Physics of CP Violation (III)

Σχετικά έγγραφα
Hadronic Tau Decays at BaBar

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solar Neutrinos: Fluxes

Derivation of Optical-Bloch Equations

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Three coupled amplitudes for the πη, K K and πη channels without data

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Section 8.3 Trigonometric Equations

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Lecture 21: Scattering and FGR

6.3 Forecasting ARMA processes

EE512: Error Control Coding

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Reminders: linear functions

Calculating the propagation delay of coaxial cable

Study of CP Violation at BABAR

derivation of the Laplacian from rectangular to spherical coordinates

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

4.6 Autoregressive Moving Average Model ARMA(1,1)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Other Test Constructions: Likelihood Ratio & Bayes Tests

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Example Sheet 3 Solutions

The Simply Typed Lambda Calculus

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Space-Time Symmetries

Finite Field Problems: Solutions

Approximation of distance between locations on earth given by latitude and longitude

the total number of electrons passing through the lamp.

CRASH COURSE IN PRECALCULUS

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Math 6 SL Probability Distributions Practice Test Mark Scheme

CP Violation in Kaon Decays

Inverse trigonometric functions & General Solution of Trigonometric Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Non-Gaussianity from Lifshitz Scalar

Areas and Lengths in Polar Coordinates

Matrices and Determinants

Areas and Lengths in Polar Coordinates

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Polarizations of B V V in QCD factorization

Homework 8 Model Solution Section

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Αναερόβια Φυσική Κατάσταση

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Instruction Execution Times

What happens when two or more waves overlap in a certain region of space at the same time?

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

C.S. 430 Assignment 6, Sample Solutions

[1] P Q. Fig. 3.1

Statistical Inference I Locally most powerful tests

Dr. D. Dinev, Department of Structural Mechanics, UACEG

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Solutions to Exercise Sheet 5

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Kaon physics at KLOE. M.Palutan. Frascati for the KLOE collaboration Moriond-EW 2006

Section 7.6 Double and Half Angle Formulas

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

On a four-dimensional hyperbolic manifold with finite volume

Partial Differential Equations in Biology The boundary element method. March 26, 2013

PARTIAL NOTES for 6.1 Trigonometric Identities

Orbital angular momentum and the spherical harmonics

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ST5224: Advanced Statistical Theory II

Congruence Classes of Invertible Matrices of Order 3 over F 2

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 9.2 Polar Equations and Graphs

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Homework 3 Solutions

Assalamu `alaikum wr. wb.

Second Order RLC Filters

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

D Alembert s Solution to the Wave Equation

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

IIT JEE (2013) (Trigonomtery 1) Solutions

Aluminum Electrolytic Capacitors (Large Can Type)

Math221: HW# 1 solutions

2 Composition. Invertible Mappings

Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Concrete Mathematics Exercises from 30 September 2016

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Strain gauge and rosettes

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Isospin breaking effects in B ππ, ρρ, ρπ

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Transcript:

Physics of CP Violation (III) Special Lecture at Tsinghua Univiersity, Beijing, China 21-25 March 2011 Tatsuya Nakada École Polytechnique Fédéale de Lausanne (EPFL)

Experimental observation of CP violation in the decay amplitudes From: Reε 0 CP in oscillations From: Imη 0 + From: Reη 0 + CP in interplay between decay and oscillations CP in decay amplitudes is inconclusive... dedicated experiments to look for this... Comparing η + and η 00.

η 2 + = A ( K L π + π ) 2 ( ) 2 = N S A K S π + π η 2 00 = A ( K L π 0 π 0 ) 2 A K S π 0 π 0 + N L + ( ) 2 = N S 00 N L 00 ( ) ( ) = ε + ε N K L π + π N K S π + π ( ) ( ) = ε 2 ε N K L π 0 π 0 N K S π 0 π 0 η 00 2 η + 2 =1 6Re ε ε = N 00 + S N L N 00 + L N S N( K L π 0 π 0 )N K S π + π N( K S π 0 π 0 )N K L π + π ( ) ( )

NA48

KTeV

Regeneration σ Kn, σ Kp > σ Kn, σ Kp K 0 = (ds) K 0 = (ds) p = (uud), n = (udd) material = p and n K L K L and K S K 0 K 0 K 0 α K 0 = 1 α ( K 0 + K 0 )+ 1+α ( K 0 K 0 ) 2 2 = 1 α K S + 1+α K L 2 2 α = σ K N σ KN 1

Measure π + π and π 0 π 0 at the same time: N 00 S + 00 + = NS, NL = NL NA31, NA48 K L is regenerated from K S : E731, KTeV N 00 L 00 + + = rns, NL = rns No normalization is required, but efficiencies, acceptances etc. have to be corrected

