr d r r 3 r 3 Ψab j (r) Φ( r) i ln r r d sinh χ i j(s, ) Can estimate growth with linear pomeron exchange. Saddle point gives χ i j 1 N 2 dνβ(ν) e (j(ν) 1) ln S (1+iν) j (ν) ln S = i Non-linear effects become important for Im χ i j(s, ) 1 This happens when phase in saddle vanishes ln S S Q x s (S) ω ln S ln Q M s (S) ω ln S inear pomeron gives ω = ij (ν s ) = 2.44ᾱ s From DIS geometric scaling ω 0.14 B B

AdS black disk Im χ i j(s, ) 1 Black disk in AdS (or in conformal QCD) [1 e iχ(s,)] i j = Θ ( s (S) ) δ i j

AdS black disk Im χ i j(s, ) 1 Black disk in AdS (or in conformal QCD) [1 e iχ(s,)] i j = Θ ( s (S) ) δ i j T ab 4πis dr d r r 2 r 2 Ψab j (r) Φ( r) i s ln r r d sinh δ i j Black disk ln S S Q x 2πis dr r 2 d r r 2 Ψab i i (r) Φ( r) [ (sr r) ω +(sr r) ω r r r r ] B B

AdS black disk Im χ i j(s, ) 1 Black disk in AdS (or in conformal QCD) [1 e iχ(s,)] i j = Θ ( s (S) ) δ i j T ab 4πis dr d r r 2 r 2 Ψab j (r) Φ( r) i s ln r r d sinh δ i j Black disk ln S S Q x 2πis dr r 2 d r r 2 Ψab i i (r) Φ( r) [ (sr r) ω +(sr r) ω r r r r ] dominant for low x B B

AdS black disk Im χ i j(s, ) 1 Black disk in AdS (or in conformal QCD) [1 e iχ(s,)] i j = Θ ( s (S) ) δ i j T ab 4πis dr d r r 2 r 2 Ψab j (r) Φ( r) i s ln r r d sinh δ i j Black disk ln S S Q x 2πis dr r 2 d r r 2 Ψab i i (r) Φ( r) [ (sr r) ω +(sr r) ω r r r r ] dominant for low x B B It is all AdS (or CFT) kinematics. Only dynamical information is: - on-set of black disk region - the target wave function ( integrals) r d r h(ω) Φ( r) = r 2 ω M 1+ω

Universal ratio from kinematics deep inside disk T ab 2πis 1+ω dr i Ψab r2 ω i (r) d r Φ( r) r 2 ω ln S S Q x T îĵ = δîĵ Π 1, T ++ 1 2x 2 (Π 2 2xΠ 1 ) B B

Universal ratio from kinematics deep inside disk T ab 2πis 1+ω dr i Ψab r2 ω i (r) d r Φ( r) r 2 ω ln S S Q x T îĵ = δîĵ Π 1, T ++ 1 2x 2 (Π 2 2xΠ 1 ) F 2 2xF 1 x ω (Q/M) 1+ω π 5 2 Γ 3 ( ) 3+ω Ch(ω) ( 2 ), 3Γ 4+ω 2xF 1 x ω (Q/M) 1+ω π 5 ( 2 Γ 5+ω 2 2 ) Γ ( 3+ω 2 12 Γ ( 4+ω 2 ) ( Γ 1+ω ) 2 ) Ch(ω) B B

Universal ratio from kinematics deep inside disk T ab 2πis 1+ω dr i Ψab r2 ω i (r) d r Φ( r) r 2 ω ln S S Q x T îĵ = δîĵ Π 1, T ++ 1 2x 2 (Π 2 2xΠ 1 ) F 2 2xF 1 x ω (Q/M) 1+ω π 5 2 Γ 3 ( ) 3+ω Ch(ω) ( 2 ), 3Γ 4+ω 2xF 1 x ω (Q/M) 1+ω π 5 ( 2 Γ 5+ω 2 2 ) Γ ( 3+ω 2 12 Γ ( 4+ω 2 ) ( Γ 1+ω ) 2 ) Ch(ω) Q/x GeV 10 5 10 4 10 3 B B 10 2 10 1 10-1 1 10 10 2 GeV Q

