Research on real-time inverse kinematics algorithms for 6R robots
|
|
- Καλλίστη Εύφημη Μεταξάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Control Theory & Applications Vol. 25 No. 6 Dec : (2008) R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics algorithms for 6R robots LIU Song-guo, ZHU Shi-qiang, LI Jiang-bo, WANG Xuan-yin (State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou Zhejiang 30027, China) Abstract: A set of real-time algorithms for inverse kinematics of all type of 6R robots is proposed. The general algorithm obtains 6 inverse kinematics solutions in total for general 6R robots based on vector operations and eigenvaluedecomposition of a 6 order target matrix. The closed-form algorithm selects proper kinematics equations directly and solves for the joint variables analytically. The obtained results are employed by the combined algorithm as the initial values in the iterative Newton-Raphson method for finding the exact solutions of the inverse kinematics, which can be used for 6R robots that approximately meet the requirements of the closed-form algorithm or the general algorithm. Experimental results show that the proposed set of algorithms solves the inverse kinematics problem of 6R robots with any geometry configuration in 2.03 ms, and provides effective solutions for the inverse kinematics problem of 6R robots applied in strong real-time systems. Key words: 6R robots; inverse kinematics; real-time algorithm; combined algorithm (Introduction) 6R,. 6R Pieper [], 33, [2], PUMA560. Pieper 6R, [3],,. 6R Pieper, 6R, [5 0]. Raghavan Roth 6 4 [5], 24, 6, 8. Manocha 24 Raghavan [6],. [7,8] 7R, 0, 6,, 6R. 6R. Pieper 6R. Manocha 24 6, 6R. - [4], Pieper 6R : ; :
2 R,. C++, 6R 2.03 ms. 2 (Inverse kinematics algorithms) D-H, 6R T End = T T 2 T 3 T 4 T 5 T 6, () : T i = R z (θ i )T z (d i )T x (a i )R x (α i )(i =, 2,, 6), a i, α i, d i, θ i, T End. 6R d i, a i α i T End, θ i. 2. (General algorithm) 6R. [6]24 24,, : ; 8. P L, 0 0 c 2 s 2 0 h P = 0 λ 2 µ 2 s 2 c 2 0 h 2 0 µ 2 λ h 3 a 2 c 3 s 3 0 f 0 = s 3 c 3 0 f 2, d f c 2 s 2 0 n L = 0 λ 2 µ 2 s 2 c 2 0 n 2 = 0 µ 2 λ n 3 c 3 s 3 0 r s 3 c 3 0 r r 3 : µ i = sin α i, λ i = cos α i, h v = F SC(c, s, c 2, s 2 ), f v = F SC(c 4, s 4, c 5, s 5 ), n v = F SC(c, s, c 2, s 2 ), r v = F SC(c 4, s 4, c 5, s 5 ), v =, 2, 3, i =, 2,, 5, FSC, s i = sin θ i, c i = cos θ i. P L, P, L, P P, P L, P L (P P )L (2P L)P, 4 : EQ : P L (θ 3, θ 4, θ 5 ) = P R (θ, θ 2 ); EQ2 : P L2 (θ 3, θ 4, θ 5 ) = P R2 (θ, θ 2 ); EQ3 : P L3 (θ 4, θ 5 ) = P R3 (θ, θ 2 ); EQ4 : L L (θ 3, θ 4, θ 5 ) = L R (θ, θ 2 ); EQ5 : L L2 (θ 3, θ 4, θ 5 ) = L R2 (θ, θ 2 ); EQ6 : L L3 (θ 4, θ 5 ) = L R3 (θ, θ 2 ); EQ7 : (P P ) L (θ 4, θ 5 ) = (P