Effort over 30 years! 0.0050 ± 0.0005 0 η + η 00 ε ε Note; 3 Re = η + /η 00 1, i.e. Re 0 ε ε

Kaon interferometer e + e (@1GeV) virtual γ φ(1020) K K (charged or neutral) all due to electromagnetic interactions φ(1020) K K C = 1 P = 1 K P K K C K K K KK is a quantum superposition of K K K K C = 1 P = 1

Or... φ(1020) K K s = 1 K L = 1 KK L=1 = dω Y 1m ( e )K 1 m= 1 Projection to a momentum state 1 Y 1m m= 1 ( e )K e K K e K e e +Y 1m ( e )K e { } 1 = Y 1m e m= 1 ( ){ K } e K e K e K e K e

K 0 K 0 For neutral kaons, they oscillates, but... KK L=1 t t = 0 K 0 K 0 K 0 () = dω Y 1m e K 0 K 0 K 0 1 m= 1 ( )K () K () e t e t at time t K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 = 0 = 0

Only the allowed oscillations are t = 0 sometime later... K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 One kaon seems to know what the other does!! Also K 0 K 0 K 0 K 0 = K S K L K L K S but no K S K S or K L K L

K 0 K 0 L=1 t () K S p e iλ S t K L p e iλ L t K L p e iλ L t K S p e iλ S t It cannot decay into a same final state, e.g. π + π at the same time. ( π + π ( ) π + π ) H p p W K0 K 0 + L=1() t A S p A + S p ( η + η + ) = 0 It can decay into π + π and π 0 π 0 at the same time only if η + η 00. ( π + π ( ) π 0 π 0 ) H p p W K0 K 0 + L=1() t A S p A 00 S p ( η + η 00)

KLOE experiment at DAFNE storage ring (@Frascati)

K S π + π, K L π + π CP violating decays!! An ideal way to produce K S beam 1) Identify K L decay with the decay time. 2) opposite side is K S.

To summarise CP violation can be generated through three interference mechanisms: Interfering processes CP phase CP phase Dispersive (M 12 ) and Weak interaction Dispersion vs absorptive (Γ 12 ) paths phases absorption (i) in P-P oscillations CP violation in the oscillation Different decay Weak interaction Strong interaction amplitudes phases phases CP violation in the decay amplitudes Decay with and without Weak interaction Time evolution oscillations phases functions CP violation in the interplay between the decay and oscillation All three mechanisms seen in the neutral kaon system: Re ε, Re ε, Im η +, Im η 00

Standard Model and CP violation Strong interaction Electromagnetic interaction Weak interaction gluons photons neutral current charged current: W ± Up type quark spinor field Q = 2/3 U = u c t Down type quark spinor field Q = 1/3 D = d s b example d L W V cd coupling there are 3 3 = 9 V s c L

u L, c L, t L u L, c L, t L W V + ud, V us, V ub, Vud, V us, W + d L, s L, b L d L, s L, b L L V ij U i γ μ (1 γ 5 ) D j W μ + V ij D i γ μ (1 γ 5 ) U j W μ CP conjugation L CP V ij D i γ μ (1 γ 5 ) U j W μ + V ij U i γ μ (1 γ 5 ) D j W μ If V ij = V ij L = L CP : i.e. CP conservation

Let us look at now: V ij U i γ μ (1 γ 5 ) D j One family V 1 free phase 1 free modula = V e iφ V e iφ u γ μ (1 γ 5 ) d V u γ μ (1 γ 5 ) d Changing u quark phase: u u e iφ Unitarity: V V = VV = E (one constraint) V 2 = 1 0 free phase 0 free modula NO CP

Two families V = V ud V cd V us V cs 4 free phase 4 free moduli (or rotation angles) 1) The phase of V ij can be absorbed by adjusting the phase differences between i- and j- quark 4 quarks = 3 phase differences 4 3 = 1 phase left 2) Unitarity V V = VV = E: four constraints: 1 off-diagonal constraint for the phase 1 1 = 0 phase left = 1 0 0 1 three constraint for the rest 4 3 = 1 rotation angle left V is real, i.e. no CP.

