S ingula r C onfigura tion Ana lys is a nd C oo rd ina te C ontro l of Robo t

Σχετικά έγγραφα
M athem aticalm odel and A lgo rithm of In telligen t T est Paper

Bank A ssetgl iab ility Sheet w ith Em bedded Op tion s

A R, H ilbert2h uang T ran sfo rm and A R M odel

U (x, y ) = : K (x i- x k) K (x i- x k, y j- y l), 2. 1

Fo recasting Stock M arket Q uo tation s via Fuzzy N eu ral N etw o rk Based on T 2S M odel

On- l ine com puter detecting system of p ipel ine leak and its algor ithm

Con struction and D emon stration of an Index System of Know ledge Amoun t of Po sition

( , ,

BAY ES IAN INFERENCE FO R CO INTEGRATED SY STEM S

F ig. 1 Flow chart of comprehen sive design in the research of com patibil ity. E2m ail: ac. cn

A Study of the O rigin of Comp lex ity in the Science of Comp lex ity

O verlay A lgo rithm of H ierarch ical M ap s

(H ipp op hae rham noid es L. ) , ; SHB 2g , 1. 0, 2. 0, 3. 0, 4. 0, 5. 0 ml mm. : Y = X - 0.

D NA , ) SCGE DNA.

17 1 V o l. 17 N o CH IN ESE JOU RNAL O F COM PU TA T IONAL M ECHAN ICS February 2000 : A

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

, ( , (P anax qu inquef olius) ) ; L C2V P series U H PE), M Pa R E252. C18 (5 Λm, 250 mm 4. 6 mm ) ( )

China Academic Journal Electronic Publishing House. All rights reserved. O ct., 2005

; (A con itum kusnez of f ii R eichb. ),.

S im p lifie d L ine 2S ha pe M a c rom o le cula r D ynam ics M ode ling a nd S im ula tion

ZrO 2, ZrO 2. (M ) W O 3g ( 100% ) SO 4 2- W O 3 M oo 3, SO ( Zr (OH ) 4 ) ( ( 0. 1 mo l. L - 1 A gno 3 ), Zr (OH ) 4 SO (0.

TR IBOLO GY N ov, 2004 , P I2. , 120 M Pa, P I. 6 mm 7 mm 30 mm [7, 8 ] mm,. JSM 25600LV 1. 1 (EDXA ).

TR IBOLO GY N ov, T EER Coating L td, U K) M H 25 [4 ] ( [6 ] ). (SEM ),. V G %. PS2168

D ecision2m ak ing M odel Inco rpo rating R isk Behavio r under P ro ject R isk M anagem en t

(TPP)Co 1. 1 ], [ 1, 2 ] V o l. 3 N o. 4 N ov EL ECTROCH EM ISTR Y ) ) ,, Co V V. (T PP) Co (Py) , - 1.

) V o l. 40 N o. 6 : A : Q ,, W ard [ 1 ] (A v icenn ia m a rina) (K and elia cand el)

, E, PRO GR ESS IN GEO GRA PH Y. V o l122, N o15 Sep t1, 2003 : (2003) , 263, (0 1m ) P93511; P42616

, 4, 6, 8 m in; 30%, 50%, 70%, 90% 100% 15, 30, 45, 60, s V c

26 3 V o l. 26 N o A cta Eco logiae A n im alis Dom astici M ay ,

T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod

D esign and Imp lem en tation of Parallel Genetic A lgo rithm

:,UV IKON 810, 700 nm. DU 27Spectropho to neter 1. 1 U S2KT P

, ( CO 2+ O 2+ N 2, ], N 2 [ 14, 15 ] O 2. ( 0. 1 ml ) ; (23 Jayasingh h atm ) (2001) [ 7 ]

F ingerpr in ts of X in shu Ora l L iquid by HPCE

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Jou rnal of M athem atical Study

GPS, 0. 5 kg ( In tegrated Fertility Index, IF I) 1. 1 SPSS 10. IF I =

(T rip tery g ium w ilf ord ii Hook) ,Beroza [6 ] 4 W ilfo rine W ilfo rdine W ilfo rgine W il2. Euon ine 1. 0% 1980, 1. 1 ; 1. 0%, ; 0.

A multipath QoS routing algorithm based on Ant Net

= R s - jx s = R 1 +

6 cm, 1. 2 IAA, NAA, 2. 1

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

, , ; ,,, ,,, ; > cm , 62. 5% 66. 5%, 0. 2 g g,, 67% , , ;, , : V o l. 24, N o. 4 A ug.

