Magnetically Coupled Circuits

Σχετικά έγγραφα
Exercises in Electromagnetic Field

Second Order RLC Filters

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Capacitors - Capacitance, Charge and Potential Difference

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam

NPI Unshielded Power Inductors

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

EE101: Resonance in RLC circuits


6.003: Signals and Systems. Modulation

Contents Introduction to Filter Concepts All-Pole Approximations

Prepolarized Microphones-Free Field

4.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

SMD Power Inductor-VLH

Graded Refractive-Index

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

SMD Shielded Power Inductors SPIA Series. SPIA Series. Product Identification

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

High Frequency Chip Inductor / CF TYPE

Surface Mount Aluminum Electrolytic Capacitors

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Spectrum Representation (5A) Young Won Lim 11/3/16

SMD Power Inductor-VLH

Unshielded Power Inductors

Lifting Entry (continued)

the total number of electrons passing through the lamp.

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CRASH COURSE IN PRECALCULUS

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

[1] P Q. Fig. 3.1

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

SMD Shielded Power Inductor HPCRHF2D /3D /4D Series

Metal thin film chip resistor networks

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

3 V, 900 MHz LOW NOISE SI MMIC AMPLIFIER

Handbook of Electrochemical Impedance Spectroscopy

Ventilated Distribution Transformers

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

Single Stage Amplifiers

A Hierarchy of Theta Bodies for Polynomial Systems

ST5224: Advanced Statistical Theory II

3 V, 1500 MHz Si MMIC WIDEBAND AMPLIFIER

PRODUCT IDENTIFICATION SWPA 3012 S 1R0 N T

Ferrite Chip Beads For Automotive Use

Matrices and Determinants

SMD Wire Wound Ferrite Chip Inductors - SQC Series. SQC Series. Product Identification. Shapes and Dimensions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

B37631 K K 0 60

3 V, 900 MHz Si MMIC AMPLIFIER

YAGEO CORPORATION SMD INDUCTOR / BEADS. CLH Series. Lead-free / For High Frequency Applications. CLH1005-H series CLH1608-H series ~1.4 0.

SMC SERIES Subminiature Coaxial Connectors

Fundamentals of Signals, Systems and Filtering

Applications Water distribution

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Lowara SPECIFICATIONS

Introduction to Time Series Analysis. Lecture 16.

SMC SERIES Subminiature Coaxial Connectors

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

PLL Synthesizer. Variable Type. Fixed Type (ROM Included)

Math221: HW# 1 solutions

Sunlord Specifications subject to change without notice. Please check our website for latest information. Revised 2018/04/15

Thin Film Chip Resistors

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Thick Film Array Chip Resistor

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Spherical Coordinates

Two-mass Equivalent Link

Thermistor (NTC /PTC)

Thin Film Chip Resistors

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

INDEX HOESUNG COIL PARTS

Section 8.3 Trigonometric Equations

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Features. Terminal Contact Enclosure style style form Open type Dust cover Ears on cover Antirotation-tab Ears on top

Probability and Random Processes (Part II)

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V)

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

SLD Series. SMD Type Shielded Power Inductors. Features. Applications. Lead Free Part Numbering. Dimensions

= 0.927rad, t = 1.16ms

NPIS Shielded Power Inductors

SMD Wire Wound Ferrite Chip Inductors - LS Series. LS Series. Product Identification. Shape and Dimensions / Recommended Pattern LS0402/0603/0805/1008

Creative TEchnology Provider

Multilayer Chip Capacitors C0G/NP0/CH

± 20% (rated cap. [µf] ) 1000 Leakage Current: For capacitance values > 33000µF, add the value of:

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Current Sensing Thick Film Chip Resistor-SMDB Series Size: 0402/0603/0805/1206/1210/2010/2512. official distributor of

Lowara APPLICATIONS MATERIALS. General Catalogue

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

NPN Silicon RF Transistor BFQ 74

Transcript:

DR. GYURCSEK ISTVÁN Magnetically Coupled Circuits Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 Ch. Alexander, M. Sadiku: Fundamentals of Electric Circuits, 6th Ed., McGraw Hill NY 2016, ISBN: 978-0078028229 W. M. Flanagan, Handbook of Transformer Design and Applications, 2nd ed. (New York: McGraw-Hill, 1993) Mayergoyz - Lawson: Basic Electric Circuit Theory (ISBN13: 978-0124808652) Simonyi K.: Villamosságtan. AK Budapest 1983, ISBN:9630534134 Dr. Selmeczi K. Schnöller A.: Villamosságtan 1. MK Budapest 2002, TK szám: 49203/I Dr. Selmeczi K. Schnöller A.: Villamosságtan 2. TK Budapest 2002, ISBN:9631026043 Zombory L.: Elektromágneses terek. MK Budapest 2006, (www.electro.uni-miskolc.hu) 1 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Coupled Inductances Linear Transformers Ideal Transformers Three-Phase Transformers Transformer Applications 2 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Self-Inductance (Recall) v = N dφ = N dφ di di = L di Self-inductance L = N dφ di 3 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Mutual Inductance (Recall) Φ 1 = Φ 11 + Φ 12 Φ 11 : links only coil 1, Φ 12 : links both coils dφ 1 v 1 = N 1 = N dφ 1 di 1 1 di 1 = L di 1 1 v 2 = N 2 dφ 12 Mutual inductance dφ 12 di 1 = N 2 di 1 = M di 1 21 M 21 = N 2 dφ 12 di 1 OC mutual (induced) voltage v 2 = M 21 di 1 Φ 2 = Φ 21 + Φ 22 dφ 2 v 2 = N 2 = N dφ 2 di 2 2 di 2 = L di 2 2 v 1 = N 1 dφ 21 dφ 21 di 2 = N 1 di 2 = M di 2 12 OC mutual (induced) voltage v 1 = M 12 di 2 Mutual inductance M 12 = N 1 dφ 21 di 2 M 12 = M 21 = M 4 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Dot Convention [current enters at dot] [mutual voltage positive at dot] 5 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Dot Convention - Examples Series-aiding connection L = L 1 + L 2 + 2M Series-oppositing connection L = L 1 + L 2 2M 6 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Time and Frequency Domain Analysis di 1 v 1 = i 1 R 1 + L 1 + M di 2 di 2 v 2 = i 2 R 2 + L 2 + M di 1 V 1 = R 1 + jωl 1 I 1 + jωmi 2 V 2 = jωmi 1 + R 2 + jωl 2 I 2 V = Z 1 + jωl 1 I 1 jωmi 2 0 = jωmi 1 + Z L + jωl 2 I 2 7 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Energy in Coupled Circuit Approaching in two steps di 1 1 : i 1 = 0 I 1, i 2 = 0 p 1 t = v 1 i 1 = i 1 L 1 I 1 w 1 = න p 1 = L 1 න i 1 di 1 = 1 2 L 2 1I 1 0 2 : i 1 = I 1, i 2 = (0 I 2 ) p 2 t = i 1 M di 2 + i di 2 2L 2 I 2 I 2 w 2 = න p 2 = MI 1 න di 2 + L 2 න i 2 di 2 = MI 1 I 2 + 1 2 L 2 2I 2 0 0 Total w (both of currents max value) w = w 1 + w 2 = 1 2 L 1I 1 2 + 1 2 L 2I 2 2 ± MI 1 I 2 (± dot convention!) 8 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Coupling Coefficient w = 1 2 L 1i 1 2 + 1 2 L 2i 2 2 ± Mi 1 i 2 Passive circuit 1 2 L 1i 1 2 + 1 2 L 2i 2 2 Mi 1 i 2 0 a b 2 = a 2 2ab + b 2 Coupling coefficient Perfekt coupling... (k = 1) Tight coupling (k > 0.5) Loose coupling (k < 0.5) 1 2 i 1 L 1 i 2 L 2 2 + i1 i 2 L 1 L 2 M 0 L 1 L 2 M 0 M L 1 L 2 M = k L 1 L 2 k measure of the magn. coupling bw. coils (0-1) k = Φ 12 Φ 1 = Φ 12 Φ 12 + Φ 11 = Φ 21 Φ 2 = Φ 21 Φ 21 + Φ 22 9 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Coupled Inductances Linear Transformers Ideal Transformers Three-Phase Transformers Transformer Applications 10 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Linear Transformers Linear transformer Φ~I V = R 1 + jωl 1 I 1 jωmi 2 0 = jωmi 1 + R 2 + jωl 2 + Z L I 2 Primary impedance Z PR = R 1 + jωl 1 Z in = V I 1 = R 1 + jωl 1 + ω 2 M 2 Reflected (coupled) impedance Z R 2 + jωl 2 + Z R = L ω 2 M 2 R 2 + jωl 2 + Z L 11 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Equivalent T - Circuit Equivalent circuits convenient analysis V 1 V 2 = jωl 1 jωm jωm jωl 2 I 1 I 2 mesh analysis V 1 V 2 = jω L a + L c jωl c jωl c jω L b + L c I 1 I 2 L a = L 1 M, L b = L 2 M, L C = M 12 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Equivalent