Explicit demonstration V ud e iφ ud u γ μ (1 γ 5 ) d + V us e iφ us u γ μ (1 γ 5 ) s + V cd e iφ cd c γ μ (1 γ 5 ) d + V cs e iφ cs c γ μ (1 γ 5 ) s u u e iφ ud V ud u γ μ (1 γ 5 ) d + V us e i(φ us φ ud ) u γ μ (1 γ 5 ) s + V cd e iφ cd c γ μ (1 γ 5 ) d + V cs e iφ cs c γ μ (1 γ 5 ) s s s e i(φ us φ ud ), c c e i(φ cs φ us + φ ud ) V ud u γ μ (1 γ 5 ) d + V us u γ μ (1 γ 5 ) s + V cd e iδ c γ μ (1 γ 5 ) d + V cs c γ μ (1 γ 5 ) s Out of four quark, three quark phases can be adjusted: 4 free phase 1 free phase

Unitarity: V V = VV = E (4 constraints) V ud * V cd * V us * V cs * V ud V us V cd V cs * * V ud V us + V cd V cs = 0 V ud V us + V cd V cs e iδ = 0 δ = π :0 free phase V ud V cd V us V cs = 0 V ud 2 + V cd 2 = 1, V us 2 + V cs 2 = 1 1 free modula or rotation angle V 11 = cos θ, V 22 = cos θ, V 12 = sin θ, V 21 = sin θ V = cos θ sin θ sin θ cos θ One rotation angle without phase: NO CP (Cabibbo angle)

Three families V ud V cd V us V ub V cs V cb V td V ts V tb 9 free phase 9 free moduli (or rotation angles) Out of six quark, five quark phases can be adjusted: 9 free phase 4 free phase Out of nine unitarity constraints, three are for the phases 4 free phase 1 free phase Three rotation angles with one phase: * 1 0 0 * 0 * 1 * 0 * 0 * 0 * 1 The rest (six) are for the rotation angles 9 free rotation angles 3 free rotation angles CP can be generated

CKM matrix and Wolfenstein s parameters V ud V us V ub V CKM = V cd V cs V cb V td V ts V tb 1 λ2 2 λ ia 2 λ 5 η Aλ 3 1 ˆ ρ iη ˆ λ 1 λ2 ( ) Aλ 2 iaλ 4 η 1 2 Aλ 3 ( ρ iη) Aλ 2 ˆ ρ = ρ 1 λ2, η ˆ = ρ 1 η2 2 2 A ~ 1, λ ~ 0.22, ρ 0 but η 0???

Electroweak theory with 3 families can naturally accommodate CP violation in the charged current induced interactions through the complex Cabibbo-Kobayashi-Maskawa quark mixing matrix V, with 4 parameters.

Standard Model for the kaon system final initial M 12 short range interactions K 0 d _ s d _ s u, c, t W W W + u, c, t _ _ _ u, c, t u, c, t W + + QCD corrections s _ d s _ d K 0 long range 2π, 3π interactions K 0 K 0 2π, 3π hadronic resonances Large uncertainties in the theoretical calculations of M 12

Short distance part ΔS=2 H effective = G 2 2 Fm W λ 16π 2 i λ j K 0 M V A K 0 B ij + K 0 M S P K 0 C ij i,j= u,c,t ( ) G F : Fermi constant m W : W mass quark operators CKM elements M V A = d γ μ ( 1 γ 5 )s ( )s [ ] [ ] d γ μ 1 γ 5 [ ][ d ( 1 γ 5 )s] M S P = d ( 1 γ 5 )s λ i = V is V id integrating out W B ij C ij Real part M 12, Imaginary part Γ 12 C ij = 0 for m s /m c <<1

K 0 M V A K 0 = K 0 d γ μ ( 1 γ 5 )s [ ( )s]k 0 [ ] d γ μ 1 γ 5 = 8 3 B K K0 d γ μ ( 1 γ 5 )s 0 0 d γ μ ( 1 γ 5 )s K 0 vacuum insertion K 0 d _ s W+quark states s _ d K 0 8B K 3 d K 0 0 0 B parameters have to be obtained from QCD calculations. _ s s _ d K 0 K 0 d γ μ ( 1 γ 5 )s 0 = K 0 ( CP) ( CP)d γ μ ( 1 γ 5 )scp ( ) ( CP)0 = K 0 ( CP)d γ μ ( 1 γ 5 )scp ( ) 0 e iθ CP = K 0 s γ μ ( 1 γ 5 )d 0 e iθ CP

K 0 M V A K 0 = 8 3 B K 0 d γ μ ( 1 γ 5 )s K 0 2 e iθ CP = 4B K f 2 Km K _ 3 ν 0 e e iθ CP m K : Kaon mass f K : decay constant s s 0 K 0 K = f _ _ K / 2 d u M 12 = G 2 F 12π f 2 2 2 KB K m K m W λ 2 c η 1 S 0 ( x c )+ λ 2 t η 2 S 0 ( x t )+ λ c λ t η 3 S 0 x c, x t x c =(m c /m W ) 2, x t =(m t /m W ) 2 ( ) ( ) [ ] e i π θ CP η 1 = 1.38 ± 0.20 η 2 = 0.57 ± 0.01 η 3 = 0.47 ± 0.04 QCD corrections If no CP CKM is real arg M 12 = θ CP + π (if B K > 0)