P ) R (θ, θ 2 ); EQ8 : (P L) L (θ 4, θ 5 ) = (P L) R (θ, θ 2 ); EQ9 : (P L) L (θ 3, θ 4, θ 5 )=(P L) R (θ, θ 2 ); EQ0 : (P L) L2 (θ 3, θ 4, θ 5 )=(P L) R2 (θ, θ 2 ); EQ : (P L) L3 (θ 4, θ 5 ) = (P L) R3 (θ, θ 2 ); EQ2 : [(P P )L (2P L)P ] L (θ 3, θ 4, θ 5 ) = [(P P )L (2P L)P ] R (θ, θ 2 ); EQ3 : [(P P )L (2P L)P ] L2 (θ 3, θ 4, θ 5 ) = [(P P )L (2P L)P ] R2 (θ, θ 2 ); EQ4 : [(P P )L (2P L)P ] L3 (θ 4, θ 5 ) = [(P P )L (2P L)P ] R3 (θ, θ 2 ). : L R,, 2 3., EQ3, EQ6, EQ7, EQ8, EQ EQ4 6 θ 3,, L 6 [s 4 s 5 s 4 c 5 c 4 s 5 c 4 c 5 s 4 c 4 s 5 c 5 s 2 c 2 ] T = R 6 6 [s s 2 s c 2 c s 2 c c 2 s c ] T. (2) : L 6 R 6 6. x 3 = tan(θ 3 /2), θ 3 8, 8 : EQ L + x 3 EQ2 L = EQ R + x 3 EQ2 R, EQ2 L x 3 EQ L = EQ2 R x 3 EQ R, EQ4 L + x 3 EQ5 L = EQ4 R + x 3 EQ5 R, EQ5 L x 3 EQ4 L = EQ5 R x 3 EQ4 R, EQ9 L + x 3 EQ0 L = EQ9 R + x 3 EQ0 R, EQ0 L x 3 EQ9 L = EQ0 R x 3 EQ9 R, EQ2 L + x 3 EQ3 L = EQ2 R + x 3 EQ3 R, EQ3 L x 3 EQ2 L = EQ3 R x 3 EQ2 R., L2 8 (x 3 )[s 4 s 5 s 4 c 5 c 4 s 5 c 4 c 5 s 4 c 4 s 5 c 5 s 2 c 2 ] T = R2 8 6 [s s 2 s c 2 c s 2 c c 2 s c ] T. (3) : R2 8 6, L2 8 (x 3 ) x 3. rank(r 6 6 ) = 6, (2) R 6 6,
3 6 : 6R 039 x i = tan(θ i /2), i = 4, 5, (3), ( + x 2 4)( + x 2 5), L3 8 (x 3 ) [ x 2 4x 2 5 x 2 4x 5 x 4 x 2 5 x 4 x 5 x 2 4 x 4 x 2 5 x 5 s 2 k c 2 k ] T = 0 8. (4) k = ( + x 2 4)( + x 2 5), L3 8 (x 3 ) L2 8 (x 3 ). (4) x 4, 8, (4) 8, L4 6 6 (x 3 )[x 3 4x 2 5 x 3 4x 5 x 2 4x 2 5 x 2 4x 5 x 3 4 6R6R,. PUMA560, D-H. L(i, j) R(i, j) 4 4 L R i j, : L = T T End = T 2 T 3 T 4 T 5 T 6 = R, L(3, 4) = R(3, 4), L(, 4) = R(, 4), L(2, 4) = R(2, 4) (8) x 2 4 x 4 x 2 5 x 4 x 5 x 4 s 2 k x 4 c 2 k x 4 x 2 5 x 5 s 2 k c 2 k ] T = 0 6., L4(x 3 )(V 245 ) = 0. (5) : L4(x 3 ) = Ax 3 + B, A, B R 6 6, V 245 θ 4 θ 5 θ 2. (5) det[l4(x 3 )] = 0. (6). A, L4(x 3 ) = 0 Ix 3 + A B = 0. (7) I 6 6. M = A B,, M 6 x 3 6, V 245, V 245 x 4, x 5, s 2 c 2, θ 2, θ 3, θ 4 θ 5, (2), θ, 5 (), θ 6. 6R 3, ( ) 02 6 R 6 6 =. R 4 6 6R3, A = ( R ). 6R Pieper,, Pieper 6R. Pieper 6R,. 2.2 (Close form algorithm) 6R Pieper,. Pieper 6R,. Pieper, PUMA560. Pieper θ θ 3 [ 80, 80 ]., L = (T T 2 T 3 ) T End = T 4 T 5 T 6 = R, L(, 4) = R(, 4), L(3, 4) = R(3, 4), (9) L(, 3) = R(, 3), θ 2 [ 80, 80 ] θ 4. L = (T T 2 T 3 T 4 ) T End = T 5 T 6 = R, L(, 3) = R(, 3), (0) θ 5 [ 80, 80 ]. L = (T T 2 T 3 T 4 T 5 ) T End = T 6 = R, L(, 3) = R(, 3), () θ 6 [ 80, 80 ]. θ, θ 3 θ 4, θ 2, θ 5 θ 6,, PUMA PUMA560D-H Table D-H parameters of PUMA560 robot θ/( ) d/mm a/mm α/( ) θ θ θ θ θ θ (Combined algorithm) 6R ν ω6, d δ6 D, (ν ) ω = lim t 0 t ( ) d = lim δ t 0 D. (2) t