HONDA. Έτος κατασκευής

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

, 2166 m, 4162 m,,, m 3 gs, m 3,, 5 10, 7117%, 11 4, 2813%,, m 3 gs, ;, ;,,,,,,,,

A Knowledge M odel for D esign of Population Nutr ien t Index D ynam ics in W heat

V o l122, N o13 M ay, 2003 PRO GR ESS IN GEO GRA PH Y : (2003) , : TU 984. , (Eco logy fo r evil) [1 ] (R ich Boyer), 2.

,, 1 mm,, : 250 g, 200 g, 120 g, 50 g g T, 80, , ;,, ,,,,, %, 2%, 3% , 15 d, 60 d ( )

A pp lication Study on R econ struction of Chao tic T im e Series and P rediction of Shanghai Stock Index

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

A ( SPA ) Su lfo succin im idyl 62[ 3 2( 22pyridyldith io ) p rop ionam ido ]hexanoate (Su lfo2l C2SPD P) C E2m ail: w

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

CH EM ICAL JOU RNAL O F CH IN ESE UN IV ERS IT IES nm, nm nm,,,. [1, 2 ] :

The Changes of Card iova scular Respon se to O rthosta tic Stress Caused by Hypovolem ia Inuced by W e ightlessness: A Sim ula tion Study

(M u ltidrug resistance, M DR )

o l. 26 N o Jou rnal of N an jing In stitu te of M eteo ro logy Feb. 2003

D EM, ], 1969 F reeze H arlan : SH E G IS Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

Το άτομο του Υδρογόνου

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

IRBB 4 (Xa24) IRBB 7 (Xa27) IRBB 21 (Xa221) 6

1. 2 , N RC (1998) d m g 1

copula, 5 3 Copula Κ L = lim System s Engineering M ay., 2006 : (2006) ,,, copula Ξ A rch im edean copula (Joe,

) , EPR I [ 5, 6 ], [ 1 ], ; ; ; ; ; ; ] Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

W eb. W eb Information Extraction Based on Tree Structure. REN Zhong- sheng 1, XUE Y ong- sheng 2

我国股票市场指数及指数证券投资组合 关键词 中图分类号 文献标识码 文章编号 0 引 言

!"!# ""$ %%"" %$" &" %" "!'! " #$!

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

V o l. 53, N o. 3 M ay, 1998 A CTA GEO GRA PH ICA S IN ICA ) m 3 gs,

rs r r â t át r st tíst Ó P ã t r r r â

A CTA GEO GRA PH ICA S IN ICA

Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

The p re pa ra tion a nd a ntiba c te ria l a c tiv ity in vitro of be rbe rine hyd rochlo ric na nom e te r m ic roem uls ion

Masters Bikini 45+ A up to 5'4"

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

(g ) A quanau tics,, , 33. 1%. O , O CH EM ICAL JOU RNAL O F CH IN ESE UN IV ERS IT IES (,,, )

, cm ; C (h), , cm 3 g cm - 3 g d - 1, , cm ; E (t), cm g d - 1 ; hl (t) 1 h (z, t) h 2. ], d - 1 ; T p ; L nrd (z ) h (L, t) = hl (t) t > 0 (4)

Im pact of capac ity a lloca tion on bullwh ip effect in supply cha in

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

! " # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+

Theoretica l Study on Effect of Tetraz ine Structures on The ir Therma l D ecom position M echan ism s

Research on real-time inverse kinematics algorithms for 6R robots

(2006) ,A RD S. AL Ig A RD S. AL IgA RD S A RD S A RD S A RD S , A RD S 25% 50%, 11% 25%, 9% 26% 1 AL IgARD S , A RD S 50% 6815%

Chapter 1 Fundamentals in Elasticity

G IS N N E E, , km 2, 92% A CTA GEO GRA PH ICA S IN ICA

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

E stab lish ing Syn thesis Evaluation Index

A CTA GEO GRA PH ICA S IN ICA

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ED SS (Environm en tal D ecision Suppo rt

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

( P- V EP, ER G K8,A g- A gc1. V EP s. : oh z 30H z; : 0. 24, 0. 48, 0. 96, 1. 85, %

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

1999, 17 (1): J ourna l of W uhan B otan ica l Resea rch ( ) ( ) 2, 3. (Celosia cristata L. ),

The Optim ization A lgor ithm s for Solv ing Resource-con stra ined Project Schedul ing Problem: A Rev iew

Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)

Transcript:

36 8 2002 8 JOU RNAL O F SHAN GHA I J IAO TON G UN IV ER S IT Y V o l. 36 N o. 8 A ug. 2002 : 100622467 (2002) 0821138205,,,, (, 200030) : 6R,,.,,. J - 1 (J Jacob ian ). : ; ; ; : T P 391 : A S ingula r C onfigura tion Ana lys is a nd C oo rd ina te C ontro l of Robo t L IU Cheng 2liang, ZH A N G K a i, CA O Q i2x in, FU Z huang, Y IN Y ue2hong (Schoo l of M echan ical and Pow er Eng., Shanghai J iao tong U n iv., Shanghai 200030, Ch ina) A bs tra c t: T he singu larity and coo rdinate con tro l of robo t w ere studied. A m ethod of so lving the app rox i2 m ate velocity of jo in t by adding damped vecto r w as p ropo sed and a modified algo rithm w as p rovided based on the w o rk of W amp ler. T he singu larities w ere divided in to the structu re boundary singu larity, boundary singu larity, inner singu larity and w rist singu larity. T he computer graph ic sim u lation s w ere developed. T he inner singu larity w as studied in ail. T he m ethods of u sing coo rdinate con tro l to avo id the singu lari2 ty of robo t arm and real tim e con tro l w ere p resen ted. Ke y w o rds: robo t; singu lar configu ration; coo rdinate con tro l; computer sim u lation Jacob ian J,, J,, J - 1,,. J - 1, J,,. [1 ], Jacob ian (Singu lar V alue D ecompo sition, SVD ), ;W amp ler [2 ] : 2001208220 : (50128504) : (19642),,,,, CAD. ; Chen [3 ] ; Cheng [4 ],, S ICO P ; Grego ry [5 ] 8 ; Seng [6 ] M an ja [7 ] SVD., W amp ler [2 ] [8 ]. 6R, 4,. 6R,,

8, : 1139,. J - 1,. 1 RV 12L 6R, 1. 16R F ig. 1Jo int structure of 6R robo t RV 12L : Η1[ - 165, 165 ], Η2[ - 75, 75 ] Η3[ - 130, 130 ], Η4[ - 180, 180 ] Η5[ - 105, 105 ], Η6[ - 180, 180 ] a1= 0. 80 m, a2= 0. 70 m, a3= 0. 65 m a6= 0. 26 m, d 4= 0. 65 m, d 6= 0. 26 m : Ηi ( ), a i ; d i. 2Jacobian 2. 1Jacobian P ER m qr n (nm ), Υ: R n R m. P E = Υ(q) P, q g = J + (q) P g, J + = J T [J J T ] - 1 R nm Jacob ian, m = n ()J + = J - 1 ; m < n ( ) J +. q i, rankj < m, J J T R m m, J +. 2. 2 [2 ] Κ 2 q 2, q : m in P g - g q 2. 3 Κ J q g 2 + Κ 2 q g 2 Κ0 q g = J T [J J T + ΚI ] - 1 P g J J T = 0 J = = Κ0 ( [2 ] ). 0, rankj < m, Κ J J T 0 J 0,, : Κ= Κ0 (1 - k 0gK ) 2 K = m ax{k 0, kj } kj = 2 m m g2 J m F J J T : k 0 ; kj J ; J F J F ; n ; m. 3,, J E (Η) = J w (Η) = : c1= co sη1; s1= j 11 j 12 j 13 j 14 j 15 0 j 21 j 22 j 23 j 24 j 25 0 0 j 32 j 33 j 34 j 35 0 0 - s1 - s1 c1s23 j 45 j 46 0 c1 c1 s1s23 j 55 j 56 1 0 0 c23 s23s4 j 66 j 11 j 12 j 13 0 0 0 j 21 j 22 j 23 0 0 0 0 j 32 j 33 0 0 0 0 - s1 - s1 c1s23 j 45 j 46 0 c1 c1 s1s23 j 55 j 56 1 0 0 c23 s23s4 j 66 sin Η1; c23= co s (Η2+ Η3) ; s23= sin (Η2+ Η3) ;. J EJ w J E = 0 d 6Z Ek - d 6Z E j I 3 - d 6Z Ek 0 d 6Z E i d 6Z Ej - d 6Z E i 0 033 I 3 J w = U 66J w (1), ZE= [Z E iz E jz Ek ] T. U = 1 J w = J 11 J 22 (2) (2) 0, J 11= 0 J 22= 0,

