Magnetic bubble refraction in inhomogeneous antiferromagnets

Σχετικά έγγραφα
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Areas and Lengths in Polar Coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Homework 8 Model Solution Section

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Areas and Lengths in Polar Coordinates

Space-Time Symmetries

D Alembert s Solution to the Wave Equation

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

The Simply Typed Lambda Calculus

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Spherical Coordinates

Second Order Partial Differential Equations

Approximation of distance between locations on earth given by latitude and longitude

Geodesic Equations for the Wormhole Metric

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Higher Derivative Gravity Theories

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

On the Galois Group of Linear Difference-Differential Equations

Section 8.3 Trigonometric Equations

Statistical Inference I Locally most powerful tests

Solutions to Exercise Sheet 5

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lifting Entry (continued)

Example Sheet 3 Solutions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Variational Wavefunction for the Helium Atom

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Parametrized Surfaces

ST5224: Advanced Statistical Theory II

1 String with massive end-points

Every set of first-order formulas is equivalent to an independent set

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Differential equations

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Concrete Mathematics Exercises from 30 September 2016

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Forced Pendulum Numerical approach

Lecture 26: Circular domains

Local Approximation with Kernels

EE512: Error Control Coding

Math221: HW# 1 solutions

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Heisenberg Uniqueness pairs

6.4 Superposition of Linear Plane Progressive Waves

Answer sheet: Third Midterm for Math 2339

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Finite Field Problems: Solutions

Matrices and Determinants

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

PARTIAL NOTES for 6.1 Trigonometric Identities

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Srednicki Chapter 55

If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

derivation of the Laplacian from rectangular to spherical coordinates

[1] P Q. Fig. 3.1

The Pohozaev identity for the fractional Laplacian

On a four-dimensional hyperbolic manifold with finite volume

Example 1: THE ELECTRIC DIPOLE

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Numerical Analysis FMN011

4.6 Autoregressive Moving Average Model ARMA(1,1)

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Abstract Storage Devices

Lecture 13 - Root Space Decomposition II

Derivation of Optical-Bloch Equations

Cosmological Space-Times

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

What happens when two or more waves overlap in a certain region of space at the same time?

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

2 Composition. Invertible Mappings

Tridiagonal matrices. Gérard MEURANT. October, 2008

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Graded Refractive-Index

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Section 9.2 Polar Equations and Graphs

ADVANCED STRUCTURAL MECHANICS

Transcript:

Magnetic bubble refraction in inhomogeneous antiferromagnets Martin Speight University of Leeds Nonlinearity 19 (006) 1565-1579

Plan Planar isotropic inhomogeneous antiferromagnetic spin lattices Continuum limit: O(3) sigma model on curved space Magnetic bubbles Doping domain walls, Snell s law of refraction The geodesic approximation, reduction to geometry Circular lenses, bubble guides

Antiferromagnets: Isotropic Heisenberg model Classical spins: S : Z R 3, S ij = s, ds ij dτ = S ij H S ij, H := i,j J ij S ij (S i,j+1 + S i+1,j ) J > 0 is a constant called the exchange integral H minimized when spins anti-align Doping: enrich part of AFM with different species J position dependent

Antiferromagnets: Isotropic Heisenberg model Classical spins: S : Z R 3, S ij = s, ds ij dτ = S ij H S ij, H := i,j J ij S ij (S i,j+1 + S i+1,j ) J > 0 is a constant called the exchange integral H minimized when spins anti-align Doping: enrich part of AFM with different species J position dependent

Antiferromagnets: Isotropic Heisenberg model Classical spins: S : Z R 3, S ij = s, ds ij dτ = S ij H S ij, H := i,j J ij S ij (S i,j+1 + S i+1,j ) J > 0 is a constant called the exchange integral H minimized when spins anti-align Doping: enrich part of AFM with different species J position dependent