λ t2 = V ts 2 V td 2 λ c2 = V cs 2 V cd 2 A 4 λ 10 λ 2 S 0 (x t ) 2.5 S 0 (x c ) 0.00024 6.6 10 7 1.2 10 5 λ c λ t = V cs V cd V ts V td A 2 λ 6 S 0 (x c, x t ) 0.0021 2.4 10 7 total contributions the biggest contribution to M 12 is from the charm loop Standard Model Γ 12 for the kaon system K 0 2π, 3π, 2πγ, 2πe + e, etc. K 0 Theoretical calculation on Γ 12 very difficult.

However, M 12. Γ 12 are measured experimentally; arg M 12 can be determined from the short distance interactions. arg M 12 = Im M 12 M 12 = 2ImM 12 m S m L theoretical short distance calculation experimental value argγ 12 = θ CP in the CKM phase convention ε = M 12 Γ 12 Δ M Γ 4 M 2 2 12 + Γ 1+ i 2 M 12 12 Γ 12 Reε = ΔmΔΓ 4Δm 2 + ΔΓ 2 arg M 12 Standard Model

Im λ t 2 = Im V ts 2 V td 2 Im λ c 2 = Im V cs 2 V cd 2 Im λ c λ t = Im V cs V cd V ts V td 2A 4 λ 10 ( 1 ˆ ρ )ˆ η 3.7 10 7 ( 1 ˆ ρ )ˆ η 2A 2 λ 6 η 1.9 10 4 η 2A 2 λ 6 η ˆ 1.9 10 4 η ˆ S 0 (x t ) 2.5 S 0 (x c ) 0.00024 S 0 (x c, x t ) 0.0021 9.3 10 7 ( 1 ˆ ρ )ˆ η 4.5 10 8 η 4.0 10 7 η ˆ The t-t and t-c box diagrams dominate Im M 12

The ε in the Standard Model u W + W + s d d s u, c, t u, d u γ u, d d d d d u, c, t s d u, c, t s d W + u, d u, d W + u, d γ Z 0 u, d d d d d I = 0 and I = 2 V ud V us V ud V us V cd V cs V td V ts tree real γ and Z 0 penguin complex W + s d u, d u, c, t g u, d d d I = 0 V ud V us V cd V cs V td V ts Phase difference between I = 0 and I = 2 weak amplitudes g penguin complex

QCD and non-perturbative effects very very complicated calculations!! Current Standard Model prediction ε +9 Re = (10 ± 2 ± 6) 10 4 ε 6 (Pich 04) Errors are due to - renormalization scale - m s - short-long distance QCD matching 1) The Standard Model predictions are compatible with the measurement. 2) Hadronic uncertainties in the theoretical predictions are too large to make a precision test.

Other interesting kaon decays: K + _ π + νν Z 0 ν W + ν s d u, c, t u u ν ν e,μ,τ W W s d u, c, t u u V td V ts V cd V cs A K πυυ = π + υ υ H eff K + H eff = G F α 2 2π sin 2 θ W ( λ c X l NL + λ t Xx ( t )) s γ μ ( 1 γ 5 )d l=e,μ,τ ( ( )υ L ) ( ) υ L γ μ 1 γ 5 Re( λ l c X NL ) 2 10 4, Im( λ l c X NL ) 4 10 7 η ( ) 6 10 4 ( 1 ˆ ρ ), Im( λ t Xx ( t )) 6 10 4 η ˆ Re λ t Xx ( t ) real part imaginary part neglected

Use _ K + π 0 e + ν (data) for the hadronic matrix element. _ _ _ d s u s π + u K + = 2 π 0 u K + s γ μ ( 1 γ 5 )d isospin relation s γ μ ( 1 γ 5 )d Br prediction with a relatively small theoretical uncertainty. Current Standard Model predictions: Br(K + π + νν) = (0.80 ± 0.11) 10 10 (isospin breaking taken into account) + 9.7 BNL787, 1995 data: (4.2 ) 10 10 PRL 97 3.5 based on one event More data taken, no new candidate + 3.4 BNL787, 1995-97: (1.5 ) 10 10 PRL 2000 1.2 Further data taken, one more candidate + 1.75 BNL787, 1995-98: (1.57 ) 10 10 PRL 2002 0.82