1140 36 J w = 0,. J 11= 0 ; J 22= 0. J w = J 11 = J 21 = J 22 = RV 12L 6R. J 11 033 J 21 J 22 - d 4s1c23 - a2s1c2 - d 4c1s23 - a2c1s2 - d 4s23c1 d 4c1c23 + a2c1c2 - d 4s1s23 - a2s1s2 - d 4s23s1 0 - s1 - s1 0 c1 c1 1 0 0 0 - d 4c23 - a2c2 - d 4c23 c1c23 c1s23s4 - s1c4 - c1c4s23s5 - s1s4s5 + c1c23c5 s1c23 s1s23s4 + c1c4 - s1c4s23s5 + c1s4s5 + s1c23c5 - s23 c23s4 - s23c5 - c23c4s5 J 11= - a2d 4s3 (d 4c23+ a 2c2) J 22= - s5 J 11= 0 sing1 = {ΗR 6 ga 2d 4s3 = 0} (3) Η3 = 0 sing2 = {ΗR 6 gd 4c23 + a2c2 = 0} (4) : sing1 ; sing2., 5, J 0,, Η5= Ηm inη5= Ηm ax. J 22= 0 : sing3 = {ΗR 6 gs5 = 0} (5) Η5= 0 4, 6R 3, sing = {sing1 sing2 sing3} (6),, J 0,. 4. 1, sing4 = {ΗR 6 gηi = Ηi,m in Ηi,m ax} (7), Ηi,m inηi,m ax i,. (6) sing = {sing1 sing2 sing3 sing4} (8) RV 12L,. RV 12L6, 4 6 360, 8, Η1[ - 165, 165 ], Η2[ - 75, 75 ] Η3[ - 130, 130 ], Η5[ - 75, 75 ] 4. 2,.,. 4. 2. 1L 1 L 2 L 3 L 4 L 4 L 3 L 2 L 1, L 1: {Η1, Η2, Η3, Η4, Η5, Η6}= {0,, 0,, 0, } L 2: {Η1, Η2, Η3, Η4, Η5, Η6}= {0, 75,,, 0, } L 3: {Η1, Η2, Η3, Η4, Η5, Η6}= {0, 75, 130,,, } L 4: {Η1, Η2, Η3, Η4, Η5, Η6}= {0,, 130, 0, 105, } L 1= L 1 L 2: {Η1, Η2, Η3, Η4, Η5, Η6}= {0, - 75,,, 0, } L 3: {Η1, Η2, Η3, Η4, Η5, Η6}= {0, - 75, - 130,,, } L 4: {Η1, Η2, Η3, Η4, Η5, Η6}= {0,, - 130,, - 105, },, Ηi[Ηi,m in, Ηi,m ax ]. 2. 2 F ig. 2Compo sition of singular boundary 4. 2. 2RV 12L S1 S2 S3 S4, S1: {Η1, Η2, Η3, Η4, Η5, Η6}= {,, 0,, 0, } S2: {Η1, Η2, Η3, Η4, Η5, Η6}= {, 75,,, 0, } S3: {Η1, Η2, Η3, Η4, Η5, Η6}= {, 75, 130,,, } S4: {Η1, Η2, Η3, Η4, Η5, Η6}= {,, 130, 0, 105, } 3,, RV 12L, 4. 4. 3, (4),

