Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Σχετικά έγγραφα

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

2742/ 207/ / «&»

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

C F E E E F FF E F B F F A EA C AEC

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Topology Structural Optimization Using A Hybrid of GA and ESO Methods

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007


Stabilization of stock price prediction by cross entropy optimization

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Simplex Crossover for Real-coded Genetic Algolithms

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

DATA SHEET Surface mount NTC thermistors. BCcomponents

2 Composition. Invertible Mappings

Matrices and Determinants

Solution Series 9. i=1 x i and i=1 x i.

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Numerical Analysis FMN011

Approximation of distance between locations on earth given by latitude and longitude

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

6.3 Forecasting ARMA processes

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Distributed Probabilistic Model-Building Genetic Algorithm

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Homework 3 Solutions

Statistical Inference I Locally most powerful tests

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

The Simply Typed Lambda Calculus

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Optimal Impartial Selection

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Congruence Classes of Invertible Matrices of Order 3 over F 2

Probability and Random Processes (Part II)

Reminders: linear functions

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Solutions to Exercise Sheet 5

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search)

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Second Order RLC Filters

ST5224: Advanced Statistical Theory II

Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Inverse trigonometric functions & General Solution of Trigonometric Equations


Homework 8 Model Solution Section

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Monolithic Crystal Filters (M.C.F.)

Supplementary Information 1.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

EE512: Error Control Coding

Math 6 SL Probability Distributions Practice Test Mark Scheme

SQC and Digital Engineering Technological Trends in Design Parameter Optimization and Current Issues

Parametrized Surfaces

Correction Table for an Alcoholometer Calibrated at 20 o C

BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE. Colin Dewey

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

NPI Unshielded Power Inductors

5.4 The Poisson Distribution.

TMA4115 Matematikk 3

Fused Bis-Benzothiadiazoles as Electron Acceptors

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Supplementary Appendix

Operating Temperature Range ( C) ±1% (F) ± ~ 1M E-24 NRC /20 (0.05) W 25V 50V ±5% (J) Resistance Tolerance (Code)

D Alembert s Solution to the Wave Equation

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΩΝ ΕΚΘΕΣΕΩΝ ΕΤΑΙΡΙΚΗΣ ΚΟΙΝΩΝΙΚΗΣ ΕΥΘΥΝΗΣ COSMOTE ΚΑΙ VODAFONE ΣΤΟΝ ΕΛΛΗΝΙΚΟ ΚΛΑΔΟ ΤΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Αναερόβια Φυσική Κατάσταση

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Control Theory & Applications PID (, )

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

FORMULAS FOR STATISTICS 1

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Thin Film Chip Resistors

Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)

τατιςτική ςτην Εκπαίδευςη II

Tridiagonal matrices. Gérard MEURANT. October, 2008

Research on Economics and Management

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

Transcript:

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection Ran Cheng, Miqing Li, Ke Li, Xin Yao, Fellow, IEEE I. EXPERIMENTAL SETTINGS TABLE I MAIN OPERTIES OF TEST FUNCTIONS IN THE CEC 23 TEST SUITE Function No. of global optima Variable range Peak height r F: Five-Uneven-Peak Trap (D) 2 [, 3] 2.. F2: Equal Maxima (D) 5 [, ].. F3: Uneven Decreasing Maxima (D) [, ].. F4: Himmelblau (2D) 4 [ 6, 6] 2 2.. F5: Six-Hump Camel Back (2D) 2 x [.9,.9]; x 2 [,,.].363 F6: Shubert (2D) 8 [, ] 2 86.73 F7: Vincent (2D) 36 [5, ] 2. F8: Shubert (3D) 8 [, ] 3 279.935 F9: Vincent (3D) 26 [ 5, 5] 3. F: Modified Rastrigin 2 [ 5, 5] 2-2. F: Composition Function (2D) 6 [ 5, 5] 2. F2: Composition Function 2 (2D) 8 [ 5, 5] 2. F3: Composition Function 3 (2D) 6 [ 5, 5] 2. F4: Composition Function 3 (3D) 6 [ 5, 5] 3. F5: Composition Function 4 (3D) 8 [ 5, 5] 3. F6: Composition Function 3 (5D) 6 [ 5, 5] 5. F7: Composition Function 4 (5D) 8 [ 5, 5] 5. F8: Composition Function 3 (D) 6 [ 5, 5]. F9: Composition Function 4 (D) 8 [ 5, 5]. F2: Composition Function 4 (2D) 8 [ 5, 5] 2. Peak height: function (fitness) value of global optimal solution(s) r: niche radius to distinguish two neighboring global optimal solutions TABLE II SECTION IV-A: MAXIMUM NUMBER OF FES FOR EACH TEST FUNCTION Test Function Maximum Number of FEs F F5 5 4 F6, F7 2 5 F8, F9 4 5 F F3 2 5 F4 F2 4 5 TABLE III SECTION IV-A: POPULATION SIZE SETTINGS OF MOMMOP Test Function Population Size F-F5 8 F6 F7 3 F8-F9 3 F F-F3 2 F4-F2 2