The continuum limit: dimerization

The continuum limit: dimerization

The continuum limit: dimerization β α

The continuum limit: dimerization β α (-,1) dimer { B -,1 A -,1

The continuum limit: dimerization δ ε

The continuum limit: dimerization δ ε x = iε, y = jε, λ = αδ, ξ = βδ Assumption: A α,β B α,β J ij have continuum limits A(λ, ξ) B(λ, ξ) J(λ, ξ) as δ 0

The continuum limit: dimerization da αβ dτ db αβ dτ = J α β,α+β (B α,β 1 + B αβ + B α 1,β + B α 1,β 1 ) = J α β,α+β+1 (A α+1,β + A α+1,β+1 + A α,β+1 + A α,β ) Replace A α+1,β by A + δa λ + δ A λλ + etc Work to order δ J α β,α+β = J(λ, ξ) J α β,α+β+1 = J(λ + 1 δ, ξ + 1 δ) = J(λ, ξ) + δ (J λ + J ξ ) + δ 8 (J λλ + J ξξ + J λξ ) + Define rescaled time t = sδτ sδa t = JA [4B δ(b λ + B ξ ) + δ (B λλ + B ξξ + B λξ )] sδb t = JB [4A + δ(a λ + A ξ ) + δ (A λλ + A ξξ + A λξ )] B [δ(j λ + J ξ )A + δ (J λ + J ξ )(A λ + A ξ ) + δ (J λλ + J ξξ + J λξ )A]

The continuum limit: dimerization da αβ dτ db αβ dτ = J α β,α+β (B α,β 1 + B αβ + B α 1,β + B α 1,β 1 ) = J α β,α+β+1 (A α+1,β + A α+1,β+1 + A α,β+1 + A α,β ) Replace A α+1,β by A + δa λ + δ A λλ + etc Work to order δ J α β,α+β = J(λ, ξ) J α β,α+β+1 = J(λ + 1 δ, ξ + 1 δ) = J(λ, ξ) + δ (J λ + J ξ ) + δ 8 (J λλ + J ξξ + J λξ ) + Define rescaled time t = sδτ sδa t = JA [4B δ(b λ + B ξ ) + δ (B λλ + B ξξ + B λξ )] sδb t = JB [4A + δ(a λ + A ξ ) + δ (A λλ + A ξξ + A λξ )] B [δ(j λ + J ξ )A + δ (J λ + J ξ )(A λ + A ξ ) + δ (J λλ + J ξξ + J λξ )A]

The continuum limit: dimerization da αβ dτ db αβ dτ = J α β,α+β (B α,β 1 + B αβ + B α 1,β + B α 1,β 1 ) = J α β,α+β+1 (A α+1,β + A α+1,β+1 + A α,β+1 + A α,β ) Replace A α+1,β by A + δa λ + δ A λλ + etc Work to order δ J α β,α+β = J(λ, ξ) J α β,α+β+1 = J(λ + 1 δ, ξ + 1 δ) = J(λ, ξ) + δ (J λ + J ξ ) + δ 8 (J λλ + J ξξ + J λξ ) + Define rescaled time t = sδτ sδa t = JA [4B δ(b λ + B ξ ) + δ (B λλ + B ξξ + B λξ )] sδb t = JB [4A + δ(a λ + A ξ ) + δ (A λλ + A ξξ + A λξ )] B [δ(j λ + J ξ )A + δ (J λ + J ξ )(A λ + A ξ ) + δ (J λλ + J ξξ + J λξ )A]