4 040 25, 6R 6 6 J : ( ) ν = J(θ) dθ ω dt. (3) (2) (3) lim t 0 t D = J(θ)dθ dt, D = J(θ)dθ. 6R T End : T End = (I + TCur ), = T Cur T End I., 0 δ z δ y d x δ = z 0 δ x d y δ y δ x 0 d z, : d x, d y d z d, δ x, δ y δ z δ. J(θ), dθ = J (θ)d., - 6R, : Step θ Cur, θ Cur (), ; Step 2 T End : = T Cur T End I; Step 3 D, dθ = J (θ Cur )D; Step 4 dθ ξ, θ Cur, ξ; N,, N ; dθ > ξ N, θ Cur = θ Cur + dθ, = T (θ Cur ), Step 2 Step 4, I(Combined algorithm I) Pieper6R,,,, -.,., Pieper 6R 6R, II(Combined algorithm II) 6R Pieper,,.,,,,. 3 (Experiments and performance) Pentium IV 2.4G CPU, 52M RAM, Windows 2000, VC++ NEWMAT CLAPCAK. Table Eight solutions of inverse kinematics θ/( ) θ/( )
5 6 : 6R 04 PUMA560, D- H, θ = 90, θ 2 = 40, θ 3 = 50, θ 4 = 0, θ 5 = 80 θ 6 = 20, : d 2 = d 3 = d 5 = d 6 = a 4 = a 5 = a 6 = 2, α 2 = α 6 =. I8, 2. 6R, 3. Manocha, 4.6 ms,.37 ms,,. 3 Table 3 Applicability and real-time performance of algorithms Pieper /ms PUMA PUMA560 I I II 2.03, 6R,, Pieper 6R, 6R. 4 (Conclusion) 6R. 6R Pieper, Pieper,. Pieper 6R, 6. I II Pieper 6R 6R. C++, 2.03 ms, 0. ms, 6R. (References): []. [M]. :, 996. (XIONG Youlun. Fundamentals of Robot Techniques[M]. Wuhan: Huazhong University of Science and Technology Press, 996.) [2] PAUL R P, ZHANG H. Computational efficient kinematics for manipulators with spherical wrists based on homogeneous transformation representation[j]. International Journal of Robotics Research, 986, 5(2): [3] DOLINSKY J U, JENKINSON I D, COLQUHOUN G J. Application of genetic programming to the calibration of industrial robots[j]. Computers in Industry, 2007, 58(3): [4] ANGELES J. On the numerical solution to the inverse kinematics problem[j]. International Journal of Robotics Research, 985, 4(2): [5] RAGHAVAN M, ROTH B. Kinematic analysis of the 6R manipulator of general geometry[c]//international Journal of Robotics Research. Tokyo: MIT Press, 989: [6] MANOCHA D, CANNY J F. Efficient inverse kinematics for general 6R manipulators[j]. IEEE Transaction on Robotics and Automation, 994, 5(9): [7],, 7R [J], 986, 22(3): 9. (LIAO Qizheng, LIANG Chonggao, ZHANG Qixian. A novel approach to the displacement analysis of general spatial 7R mechanism[j]. Chinese Journal of Mechanical Engineering, 986, 22(3): 9.) [8] LEE H Y, LIANG C G. Displacement analysis of the general spatial 7-link 7R mechanism[j]. Mechanism and Machine Theory, 988, 23(3): [9] HUSTY M L, PFURNER M, SCHROCKER H P. A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator[j]. Mechanism and Machine Theory, 2007, 42(): [0] CHAPELLE F, BIDAUD P. A closed form for inverse kinematics approximation of general 6R manipulators using genetic programming[c]//proceedings of the 200 IEEE International Conference on Robotics & Automation. Seoul, USA: IEEE Press, 200: : (980 ),,,, sgliu@zju.edu.cn; (966 ),,,, sqzhu@zju.edu.cn; (983 ),,,, ernist@zju.edu.cn; (966 ),,,, xywang@zju.edu.cn.