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX 2 II. STATISTICAL RESULTS OF THE COMPARISONS BETWEEN EMO-MMO, MOMMOP, NMMSO AND NEA2 ON THE IEEE CEC 23 MULTIMODAL OPTIMIZATION TEST SUITE. TABLE IV SECTION IV-A: THE MEAN PEAK RATIOS AVERAGED OVER 5 RUNS OBTAINED BY EMO-MMO, MOMMOP, NMMSO AND NEA2, AT THE ACCURACY LEVEL OF =, = 3, = 5, RESPECTIVELY. BEST RESULTS ARE LIGHTED. F F2........ 3........ 5........ F3 F4........ 3........ 5....... 9 F5 F6...... 98 63 3...... 92 58 5........ F7 F8... 46. 87 54 4 3... 8. 8 22 4 5.... 8 7 39 F9 F.. 78 22.... 3 56. 78 84.... 5 54 8 78 79... 8 F F2. 97 9 8. 85 95 53 3. 3 9 67. 55 95 43 5. 73 9 6. 88 9 33 F3 F4. 57 9 77. 3 7 3 3. 77 83 6 23 67 23 5. 67 83 47 23 67 2 F5 F6 9 78 5 43. 43 6 73 3 8 38 42 2 67 43 6 73 5 8 2 32 3 67 43 6 73 F7 F8 95 5 8 95 7 87 5 67 3.338 5 7 95.33 87 5 67 5.338 85 6 95.33 87 5 63 F9 F2 37.37 6 67.33 5.363 3.37 57 67 5 5 2.36 5.37 37 67 5 5 2.35

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX 3 TABLE V SECTION IV-A: THE MEAN SUCCESS RATES AVERAGED OVER 5 RUNS OBTAINED BY EMO-MMO, MOMMOP, NMMSO AND NEA2, AT THE ACCURACY LEVEL OF =, = 3 AND = 5, RESPECTIVELY. BEST RESULTS ARE LIGHTED. F F2........ 3........ 5........ F3 F4........ 3........ 5........ F5 F6..... 8 6 8 3..... 6 8 4 5........ F7 F8.... 6.6. 3....6. 4.2. 5....4. 4.. F9 F. 8..... 3. 8..... 5..4.... 6 F F2. 8 4 8. 8 6 3. 2 4. 6 6 5.. 4 6..8 2 F3 F4. 6 4 6...2 3.. 6.6..2.8 5...6...6 F5 F6 2...2.... 3........ 5........ F7 F8 4...... 3........ 5........ F9 F2.4....... 3........ 5........