The continuum limit: dimerization sδa t = JA [4B δ(b λ + B ξ ) + δ (B λλ + B ξξ + B λξ )] sδb t = JB [4A + δ(a λ + A ξ ) + δ (A λλ + A ξξ + A λξ )] B [δ(j λ + J ξ )A + δ (J λ + J ξ )(A λ + A ξ ) + δ (J λλ + J ξξ + J λξ )A] New fields: m = 1 1 (A + B), n = (A B) s s m n = 0 and m + n = 1 neighbouring spins almost anti-align m small assume m = O(δ) whence n = 1 + O(δ ) m t = ( λ + ξ )[Jm n] + δ 4 [Jn (n λλ + n ξξ + n λξ ) + (J λ + J ξ )n (n λ + n ξ )] δ n t = 4Jm n δjn (n λ + n ξ ) δ(j λ + J ξ )m n δ 4 (J λ + J ξ )n (n λ + n ξ )

The continuum limit: dimerization sδa t = JA [4B δ(b λ + B ξ ) + δ (B λλ + B ξξ + B λξ )] sδb t = JB [4A + δ(a λ + A ξ ) + δ (A λλ + A ξξ + A λξ )] B [δ(j λ + J ξ )A + δ (J λ + J ξ )(A λ + A ξ ) + δ (J λλ + J ξξ + J λξ )A] New fields: m = 1 1 (A + B), n = (A B) s s m n = 0 and m + n = 1 neighbouring spins almost anti-align m small assume m = O(δ) whence n = 1 + O(δ ) m t = ( λ + ξ )[Jm n] + δ 4 [Jn (n λλ + n ξξ + n λξ ) + (J λ + J ξ )n (n λ + n ξ )] δ n t = 4Jm n δjn (n λ + n ξ ) δ(j λ + J ξ )m n δ 4 (J λ + J ξ )n (n λ + n ξ )

The continuum limit: dimerization sδa t = JA [4B δ(b λ + B ξ ) + δ (B λλ + B ξξ + B λξ )] sδb t = JB [4A + δ(a λ + A ξ ) + δ (A λλ + A ξξ + A λξ )] B [δ(j λ + J ξ )A + δ (J λ + J ξ )(A λ + A ξ ) + δ (J λλ + J ξξ + J λξ )A] New fields: m = 1 1 (A + B), n = (A B) s s m n = 0 and m + n = 1 neighbouring spins almost anti-align m small assume m = O(δ) whence n = 1 + O(δ ) m t = ( λ + ξ )[Jm n] + δ 4 [Jn (n λλ + n ξξ + n λξ ) + (J λ + J ξ )n (n λ + n ξ )] δ n t = 4Jm n δjn (n λ + n ξ ) δ(j λ + J ξ )m n δ 4 (J λ + J ξ )n (n λ + n ξ )

The continuum limit: dimerization m t = ( λ + ξ )[Jm n] + δ 4 [Jn (n λλ + n ξξ + n λξ ) + (J λ + J ξ )n (n λ + n ξ )] ( ) δ n t = 4Jm n δjn (n λ + n ξ ) δ(j λ + J ξ )m n δ 4 (J λ + J ξ )n (n λ + n ξ )

The continuum limit: dimerization m t = ( λ + ξ )[Jm n] + δ 4 [Jn (n λλ + n ξξ + n λξ ) + (J λ + J ξ )n (n λ + n ξ )] ( ) δ n t = 4Jm n δjn (n λ + n ξ ) + O(δ ) δ 4 Solve ( ) for m: m = δ 4 ( ) [ 1 J n n t n λ n ξ ] + O(δ )

The continuum limit: dimerization m t = ( λ + ξ )[Jm n] + δ 4 [Jn (n λλ + n ξξ + n λξ ) + (J λ + J ξ )n (n λ + n ξ )] ( ) δ n t = 4Jm n δjn (n λ + n ξ ) + O(δ ) δ 4 Solve ( ) for m: Subst in ( ): All terms involving J λ, J ξ cancel! m = δ 4 ( ) [1 J n n t n λ n ξ ] + O(δ ) n n tt = J n (n λλ + n ξξ ) + O(δ)

