1 2 Performance Improvement of Natural Rubber / Carbon Black Composites by Novel Coupling Agents Sumitomo Chemical Co., Ltd. Energy & Functional Materials Research Laboratory Yasuo UEKITA Yousuke WATANABE Hironobu IYAMA rhan ZTURK In recent years, various actions for saving resources and energy have been taken and the demand for a contribution by tires to saving energy has become higher. In order to achieve energy savings from tires, the reduction of rolling resistance, which is one of the resistances against driving force, is very important. In this article, we review the trends in the field of coupling agents and report on the performance of newlydeveloped carbon black coupling agents for energy-saving tires. C2 1 10 20 2 1) 3 90 Fig. 1 2) CB CC 2016
Hysteresis Loss = Visco-elastic behavior of rubber Unloaded Loaded stress loading hysteresis loss unloading strain Fig. 1 Hysteresis Loss JATMA 2010 1 Fig. 2 10 NR /CB SBR / SBR/ SBR/ SBR/ Evonik Degussa GmbH TESPT Fig. 3 Et Et Et Si (CH2)3 S4 (CH2)3 Si Et Et TESPT Et Me Me Si (CH2)3 SH Fig. 2 Tire label 3) Me (CH2)2 Me Me (CH2)2 Si CH CH2 (CH2)2 Me Fig. 3 Various silane coupling agents NR/CB NRCB NR/CB 2016
H3C N N N 2N C CH2NH N H N N N N N N Fig. 4 Various carbon black coupling agents NR/CB NR/CB NR/CB NR/CB NR NR CB CB CBHowland N,4 N NR/CB 2N C CH2NH(CH2)6NHCH2 N2 Fig. 5 BNAH CB 4) Walker N 2 2 4 5) Fig. 4 1975 1989 Fig. 5 6) CH H Functional groups for NR CB NR Functional groups for CB Functional groups for CB -NH2, NHR, NR1R2 -Ph-H, -CH2H -C2H, anhydride -Isocyanate -Epoxy -lefin -etc. Spacer -(CH2)n - n = 2, 3, 4, 5, 6, 9 -Cyclic -Aromatic -(Ph)- Functional groups for NR -S-S3M(H, Na, K, Li, Ca, etc) -S-S3R1(NH4 +, NR4 +, etc) -S-S2R2(4-Me-Ph, Et, etc) -Sx, (-S2, -S4), SH -lefin -α, β - unsaturated carbonyl -etc. Fig. 6 Screening of NR/CB coupling agent 2016
H2N Fig. 7 SUMILINK 100/200 SS3H H2N N H SUMILINK 100 Na Functional group for NR Functional group for CB 2 7) 1CB NR CB CB NR NR NR NR Fig. 6 1 2SUMILINK 100/200 Fig. 7 100/200 A tanδ@60 SUMILINK 100/200 NR/CB Table 2 Table 1 Table 1 Effect of SUMILINK 100/200 Control SUMILINK 100 tanδ@60 C 0.105 0.084 0.078 1 SUMILINK 100/200 A B CFig. 8Table 1 SUMILINK Polymer Filler etc. Table 2 Recipe Process A NR CB (N330) Zinc oxide Stearic acid 6PPD SUMILINK 100/200 Process B sulfur CBS polymer filler accelerator activator accelerator activator antioxidant vulcanizing agent vulcanization accelerator phr 100 45 5 3 1 1 2 1 Sulfur Accelerator Process A Mixing @150~180 C 0.14 Process B Mixing @70~100 C Process C Vulcanization @140~180 C tanδ@60 C 0.12 0.10 0.08 sulfur:1phr sulfur: 2phr(Control) sulfur: 3phr SUMILINK 100 Rubber Products for the tire 0.06 10 12 14 16 18 20 22 Modulus M300 (N/mm 2 ) Fig. 8 Processing steps Fig. 9 Comparison with sulfur variate 2016