Universal ratio from kinematics deep inside disk T ab 2πis 1+ω dr i Ψab r2 ω i (r) d r Φ( r) r 2 ω ln S S Q x T îĵ = δîĵ Π 1, T ++ 1 2x 2 (Π 2 2xΠ 1 ) F 2 2xF 1 x ω (Q/M) 1+ω π 5 2 Γ 3 ( ) 3+ω Ch(ω) ( 2 ), 3Γ 4+ω 2xF 1 x ω (Q/M) 1+ω π 5 ( 2 Γ 5+ω 2 Ratio is fixed by power in 1/x 2 ) Γ ( 3+ω 2 12 Γ ( 4+ω 2 ) ( Γ 1+ω ) 2 ) Ch(ω) Q/x GeV 10 5 10 4 10 3 B B 10 2 F F 2xF 2 1 1+ω F T 2xF 1 3+ω 10 1 10-1 1 10 10 2 GeV Q

Final Comments Is deeply saturated DIS showing us a black disk in AdS (or in conformal QCD)?

Final Comments Is deeply saturated DIS showing us a black disk in AdS (or in conformal QCD)? Non-conformal extension Understand AdS unitarization

Final Comments Is deeply saturated DIS showing us a black disk in AdS (or in conformal QCD)? Non-conformal extension Understand AdS unitarization THANK YOU

ADDITIONA SIDES

Use different Poincaré patches to cover each operator P 4 P 3 P 4 P 3 x 4 x 3 x 1 x 2 P 1 P 2 P 1 P 2

Cross ratios P 4 P 3 Translations in or Special Conformal in P 1,P 3 P 2,P 4 x 1,3 x 1,3 + a, x 2,4 x 2,4 + O(a 2 ) x 4 x 3 Translations in P 2,P 4 or Special Conformal in P 1,P 3 x 1 x 2 x 1,3 x 1,3 + O(b 2 ), x 2,4 x 2,4 + b P 1 P 2 x x 1 x 3, x x 2 x 4 Invariants orentz Transformations x Λx, x Λ x Dilatations x λx, x 1 λ x σ 2 = x 2 x 2, cosh ρ = x x x x Residual transverse conformal group SO(1, 1) SO(3, 1) Regge limit σ 0 fixed ρ

j n O Single t-channel conformal partial wave gives in Regge limit j m (J, d2 + iν ) O A mn σ 1 J [ E(ρ) η mn + F (ρ) xm x n x 2 + G(ρ) xm x n x 2 + H(ρ) xm x n + x m x n x x ] Sum over spins and dimensions gives for a Regge pole j(ν) [Cornalba 07] 4 A mn 2πi dνσ 1 j(ν) α k (ν) D mn k Ω iν (ρ) k=1 Ω iν (ρ) harmonic functions on H 3 ( H3 + ν 2 +1 ) Ω iν (ρ) =0 Ω iν (ρ) = ν sin νρ 4π 2 sinh ρ D mn 1 = η mn xm x n x 2 D mn 2 = xm x n x 2 D mn 3 = x m n + x n m D mn 4 = x 2 m n +(x m n + x n m ) 1 3 (η mn xm x n x 2 ) x 2 x

Graviton/Pomeron Regge trajectory [Brower, Polchinski, Strassler, Tan 06] Trajectory depends on t Hooft coupling j = j(ν, ᾱ s ) α k = α k (ν, ᾱ s ) Strong coupling (N=4 graviton trajectory) Weak coupling (BFK Pomeron trajectory) ) )) j 2 4+ν2 4π ᾱ s j 1 + ᾱ s (2Ψ(1) Ψ ( 1+iν 2 Ψ ( 1 iν 2 α k real j a j b α k imaginary j a j b From now on weak coupling O O O O

Geometric scaling F 2 /Q 2 10 [Stasto et al] 0.0001 0.001 0.01 0.1 1 10 100 1 0.1 ln S 0.01 B s ω ln S 0.001 τ B B BFK pomeron gives ω =2.44 ᾱ s ω fixed experimentally by geometric scaling to be ω =0.138 ± 0.021 [Gelis et al]

Real Data Compare with Data F 2 /Q 0.8 0.6 0.4 Y = 5.0 Y = 4.8 Y = 4.6 With 4 parameters can reproduce available data 0.2 0.8 Y = 4.4 Y = 4.2 Y = 4.0 0.6 0.4 0.2 0.8 Y = 3.8 Y = 3.6 GeV 0.6 10 5 0.4 Q/x 10 4 10 3 0.2 10 2 0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0 Q [GeV] 10 1 10-1 1 10 10 2 GeV Q