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Διαβάστε περισσότεραER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Διαβάστε περισσότεραCAP A CAP
2012 4 30 2 Journal of Northwestern Polytechnical University Apr. Vol. 30 2012 No. 2 Neal-Smith 710072 CAP Neal-Smith PIO Neal-Smith V249 A 1000-2758 2012 02-0279-07 Neal-Smith CAP Neal-Smith Neal-Smith
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότεραSchedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Διαβάστε περισσότεραVol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Διαβάστε περισσότεραVSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
Διαβάστε περισσότεραHigh order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Διαβάστε περισσότεραMotion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
Διαβάστε περισσότεραJ. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Διαβάστε περισσότερα: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Διαβάστε περισσότεραStress Relaxation Test and Constitutive Equation of Saturated Soft Soil
8 7 011 7 Journal of Highway and Transportation Research and Development Vol. 8 No. 7 Jul. 011 100-068 011 07-0014 - 05 1 1. 0009. 710064 k 0 Merchant 4 Merchant U416. 1 + 6 A Stress Relaxation Test and
Διαβάστε περισσότεραGPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
Διαβάστε περισσότεραAdaptive grouping difference variation wolf pack algorithm
3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραNo. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Διαβάστε περισσότεραA research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Διαβάστε περισσότεραAn Advanced Manipulation for Space Redundant Macro-Micro Manipulator System
6 (5..9) 6 An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System Kazuya Yoshida, Hiromitsu Watanabe * *Tohoku University : (Macro-micro manipulator system) (Flexible base), (Vibration
Διαβάστε περισσότεραEstimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
Διαβάστε περισσότεραNov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Διαβάστε περισσότεραStudy of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
Διαβάστε περισσότεραSimplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
Διαβάστε περισσότεραES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Διαβάστε περισσότεραResearch of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment
18 2 JOURNAL OF CHINESE INFORMATION PROCESSING Vol118 No12 :1003-0077 (2004) 02-0073 - 07 Ξ 1,2, 1, 1 (11, 215006 ;21, 210000) : ISO/ IEC 10646,,,,,, 9919 % : ; ; ; ; : TP39111 :A Research of Han Character
Διαβάστε περισσότεραCORDIC Background (4A)
CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Διαβάστε περισσότεραJesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Διαβάστε περισσότεραResearch on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator
2008 10 10 :100026788 (2008) 1020076206 (, 400074) :, Inver2over,,, : ; ; ; Inver2over ; : F54015 : A Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Διαβάστε περισσότεραNumerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Διαβάστε περισσότεραCORDIC Background (2A)
CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότεραGain self-tuning of PI controller and parameter optimum for PMSM drives
14 1 1 1 ELECTRI C MACHINES AND CONTROL Vol. 14 No. 1 Dec. 1 1 1 1 1 1. 151. 154 PI PI E E 1% 4r /min TM 359 A 17-449X 1 1-9- 6 Gain self-tuning of PI controller and parameter optimum for PMSM drives YANG
Διαβάστε περισσότερα[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
Διαβάστε περισσότεραExercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραApproximation Expressions for the Temperature Integral
20 7Π8 2008 8 PROGRSS IN CHMISRY Vol. 20 No. 7Π8 Aug., 2008 3 3 3 3 3 ( 230026),,,, : O64311 ; O64213 : A : 10052281X(2008) 07Π821015206 Approimation pressions for the emperature Integral Chen Haiiang
Διαβάστε περισσότεραΧαράλαμπος Δ.Γ. Βάλσαμος. Μηχανολόγος και Αεροναυπηγός Μηχανικός
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Χαράλαμπος Δ.Γ. Βάλσαμος Μηχανολόγος και Αεροναυπηγός Μηχανικός Δ/νση Εργασίας: Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών, Πανεπιστήμιο Πατρών, Πάτρα. ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Τηλ.:2610997212,
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραAnalysis of energy consumption of telecommunications network and application of energy-saving techniques
40 2 ( ) Vol.40 No.2 2009 4 Journal of Central South University (Science and Technology) Apr. 2009 1, 2 (1. 430074 2. 410015) TN915 A 1672 7207(2009)02 0464 07 Analysis of energy consumption of telecommunications
Διαβάστε περισσότεραStudy on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
Διαβάστε περισσότερα2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.