SUMILINK 100/200 Fig. 9 SUMILINK 100/200 CB 3D-TEM Fig. 10CB Control control CB Table 3 CB type used in tire components Tread CB type N121(20), N220(22) ( ) : CB mean particle size (nm) Ratio of tanδ reduction vs Control Ratio of tanδ reduction vs Control 25 20 15 10 5 0 50 45 40 35 30 25 20 15 10 5 0 SUMILINK 100 (Loading amount : 1phr) Belt N330(28) N220 N330 N550 CB Type (Loading amount : 1phr) N121 N220 N330 N550 CB Type Sidewall N550(45) Ratio of tanδ reduction vs Control 400nm 400nm = 100 100 tanδ@60 (SUMILINK ) tanδ@60 (Control) Fig. 10 3D-TEM Control Fig. 11 Effect of SUMILINK 100/200 in CB type SUMILINK 100/200 Payne Payne CB Payne CB CB CB N550 Table 3 CB SUMILINK 100/200 Fig. 11 CB CB CB CB 8) CB CB CB 2 CB CB CB N121,N220 3 CB 2016
PayneTable 4 CB Fig. 12CC CC Fig. 8, Process APayne CB Fig. 13 CB 9) Table 4 Fig. 14 Table 4 Bound rubber Payne effect of unvulcanized rubber Payne effect of vulcanizates Fig. 12 Behavior of bound rubber and Payne effect CB Density Hardness Mobility of polymer chain SUMILINK 100 increased decreased slightly decreased Bound rubber (insoluble in toluene) High Hard Low Low Soft High Model of bound rubber increased significantly decreased significantly decreased significantly Fig. 14 + NR CB agglomerate CB agglomerate is crushed. Bound rubber is formed. CB is drawn out with rubber by taking a share. New bound rubber is formed of the fresh CB surface. Hypothesis of CB dispersion effect by SUMILINK Fig. 8, Process ASUMI- LINK 200 NR CB CB CB CB Fig. 8, Process C CB CB 2CB CB CB CB CB CB Mixing process Vulcanization process Dispersion Flocculation Agglomerates Aggregates Network Fig. 13 Hypothesis of CB network 2016
SUMILINK 100 Payne CB SUMI- LINK 200 CB CB NR S NR/CB Kd Ks 1 1 CB Dynamic-to-static modulus ratio = Dynamic elastic modulus (High frequency) Static elastic modulus (Low frequency) (1) NR/CB SUMILINK 100/200 Table 5 SUMILINK 100/200 Table 5 SUMILINK 100CB SUMILINK 100 Table 5 Effect on dynamic-to-static modulus ratio of SUMILINK SUMILINK 100/200 SUMILINK 100/200 NR/CB CC CBCB CC SUMILINK 100/200 CB 1),, http://www.jatma.or.jp/labeling/ faq02.html (2016/5/11). 2), 19 SPring 8, 2007B1942, https:// support.spring8.or.jp/report_jsr/pdf_jsr_19b/ 2007B1942.pdf (2016/5/11). 3),, http://www.jatma.or.jp/labeling/outline. html (2016/5/11). 4) L. H. Howland, US2315855 (1943). 5) L. A. Walker, J. J. D amico and D. D. Mullins, J. rg. Chem., 27, 2767 (1962). 6) T. Yamaguchi, I. Kurimoto, H. Nagasaki and T. kita, Rubber World, Feb., 30 (1989). 7) L. A. Walker and J. E. Kerwood, Rubber Age, 90, 925 (1962). 8), 3, (1995). 9) A. I. Medalia, Rubber Chemistry and Technology, 59, 432 (1986). sulfur/accelerator Control SUMILINK 100 2/1 0.3/2 1.36 1.44 1.29 1.43 1.34 1.39 2016
PRFILE Yasuo UEKITA Hironobu IYAMA Yousuke WATANABE rhan ZTURK 2016