8, : 1141 5Η2- Η3 F ig. 5D ependence of Η2 versus Η3,. 5. 1 RV 12L 6R, 3 Η1 Η2 Η3,. 3 F ig. 3Surface of singular boundary, 3 Η 1Η 2 Η 3,. : Η u= [Η 1Η 2Η 3 ] T, Η l= [Η 4Η 5Η 6 ] T Ξ= J 21Η u+ J 22Η l Η1 Η2 Η3, Η 4= co s Η6 Ξx - sin Η6 sin Η5 Ξy sin Η5 (9) Η 5= Ξx sin Η6- Ξy co s Η6 (10) 4 F ig. 4W o rk ing space.,, Η2 Η3: d 4co s (Η2 + Η3) + a2co s Η2 = 0 Η2 Η3 5 (a),., d 4a2, Η2 Η3. d 4= a2, co s (Η2 + Η3) + co s Η2 = 0 Η2 Η3 5 (b), Η2 Η3 : Η3= - 2Η2-180 Η2< 0-2Η2+ 180 Η2> 0 5, J,,..,, gj (Η) g0, Η 6= Η 4 co s Η5- Ξz (11) (9) (11), Η5 0, Ξ Η 4, Η 6,. : Η5> Α(Α). Η5< Α Αsgn (sin Η5) sin Η5. Α,. Α, ; Α,. Η5= 180, : Η5= 0, 4 6 ; Η5= 180, 4 6,. RV 12L 0 6T= 0 1T (Η1) 1 2T (Η2) 2 3T (Η3) 3 4T (Η4) 4 5T (Η5) 5 6T (Η6) 3 6T= 3 4T (Η4) 4 5T (Η5) 5 6T (Η6) = c4c5c6- s4s6 - c4c5s6- s4s6 - c4s5 0 s5s6 - s5s6 c6 d 4 - s4c5c6- c4c6 s4c5s6- c4c6 s4s5 0 0 0 0 1 co s (Η4+ Η6) - sin (Η4+ Η6) 0 0 0 0 co s Η6 d 4 sin (Η4+ Η6) co s (Η4+ Η6) 0 0 0 0 0 1 = (12)

1142 36, (Η4+ Η6). (Η4+ Η6), Η4 Η6. Η4, 5, gj (Η) g 0,. 5. 2 Η4 Η6. (9) Η g 4sin Η5 = Ξx co s Η6 - Ξy sin Η6 (13) Η4 5 z 5 Ξ x 6Oy 6 Ξx y, 6, : Ξx gξy = sin Η6gco s Η6 (14) Η4 5,. 6 F ig. 6D eterm ination of coo rdinate angle z 5 Ξx y : Ξx = Ξx y sin Η6, Ξy = Ξx yco s Η6 ( 13) : Η 5 = Ξ. Η 4 = 0, ( 14) : Η 6= Ξx y. 5. 3 [9 ], gη5g Α,,,. z 4 Ξx yχ, 4 z 4 Χ, 6 z 6 Χ. Χ, Η 4= 0, Η 5= Ξ, Η 6= Ξx y. Η5, gη5gα,.,,,. : [ 1 ]N akam ura Y, H annafusa H. Inverse k inem atic so lu2 tions w ith singularity robustness fo r robo t m anipula2 to r contro l [J ]. con trol, 1986, 108: 163-171. ASM E D ynam System M easurmen t [ 2 ]W amp ler C W. M anipulato r inverse k inenm atic so lu2 tions based on vecto r fo rm ultions and damped least2 squares m ethods [J ]. net, 1986, 16 (1): 93-101. IEEE Tran s Sys M an Cyber2 [ 3 ]Chen Y C, Seng J, N eil O. A p redicative algo rithm fo r rate contro l of m echanism s near singularities[j ]. The In ternational Journal of Robotics Research, 1998, 17 (6): 652-666. [ 4 ]Cheng F T, Hour T L, Sun Y Y. Study and reso lu2 tion of singularities fo r a 62DO F PUM A m anipulato r [J ]. IEEE Tran saction s on System s, M an and Cyber2 netics, 1997, 27 (2): 165-178. [ 5 ]Grego ry L, R ichard P. Singularity avo idance and the contro l of an eigh t2revo lute2jo int m anipulato r [ J ]. The In ternational Journal of Robotics Research, 1997, 16 (1): 60-76. [ 6 ]Seng J, N eil O, Kevin A, et al. E scapability of sin2 gular configuration fo r redundant m anipulato rs via self2m o tion [A ]. Proceed ings of the 1995 IEEEgRSJ In ternational Conference on In tell igen t Robots and System ṡ Part 3 [C ]. N ew Yo rk: IEEE P ress, 1995. 78-83. [ 7 ]M anja V K, M irko D B. Sym bo lic singular value de2 compo sition fo r a PUM A robo t and its app lication to a robo t operation near singularities[j ]. The In ternational Journal of Robotics Research, 1993, 12 (5): 460-472. [ 8 ],,. [J ]., 1996, 18 (5): 23-28. ZHU X iang2yang, lun. ZHON G B ing2lin, X ION G You2 Singularities treatm ent fo r m anipulato r inverse k inem atics evalution [J ]. Robot, 1996, 18 (5): 23-28. [ 9 ],. [J ]., 1994, 16 (4): 19-24. ZOU T ing, LU Zen. A vo iding singularities of m a2 nipulato rs w ith the m ethod of mo tion coo rdinational contro l[j ]. Robot, 1994, 16 (4): 19-24.