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX 4 III. BOXPLOTS OF THE RESULTS OBTAINED BY EMO-MMO, MOMMOP, NMMSO AND NEA2 ON EACH TEST FUNCTION IN THE IEEE CEC 23 MULTIMODAL OPTIMIZATION TEST SUITE IN 5 RUNS..5.5.5.5 (a) F (b) F2 (c) F3 (d) F4.5 5 5 5 5 (e) F5 (f) F6 (g) F7 (h) F8.5 (i) F9 (j) F (k) F (l) F2 (m) F3 (n) F4 (o) F5 (p) F6 (q) F7 (r) F8 (s) F9 (t) F2 Fig.. Section IV-A: Boxplots of the results obtained by each algorithm in 5 runs at accuracy level =.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX 5.5.5.5.5 (a) F (b) F2 (c) F3 (d) F4.5 5 5 5 5 (e) F5 (f) F6 (g) F7 (h) F8.5 (i) F9 (j) F (k) F (l) F2 5 5 (m) F3 (n) F4 (o) F5 (p) F6.3.3. (q) F7 (r) F8 (s) F9 (t) F2 Fig. 2. Section IV-A: Boxplots of the results obtained by each algorithm in 5 runs at accuracy level = 3.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX 6.5.5.5 5 5 (a) F (b) F2 (c) F3 5 (d) F4.5 5 5 5 5 (e) F5 (f) F6 (g) F7 (h) F8 8 6 4 2 (i) F9 (j) F (k) F (l) F2 5 5 (m) F3 (n) F4 (o) F5 (p) F6.3.3. (q) F7 (r) F8 (s) F9 (t) F2 Fig. 3. Section IV-A: Boxplots of the results obtained by each algorithm in 5 runs at accuracy level = 5.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX 7 IV. STATISTICAL RESULTS OF THE COMPARISONS BETWEEN ORIGINAL EMO-MMO AND ITS MODIFIED VERSIONS ON THE IEEE CEC 23 MULTIMODAL OPTIMIZATION TEST SUITE. TABLE VI SECTION V-A: MEAN PEAK RATIOS AVERAGED OVER 5 RUNS OBTAINED BY ORIGINAL EMO-MMO AND THE MODIFIED EMO-MMO USING THE REAL COORDINATE SYSTEM FOR DIVERSITY MEASUREMENT (EMO-MMO-R), AT THE ACCURACY LEVEL OF =, = 3, = 5, RESPECTIVELY. BEST RESULTS ARE LIGHTED. F F2 F3 F4........ 3........ 5........ F5 F6 F7 F8..... 39. 5 3..... 39. 5 5..... 33. 5 F9 F F F2. 79..... 88 3 56 98..... 88 5 54 97..... 88 F3 F4 F5 F6. 33. 5 9 3. 67 3. 7 23 67 8 38 67 67 5. 7 23 67 8 38 67 67 F7 F8 F9 F2 95.325 7 7 37 7.33 3.338.33.33 5 7 5 5 5.338.33.33 5 7 5 5 TABLE VII SECTION V-B: THE MEAN PEAK RATIOS AVERAGED OVER 5 RUNS OBTAINED BY ORIGINAL EMO-MMO AND THE MODIFIED EMO-MMO WITH LOCALIZED DE OPERATOR (EMO-MMO-DE), AT THE ACCURACY LEVEL OF =, = 3, = 5, RESPECTIVELY. BEST RESULTS ARE LIGHTED. F F2 F3 F4........ 3........ 5........ F5 F6 F7 F8..... 87. 9 3..... 87. 9 5..... 86. 9 F9 F F F2. 67...... 3 56 3...... 5 54 8...... F3 F4 F5 F6. 43.. 9 95.. 3. 63 23 7 8 9 67 67 5. 63 23 7 8 9 67 67 F7 F8 F9 F2 95 65 7 53 37 7.33 3.338 23.33 73 2 5 3 5.338 23.33 73 7 5 3

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX 8 V. SENSITIVITY ANALYSES OF CHANGING RATE (α) OF THE GRID-BASED DIVERSITY INDICATOR d grid (x) - - - - (a) F (b) F2 (c) F3 (d) F4.5 95 8 - - 9 85 8 75 6 4 2 (e) F5 (f) F6 (g) F7 (h) F8 5.2 5 8 5 6-4 - (i) F9 (j) F (k) F (l) F2. (m) F3 (n) F4 (o) F5 (p) F6 - - - - -2-2 -2-2 (q) F7 (r) F8 (s) F9 (t) F2 Fig. 4. Section III-B: Error bars of the results obtained using different changing rate (i.e., settings of α) of the grid-based diversity indicator d grid (x). Results are obtained via 5 runs on the IEEE CEC 23 multimodal optimization test suite.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX 9 VI. LOCALIZED DE OPERATOR FOR MOFLA Algorithm Section IV-B: Localized DE Operator : Input: parent population X = (x, x 2,..., x N ); 2: Output: offspring population X = ( x, x 2,..., x N ); 3: /*Mating Selection*/ 4: σ max{min x i x j }; // adaptive mating neighborhood size i j i 5: Γ = (γ, γ 2,..., γ N ); // mating neighborhoods 6: for i = to X do 7: γ i = {j : x i x j σ}; 8: end for 9: /*DE Recombination*/ : CR =, F = ; // parameters in DE : for i = to N do 2: /*randi3(a): randomly return 3 elements in A*/ 3: if γ i < 3 then 4: (r, r 2, r 3 ) = randi3({, 2,..., N}); 5: else 6: (r, r 2, r 3 ) = randi3(γ i ); 7: end if 8: x i = ( x r,, x r,2,..., x r,d); // i-th offspring solution 9: for j = to D do 2: /*randr(a, b): randomize a real number in [, ]*/ 2: if rand(, ) < CR then 22: x i,j = x i,j + F ( x r2,j x r3,j); 23: end if 24: end for 25: end for