The continuum limit: dimerization m t = ( λ + ξ )[Jm n] + δ 4 [Jn (n λλ + n ξξ + n λξ ) + (J λ + J ξ )n (n λ + n ξ )] ( ) δ n t = 4Jm n δjn (n λ + n ξ ) + O(δ ) δ 4 Solve ( ) for m: Subst in ( ): All terms involving J λ, J ξ cancel! m = δ 4 ( ) [1 J n n t n λ n ξ ] + O(δ ) n n tt = J n (n λλ + n ξξ ) + O(δ) Limit δ 0: ( ) n n t n J λ n J = 0 }{{ ξ } Dn

( ) D = J(x, y) t x + y The O(3) sigma model ( ) n n t n J λ n J = 0 }{{ ξ } Dn where J(x, y) = J( λ ξ, λ+ξ )

( ) D = J(x, y) t x + y The O(3) sigma model ( ) n n t n J λ n J = 0 }{{ ξ } Dn where Wave operator on spacetime R +1 with inhomogeneous metric J(x, y) = J( λ ξ, λ+ξ ) η = dt J(x, y) (dx + dy )

( ) D = J(x, y) t x + y The O(3) sigma model ( ) n n t n J λ n J = 0 }{{ ξ } Dn where Wave operator on spacetime R +1 with inhomogeneous metric J(x, y) = J( λ ξ, λ+ξ ) η = dt J(x, y) (dx + dy ) n Dn = 0 n Dn Dn (n Dn)n = 0 Variational equation for S = 1 R +1 dt dx dy η η µν µ n ν n

Magnetic bubbles n [n tt J(x, y) (n xx + n yy )] = 0 Static solutions are independent of J (conformal invariance) S R x + iy = z n(z) u(z) Belavin-Polyakov: u(z) = rational map Choose u( ) =, that is, n( ) = (0, 0, 1) Unit bubble : u(z) = χ 1 e iψ (z a) =: u 0 (z; χ, ψ, a) gradient energy χ R + width ψ [0, π] internal phase a C position z χ a

Doping domain walls J J + J - J + dope this end (suppress J ) J y x v θ

Doping domain walls Noether s Theorem conservation of E = 1 ( nt ) dx dy J(x) + n x + n y and P = dx dy n t n y J(x) Minkowski space speed of light = J v θ v + θ + Minkowski space speed of light = J + Mγ + = Mγ and v +γ + sinθ + J + where γ ± = Snell s Law: ( ) 1 1 v ± J± 1 J + sinθ + = 1 J sinθ M = v γ sinθ J M J 1 = refractive index Total internal reflexion if θ 1 > sin 1 (J /J + ) Crucial fact: bubble rest energy M = M + = M = 4π (conformal invariance)

Doping domain walls Noether s Theorem conservation of E = 1 ( nt ) dx dy J(x) + n x + n y and P = dx dy n t n y J(x) Minkowski space speed of light = J v θ v + θ + Minkowski space speed of light = J + Mγ + = Mγ and v +γ + sinθ + J + where γ ± = Snell s Law: ( ) 1 1 v ± J± 1 J + sinθ + = 1 J sinθ M = v γ sinθ J M J 1 = refractive index Total internal reflexion if θ 1 > sin 1 (J /J + ) Crucial fact: bubble rest energy M = M + = M = 4π (conformal invariance)

Doping domain walls Noether s Theorem conservation of E = 1 ( nt ) dx dy J(x) + n x + n y and P = dx dy n t n y J(x) Minkowski space speed of light = J v θ v + θ + Minkowski space speed of light = J + Mγ + = Mγ and v +γ + sinθ + J + where γ ± = Snell s Law: ( ) 1 1 v ± J± 1 J + sinθ + = 1 J sinθ M = v γ sinθ J M J 1 = refractive index Total internal reflexion if θ 1 > sin 1 (J /J + ) Crucial fact: bubble rest energy M = M + = M = 4π (conformal invariance)

Doping domain walls Noether s Theorem conservation of E = 1 ( nt ) dx dy J(x) + n x + n y and P = dx dy n t n y J(x) Minkowski space speed of light = J v θ v + θ + Minkowski space speed of light = J + Mγ + = Mγ and v +γ + sinθ + J + where γ ± = Snell s Law: ( ) 1 1 v ± J± 1 J + sinθ + = 1 J sinθ M = v γ sinθ J M J 1 = refractive index Total internal reflexion if θ 1 > sin 1 (J /J + ) Crucial fact: bubble rest energy M = M + = M = 4π (conformal invariance)

Slow bubble dynamics: the geodesic approximation Bubble u 0 (z; χ, ψ, a): 4 parameter family of energy minimizers Parameter space: M 1 = C C u 0 (χe iψ, a) = (q 1 + iq, q 3 + iq 4 ) Approximation: u(z, t) = u 0 (z; χ(t), ψ(t), a(t)) S ( ) 1 = dt g ij(q) q i q j 4π. Variational equations for q i (t): geodesic equation on M 1 with metric g = g ij dq i dq j

Slow bubble dynamics: the geodesic approximation J(x, y) bounded χ = ψ = χ, ψ frozen by infinite inertia Can assume ψ = 0. Width χ is a free but frozen parameter Metric on width χ phase 0 leaf M χ 1 : g = f χ (a)(da 1 + da ) where f χ(a) = the integral of J(χu + a) over the standard unit sphere 4 du dū 1 (1 + u ) J(χu + a), lim χ 0 g = 4π J(a) (da 1 + da ) = 4π metric on physical plane g = smeared out metric on R due to finite bubble core size

Doping domain walls J J + 40 35 J - x 30 5 [ f χ (a) = π J 1 a 1 χ + a 1 ] + π J + interpolates smoothly between 4π J [ 1 + a 1 χ + a 1 and 4π J + ]} 0 15 10 5 0 10 5 0 5 10 J + J = solid: χ = 0.5 dashed: χ = 0.1

Circular lenses Have geometric optics model of bubble trajectories Should be able to focus bubbles with thin lenses Simple test case: sharp circular lens J + J - J + J - J(z) = { J+, z > 1 J, z 1 Can write down f χ ( a ) explicitly (but it s complicated)

Circular lenses (M χ 1, g) can be isometrically embedded as a surface of revolution in R3 (for χ not too small) χ = 1 χ = 1 χ = 1 4 χ = 1 5

Circular lenses 1.5 χ=0.01 1 0.5 0 0.5 1 1.5 J = 1, J + = 4 3 1 0 1 3 4 1.5 1 χ=0.3 0.5 0 0.5 1 1.5 J = 1, J + = 4 3 1 0 1 3 4

Circular lenses 1.5 1 0.5 0 0.5 1 1.5 4 3 1 0 1 3 4

Circular lenses 1.5 1 0.5 0 0.5 1 1.5 4 3 1 0 1 3 4

Circular lenses 1.5 1 0.5 0 0.5 1 1.5 4 3 1 0 1 3 4

Circular lenses 1.5 1 0.5 0 0.5 1 1.5 4 3 1 0 1 3 4

Circular lenses 1.5 1 0.5 0 0.5 1 1.5 4 3 1 0 1 3 4

Bubble guides low J high J 10 8 8 6 6 4 4 χ = 0.1 0 0 χ = 1 4 4 6 6 8 8 10 5 0 5 10 10 10 5 0 5 10

Prospects Snell s law follows direct from elastic scattering (should hold for low velocities) and field theoretic conservation laws......provided scattering off walls does not cause bubble collapse Numerics: simulate spin lattice directly, not sigma model Practical problem: spins anti-align magnetization (almost) zero. Very hard to observe and manipulate bubbles experimentally Refraction relies only on conformal invariance: should happen to instantons in 4 + 1 dimensional Yang-Mills, for example Laboratory model of soliton dynamics in exotic spacetimes! Nonlinearity 19 (006) 1565-1579