25 K + π + π 0 20 15 K + μ + ν 10 5 one event 0 200 210 220 230 240 P (MeV/c)

E787(95-98)/E949(02) combined results + 1.30 (1.47 ) 10 10 PRL 2004 0.89 Standard Model prediction (8.8 ± 1.2) 10 11 signal region The data is compatible with the Standard Model prediction. Could become a way to extract (ρ, η) from the kaon decays. K + π + π 0

CERN NA62 under construction expect ~100 K + π + νν events

K L 0 π 0 νν CP violating decay CP(π 0 νν) = +1 Z 0 ν W + ν s d u, c, t d d ν ν e,μ,τ W W s d u, c, t d d π 0 υ υ H eff K 0 π 0 υ υ H eff K 0 a = π 0 υ υ( CPT ) ( CPT )H W ( CPT ) ( CPT )K 0 = a e i ( θ CP θ T ) CPT symmetry No hadronic final state interactions.

As for the K + decay, H eff = G F α 2 2π sin 2 θ W ( λ c X l NL + λ t Xx ( t )) s γ μ ( 1 γ 5 )d l=e,μ,τ ( ( )υ L ) ( ) υ L γ μ 1 γ 5 Re( λ l c X NL ) 2 10 4, Im( λ l c X NL ) 4 10 7 η ( ) 6 10 4 ( 1 ˆ ρ ), Im( λ t Xx ( t )) 6 10 4 η ˆ Re λ t Xx ( t ) neglected - real part imaginary part - imaginary part is given by λ t

π 0 ν ν H W K L = 1 [ 2 a πυ υ ( 1 2ε)e iφ Γ a ] πυ υ = a πυ υ 2 = a πυ υ 2 [ 1 ( 1 2ε)e i ( 2φ πυ υ +θ T θ CP +φ Γ )] [ 1 ( 1 2ε)e i ( 2φ πυ υ 2φ 0 )] Δφ πυ υ = φ πυ υ φ 0 = a πυ υ [ 2 1 cos2δφ πυ υ + isin2δφ πυ υ 2εe i2δφ ] πυ υ = 2a πυ υ sin 2 Δφ πυ υ + isinδφ πυ υ cosδφ πυ υ + o ε () [ ] = 2ia πυ υ sinδφ πυ υ [ cosδφ πυ υ isinδφ πυ υ + o() ε ] 2ia πυ υ e iφ πυ υ sinδφ πυ υ e iδφ πυ υ = 2ia πυ υ sinδφ πυ υ eiφ 0 π 0 ν ν H W K L = 2 a πυ υ sinδφ πυ υ 2 Im a πυ υ (CKM phase convention) CP due to the interplay between decays and oscillations much bigger than CP in the oscillations different from 2π

Imaginary part can come only from s t d. _ hadronic part: K 0 π 0 ν ν = K + π 0 e + ν _ d _ s _ u _ s π 0 d K 0 = π 0 u K + s γ μ ( 1 γ 5 )d s γ μ ( 1 γ 5 )d Br = Br τ L 3α 2 K L π 0 υυ K + π 0 e + υ τ + V 2 us 2π 2 sin 4 θ W * Im( V td V ts )Xx t ( 3.0 ± 0.6) 10 11 [ ( )] 2 Only one term simpler than K + decays more reliable calculation Br(K 0 π 0 ν ν) < 1.6 10 6 90% CL (KTeV, PLB 99) 5.9 10 7 future experiment planned but a tough experiment π 0 γγ π 0 eeγ

JPARC E14: few K 0 π 0 νν if SM

Note: π 0 ν ν H eff K S = a πυ υ 2 = a πυ υ 2 [ 1+ ( 1 2ε)e i ( 2φ πυ υ +θ T θ CP +φ Γ )] [ 1+ ( 1 2ε)e i ( 2φ πυ υ 2φ 0 )] = a πυ υ [ 2 1+ cos2δφ πυ υ isin2δφ πυ υ 2εe i2δφ ] πυ υ = 2a πυ υ cos 2 Δφ πυ υ isinδφ πυ υ cosδφ πυ υ + o ε () [ ] 2a πυ υ cosδφ πυ υ [ cosδφ πυ υ isinδφ πυ υ ] = 2 a πυ υ cosδφ πυ υ e iφ 0 η π 0 ν ν π 0 ν ν H eff K L π 0 ν ν H eff K S = i tan Δφ πυ υ O 1 () η + ε = O( 10 3 )

Theoretical accuracy of the Standard Model predictions in the kaon sector will be limited to >10% (may be) except K 0 _ π 0 νν which will be experimentally challenging!