36 2010 8 8 Vol 36 No 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Aug 2010 Ⅰ 100124 TB 534 + 2TP 273 A 0254-0037201008 - 1091-08 20 Hz 2 ~ 8 Hz 1988 Blondet 1 Trombetti 2-4 Symans 5 2 2 1 1 1b 6 M p
Διαβάστε περισσότεραControl Theory & Applications PID (, )
26 12 2009 12 : 1000 8152(2009)12 1317 08 Control Theory & Applications Vol. 26 No. 12 Dec. 2009 PID,, (, 200240) : PID (PIDNN), PID,, (BP).,, PIDNN PIDNN (MPIDNN), (CPSO) BP, MPIDNN CPSO MPIDNN CRPSO
Διαβάστε περισσότεραCorV CVAC. CorV TU317. 1
30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI
Διαβάστε περισσότερα6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραGPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
Διαβάστε περισσότεραQ L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan
3 2015 12 GLOBAL GEOLOGY Vol. 3 No. Dec. 2015 100 5589 2015 0 1106 07 L BFGS Q 130026 Q 2D L BFGS Marmousi Q L BFGS P631. 3 A doi 10. 3969 /j. issn. 1005589. 2015. 0. 02 Method of Q through full waveform
Διαβάστε περισσότεραThe optimization of EV powertrain s efficiency control strategy under dynamic operation condition
16 3 2012 3 ELECTRI C MACHINES AND CONTROL Vol. 16 No. 3 Mar. 2012 1 1 1 2 2 3 1. 250061 2. 250014 3. 251010 3. 3% U 469. 72 A 1007-449X 2012 03-0053- 07 The optimization of EV powertrain s efficiency
Διαβάστε περισσότεραJournal of Central South University (Science and Technology) May Bragg TU443 A (2011)
42 5 ( ) Vol.42 No.5 2011 5 Journal of Central South University (Science and Technology) May 2011 Bragg 1 1 1 2 2 (1. 330099 2. 330038) ( ) D10 Bragg TU443 A 1672 7207(2011)05 1442 05 Fiber Bragg grating
Διαβάστε περισσότεραProblem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Διαβάστε περισσότεραΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ Νικόλαος Αντωνίου Πολιτικός Μηχανικός Τµήµα Πολιτικών Μηχανικών, Α.Π.Θ.,
Διαβάστε περισσότεραSecond Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Διαβάστε περισσότεραOptimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
Διαβάστε περισσότεραAutonomous navigation control for mobile robots based on emotion and environment cognition
25 6 2008 12 : 1000 8152(2008)06 0995 06 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 1,2, 2 (1., 200237; 2., 310018) :,., ART2,.,.,,. : ; ; ; ART2 ; ; : TP242 : A Autonomous navigation control
Διαβάστε περισσότεραDESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Διαβάστε περισσότεραYoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)
1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on
Διαβάστε περισσότεραΙ ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ TΩΝ ΚΑΘΟ ΙΚΩΝ ΑΛΕΞΙΚΕΡΑΥΝΩΝ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ Χρήστος
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραCorrection of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
Διαβάστε περισσότεραA method of seeking eigen-rays in shallow water with an irregular seabed
32 2 Vol 32 2 20 2 Journal of Harbin Engineering University Dec 20 doi 0 3969 /j issn 006-7043 20 2 004 5000 2 TB566 A 006-7043 20 2-544-05 A method of seeking eigen-rays in shallow water with an irregular
Διαβάστε περισσότεραΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ
ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ Δ. Σαγρής, Σ. Μήτση, Κ.-Δ. Μπουζάκης, Γκ. Μανσούρ Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας, Τμήμα Μηχανολόγων
Διαβάστε περισσότεραEulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
Διαβάστε περισσότεραNew Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction
ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.15013) No.,pp.18-19 New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic
Διαβάστε περισσότερα1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
Διαβάστε περισσότεραNewman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3
DEWS2007 D3-6 y yy y y y y yy / DC 7313194 341 E-mail: yfktamura,mori,kuroki,kitakamig@its.hiroshima-cu.ac.jp, yymakoto@db.its.hiroshima-cu.ac.jp Newman Newman Newman Newman Newman A Clustering Algorithm
Διαβάστε περισσότεραSupporting Information
Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University
Διαβάστε περισσότερα, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H
57 6 2008 6 100023290Π2008Π57 (06) Π3486208 ACTA PHYSICA SINICA Vol. 57,No. 6,June,2008 ν 2008 Chin. Phys. Soc. 3 1) 2) 1) g 1) (, 130033) 2) (, 100049) (2007 9 11 ;2007 11 14 ),Littrow,,.,., Litrrow.