П - Circuit Recall maths M = a 11 a 12 a 21 a 22 = a 11 a 22 a 12 a 21 M 1 = 1 adjm = V 1 V 2 = jωl 1 jωm jωm jωl 2 a 22 a 12 a 21 I 1 I 2 I 1 mesh analysis a 11 I 2 = I 1 I 2 = L 2 adjm = a 22 a 12 a 21 a 11 M jω L 1 L 2 M 2 jω L 1 L 2 M 2 M L 1 jω L 1 L 2 M 2 jω L 1 L 2 M 2 1 + 1 1 jωl A jωl C jωl C 1 1 + 1 jωl C jωl B jωl C V 1 V 2 V 1 V 2 L A = L 1L 2 M 2 L 2 M, L B = L 1L 2 M 2 L 1 M, L C = L 1L 2 M 2 M 13 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Coupled Inductances Linear Transformers Ideal Transformers Three-Phase Transformers Transformer Applications 14 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Ideal Transformers Let s see k = 1 μ 1 : V 1 = jωl 1 I 1 + jωmi 2 2 : V 2 = jωmi 1 + jωl 2 I 2 1 2 : V 2 = jωl 2 I 2 + MV 1 L 1 jωm2 I 2 L 1 k = 1 M = L 1 L 2 I 1 = V 1 jωmi 2 jωl 1 V 2 = jωl 2 I 2 + L 1L 2 V 1 L 1 jωl 1L 2 I 2 L 1 = L 2 L 1 V 1 = n V 1 n turns ratio = constant, even ifl 1, L 2, M Ideal transformer Coils have very large reactances L 1, L 2, M Coupling coefficient is equal to unity k = 1 Primary and secondary coils are lossless R 1 = R 2 = 0 v 1 = N 1 dφ v 2 v 2 = N 2 dφ Isolation transformer n = 1, (V 2 = V 1 ) Step-up transformer n > 1, (V 2 > V 1 ) Step-down transformer n < 1, (V 2 < V 1 ) = V 2 = N 2 = n v 1 V 1 N 1 15 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Ideal Transformers Power conservation v 1 i 1 = v 2 i 2 V 1 I 1 = V 2 I 2 I 1 I 2 = V 2 V 1 = n V 2 V 1 = N 2 N 1, I 2 I 1 = N 1 N 2 Sign convention (four figures ) Complex power S 1 = V 1 I 1 = V 2 n ni 2 = V 2 I 2 = S 2 Impedance transform (imp. matching i.e. for max PWR transfer) Z in = V 1 = 1 V 2 I 1 n 2 = Z L I 2 n 2 16 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Ideal Transformers Equivalent Circuit 1 (1) Reflecting secondary to the primer circuit (Thevenin equivalence) I 1 = 0 I 2 = 0 V Th = V 1 = V 2 n = V S2 n Z Th = V 1 I 1 = V 2 n ni 2 = Z 2 n 2, V 2 = Z 2 I 2 17 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Ideal Transformers Equivalent Circuit 2 (1) Reflecting secondary to the primer circuit (result) (2) Reflecting primer to the secondary circuit 18 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Ideal Autotransformers Autotransformer single coil with (variable) tap Electric isolation is lost Step-down transformer Step-up transformer V 1 V 2 = N 1 + N 2 N 2 = 1 + N 1 N 2, S 1 = S 2 I 1 I 2 = N 2 N 1 + N 2 V 1 V 2 = N 1 N 1 + N 2, S 1 = S 2 I 1 I 2 = N 1 + N 2 N 1 = 1 + N 2 N 1 19 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Coupled Inductances Linear Transformer Ideal Transformer Three-Phase Transformers Transformer Applications 20 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Three-Phase Transformers 1 Three-phase transformer Smaller and cheaper than transformer bank Four connections (YY, DD, DY, YD) For any connection P total = S total cos Θ = 3V L I L cos Θ Q total = S total sin Θ = 3V L I L sin Θ S total = 3V L I L 21 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Three-Phase Transformers 2 22 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Coupled Inductances Linear Transformer Ideal Transformer Three-Phase Transformers Transformer Applications 23 gyurcsek.istvan@mik.pte.hu 2018.07.09.

App. Isolation Device 24 gyurcsek.istvan@mik.pte.hu 2018.07.09.

App. Matching Device Matching transformer for maximum power transfer Z Th = Z L n 2 n = Z L Z Th I p = V Th Z Z Th + L n 2 I s = I p n = V Th n Z Z Th + L n 2 With matching transformer Equivalent circuit P L = I s 2 Z L = V Th n Z Z Th + L n 2 2 Z L = nv Th n 2 Z Th + Z L 2 Z L Without matching transformer P L = I 2 Z L = V Th Z Th + Z L 2 Z L 25 gyurcsek.istvan@mik.pte.hu 2018.07.09.

App. - Power Distribution P loss = I 2 R w = V 2 R w V = V send V rec Step-up transforming V send V rec P loss 0 26 gyurcsek.istvan@mik.pte.hu 2018.07.09.

Questions 27 gyurcsek.istvan@mik.pte.hu 2018.07.09.