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
Διαβάστε περισσότεραError ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media
28 1 2009 3 Vol128 No11 GLOBAL GEOLOGY Mar1 2009 : 1004 5589 (2009) 01 0098 05 P 1, 1, 2, 1 1., 130026; 2., 100027 :,,,, 1%,,, 12187%,, : ; ; ; : P63114 : A Abstract: Error ana lysis of P2wave non2hyperbolic
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ Νικόλαος Κυριακούλης *, Ευάγγελος Καρακάσης, Αντώνιος Γαστεράτος, Δημήτριος Κουλουριώτης, Σπυρίδων Γ. Μουρούτσος Δημοκρίτειο
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραIPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
Διαβάστε περισσότεραOptimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
Διαβάστε περισσότεραCHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Διαβάστε περισσότεραsupporting phase aerial phase supporting phase z 2 z T z 1 p G quardic curve curve f 2, n 2 f 1, n 1 lift-off touch-down p Z
Enhancement of Boundary Condition Relaxation Method for D Hopping Motion Planning of Biped Robots University oftokyo Tomomichi Sugihara and Yoshihiko Nakamura Abstract Boundary Condition Relaxation method[],
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότεραA summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Διαβάστε περισσότεραDesign and Fabrication of Water Heater with Electromagnetic Induction Heating
U Kamphaengsean Acad. J. Vol. 7, No. 2, 2009, Pages 48-60 ก 7 2 2552 ก ก กก ก Design and Fabrication of Water Heater with Electromagnetic Induction Heating 1* Geerapong Srivichai 1* ABSTRACT The purpose
Διαβάστε περισσότεραEvolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
Διαβάστε περισσότερα(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)
Acta Phys. Sin. Vol. 6, No. 5 () 553 (II) * (, 543 ) ( 3 ; 5 ),,,,,,,, :,,, PACS: 5.45. a, 45..Hj 3,, 5., /,,, 3 3 :,,, ;, (memory hereditary),,, ( ) 6 9 ( ) 3 ( ) 6 3.,, Deng 4,5,,,,, * ( : 758,936),
Διαβάστε περισσότεραD Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Διαβάστε περισσότεραStudies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin
2005 63 Vol. 63, 2005 23, 2169 2173 ACTA CHIMICA SINICA No. 23, 2169 2173 a,b a a a *,a ( a 130012) ( b 133002), 26 K A 1.98 10 4, 1.01 10 3, 1.38 10 3, 5.97 10 4 7.15 10 4 L mol 1, n 1.16, 0.86, 1.19,
Διαβάστε περισσότεραWavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
Διαβάστε περισσότεραDetection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
Διαβάστε περισσότεραJ. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Διαβάστε περισσότεραFeasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Διαβάστε περισσότεραΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότεραΕργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Διαβάστε περισσότεραLUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
Διαβάστε περισσότεραNumerical simulation of Earth s gravitational field recovery from SST based on the energy conservation principle
49 3 2006 5 CHINESE JOURNAL OF GEOPHYSICS Vol 49, No 3 May, 2006, -, 2006, 49 (3) 712 717 Zheng W, Shao C G, Luo J, et al Numerical simulation of Earth s gravitational field recovery from SST based on
Διαβάστε περισσότεραFused Bis-Benzothiadiazoles as Electron Acceptors
Fused Bis-Benzothiadiazoles as Electron Acceptors Debin Xia, a,b Xiao-Ye Wang, b Xin Guo, c Martin Baumgarten,*,b Mengmeng Li, b and Klaus Müllen*,b a MIIT Key Laboratory of ritical Materials Technology
Διαβάστε περισσότεραGro wth Properties of Typical Water Bloom Algae in Reclaimed Water
31 1 2010 1 ENVIRONMENTAL SCIENCE Vol. 31,No. 1 Jan.,2010, 3, (,, 100084) :,.,, ( Microcystis aeruginosa),3 (A 2 O ) 10 6 ml - 1,> 0139 d - 1. A 2 O222,. TP ( K max ) ( R max ), Monod. :; ; ; ; :X173 :A
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότερα