ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ



Σχετικά έγγραφα
MATHematics.mousoulides.com

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΕΔΡΑΣΗ Χ. ΨΑΛΛΙΔΑΣ ΑΝΩΝΥΜΟΣ ΤΕΧΝΙΚΗ, ΤΟΥΡΙΣΤΙΚΗ, ΕΜΠΟΡΙΚΗ και ΒΙΟΜΗΧΑΝΙΚΗ ΕΤΑΙΡΕΙΑ Συνοπτικές Ενδιάμεσες Οικονομικές Καταστάσεις για την περίοδο από

ΕΚΛΟΓΙΚΑ ΤΜΗΜΑΤΑ ΚΑΙ ΚΑΤΑΣΤΗΜΑΤΑ ΨΗΦΟΦΟΡΙΑΣ ΒΟΥΛΕΥΤΙΚΩΝ ΕΚΛΟΓΩΝ ΤΗΣ 6 ης ΜΑΪΟΥ 2012

ΚΑΛΥΦΤΑΚΙ ΑΝΩΝΥΜΗ ΚΤΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΑΚΙΝΗΤΩΝ ΚΑΙ ΣΥΜΜΕΤΟΧΩΝ

Α Π Ο Σ Π Α Σ Μ Α. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΒΟΙΩΤΙΑΣ ΔΗΜΟΣ ΟΡΧΟΜΕΝΟΥ Αρ.Πρωτ.: 415/

Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν

Εξερεύνηση. Διερεύνηση

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΟΜΙΛΟΣ ΚΟΥΜΠΑΣ ΑΕ ΣΥΜΜΕΤΟΧΩΝ

ΠΡΟΑΓΩΓΙΚΕΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Ολογρ.:... ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α' Υπογραφή.:... Ονοµατεπώνυµο µαθητή/τριας:... Τµήµα:... Αρ.:...

Γ49/ 35 ΕΞ. ΕΠΕΙΓΟΝ Π Ρ Ο Σ :

(ΜΕ ΤΑ ΔΥΟ ΜΕΙΟΝΕΚΤΗΜΑΤΑ)

ΤΟ ΣΥΜΒΟΥΛΙΟ ΤΗΣ ΕΠΙΚΡΑΤΕΙΑΣ ΤΜΗΜΑ Β

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΚΣΤ. Τετάρτη 4 Μαΐου 2011

ΕΘΝΙΚΗ ΣΥΝΟΜΟΣΠΟΝΔΙΑ ΕΛΛΗΝΙΚΟΥ ΕΜΠΟΡΙΟΥ ΜΗΤΡΟΠΟΛΕΩΣ 42, ΑΘΗΝΑ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜ/ ΝΙΑ : 15/06/2006 ΒΑΘΜΟΣ :...

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΒΟΙΩΤΙΑΣ ΔΗΜΟΣ ΟΡΧΟΜΕΝΟΥ Αρ.Πρωτ.: 10829/ Α Π Ο Σ Π Α Σ Μ Α

ΑΠΟΦΑΣΗ 11/720/ του Διοικητικού Συμβουλίου

6 ο κεφάλαιο. πετρελαιομηχανές

β) Το εμβαδόν του ορθογωνίου είναι το γινόμενο των διαστάσεών του. Οπότε E = xy. Επειδή α = α + ν 1ωδιαδοχικά για ν = 10 και ν = 6.

ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ Εκλογικών

ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ. Ως Ειδικός Γραμματέας παραβρέθηκε ο υπάλληλος κ. Λουκάς Στραβόλαιμος.

Η ΜΠΑΡΤΣΑ ΓΙΟΡΤΑΖΕΙ ΤΗΝ ΑΝΟΔΟ ΚΑΙ ΠΑΕΙ ΔΥΝΑΤΑ ΓΙΑ ΝΤΑ ΣΙΛΒΑ

ΕΡΓΟ: «ΕΦΑΡΜΟΓΕΣ ΕΙΚΟΝΙΚΗΣ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ ΣΤΗ ΒΟΙΩΤΙΑ: ΜΑΝΤΕΙΟ ΤΡΟΦΩΝΙΟΥ ΚΑΙ ΜΥΚΗΝΑΪΚΗ ΘΗΒΑ»

Σημειώσεις Εργαστηρίου του μαθήματος Γενικής Φυσικής Γεωγραφίας

Α Π Ο Σ Π Α Σ Μ Α. Από το πρακτικό της αριθ. 26/2013 τακτικής Συνεδρίασης της Οικονομικής Επιτροπής του Δήμου Φιλαδελφείας-Χαλκηδόνος

Α Π Ο Σ Π Α Σ Μ Α. Από το πρακτικό της αριθ. 5/2015 τακτικής Συνεδρίασης της Οικονομικής Επιτροπής του Δήμου Φιλαδελφείας-Χαλκηδόνος

Τεύχος 7. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου Περιεχόμενα

2 Συντεταγµένες στο επίπεδο

ΚΥΑ Φ.80000/οικ.16011/1709

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ!


Γ49/59 ΕΞ. ΕΠΕΙΓΟΝ Π Ρ Ο Σ :

ΕΤΑΙΡΕΙΑ ΑΝΑΠΤΥΞΗΣ ΕΠΑΡΧΙΑΣ ΑΠΟΚΟΡΩΝΑ ΑΝΩΝΥΜΗ ΕΤΑΙΡΕΙΑ ΑΡ.Μ.Α.Ε /73/Β/86/23. ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ 31 ης Δεκεμβρίου 2006

Η ΚΟΙΝΩΝΙΚΗ ΔΙΑΣΤΑΣΗ ΤΟΥ ΔΗΜΟΣΙΟΥ ΧΩΡΟΥ: ΜΕΛΕΤΩΝΤΑΣ ΤΙΣ ΠΛΑΤΕΙΕΣ ΤΟΥ ΜΕΤΑΞΟΥΡΓΕΙΟΥ

Π Ρ Ο Σ Α Ρ Τ Η Μ Α ΤΟΥ ΙΣΟΛΟΓΙΣΜΟΥ ΤΗΣ 31ης ΔΕΚΕΜΒΡΙΟΥ 2012

ΑΛΜΑ ΑΤΕΡΜΩΝ ΑΝΩΝΥΜΗ ΔΙΑΦΗΜΙΣΤΙΚΗ ΕΜΠΟΡΙΚΗ ΚΑΙ ΚΑΤΑΣΚΕΥΑΣΤΙΚΗ ΕΤΑΙΡΙΑ

ΣΤΗΝ ΕΥΘΕΙΑ. 2. Δίνεται η εξίσωση: α(x+ψ-4)+x-2=0 (1). i) Να δείξετε ότι η εξίσωση (1) παριστάνει ευθεία για κάθε αî

Μαθηµατικά Α Γυµνασίου. Eρωτήσεις θεωρίας

ΠΛΗΡΩΜΕΣ ΩΡΟΜΙΣΘΙΩΝ ΕΜΠΕΙΡΟΤΕΧΝΩΝ ΜΟΥΣΙΚΩΝ (ΕΜ16) ΓΕΝΙΚΑ

ΑΝΩΣΗ Α.E. ΕΤΗΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΕΚΘΕΣΗ

ΝΕΟ ΛΥΚΕΙΟ 2014 ΕΦΑΡΜΟΓΗ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Α ΤΑΞΗΣ ΛΥΚΕΙΟΥ (ΣΧΟΛΙΚΟ ΈΤΟΣ: )

Α Π Ο Σ Π Α Σ Μ Α από το πρακτικό της υπ' αριθµ. 32ης/2015 Συνεδρίασης του ηµοτικού Συµβουλίου

Α1. (α). ώστε τον ορισμό του προβλήματος (Μονάδες 3)

επιµέλεια Θοδωρής Πιερράτος

ΑΧΟΝ ΑΝΩΝΥΜΗ ΕΤΑΙΡΕΙΑ ΣΥΜΜΕΤΟΧΩΝ

Του Σταύρου Ν. PhD Ψυχολόγου Αθλητικού Ψυχολόγου

ΔΙΑΘΕΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ

Θέματα Πανελλαδικών Εξετάσεων Φυσικής Γ Λυκείου Προσανατολισμού 1

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΙΣΤ. Πέµπτη 31 Ιανουαρίου 2013

ΝΕΟ ΛΥΚΕΙΟ 2013 (Ν. ΦΕΚ: Ημ/νία ψήφισης:10/09/2013)

Θέμα πτυχιακής εργασίας

Τίτλος Μαθήματος Ενότητα: Νεότερες θεωρητικές προσεγγίσεις: Σενάρια διδασκαλίας

Π ΕΡΙΕΧΟΜ ΕΝΑ. σελ Η ΦΟΡΟΛΟΓΙΑ ΚΕΡΔΩΝ ΑΠΟ ΛΑΧΕΙΑ σελ Η ΦΟΡΟΛΟΓΙΑ ΑΚΙΝΗΤΗΣ ΠΕΡΙΟΥΣΙΑΣ σελ. 31

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ

Α Π Ο Σ Π Α Σ Μ Α. ΘΕΜΑ: Έγκριση του επιχειρησιακού σχεδίου πολιτικής προστασίας του δήμου Πύργου

Η ΚΑΤΑΝΑΛΩΣΗ ΤΩΝ ΕΜΠΟΡΕΥΜΑΤΩΝ

ΚέντροΠεριβαλλοντικήςΕκπαίδευσης Σουφλίου. Πρόγραμμα: Διαχείρισηαπορριμμάτων-Ανακύκλωση

ΤΑ ΕΠΙΠΕΔΑ ΟΡΓΑΝΩΣΗΣ ΤΩΝ ΠΟΛΥΚΥΤΤΑΡΩΝ ΟΡΓΑΝΣΙΜΩΝ ΟΙ ΖΩΙΚΟΙ ΙΣΤΟΙ 2 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

Ε Λ Ε Γ Κ Τ Ι Κ Ο Σ Υ Ν Ε Δ Ρ Ι Ο ΣΕ Ο Λ Ο Μ Ε Λ Ε Ι Α

ΑΔΑ: Β4ΜΟΩ9Μ-ΠΛΗ. Θωμάς Γεώργιος Αναστάσιος Χριστόδουλος Ιωάννης Γρηγόριος Ανδρέας Ανέστης Στυλιανός Κων/νος Γεώργιος Γεώργιος

Α Π Ο Σ Π Α Σ Μ Α. 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΒΟΙΩΤΙΑΣ ΔΗΜΟΣ ΟΡΧΟΜΕΝΟΥ Αρ.Πρωτ.: 16036/

ΤΥΠΟΛΟΓΙΟ ΓΕΩΜΕΤΡΙΑΣ Ο Ρ Ο Σ Η Μ Ο

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΜ. Πέµπτη 7 Μαρτίου 2013

Σχηματισμός Υποτακτικής Παρακειμένου Ενεργητικής Φωνής. Ο Παρακείμενος σχηματίζει την Υποτακτική έγκλιση με δύο τρόπους:

ΦΟ(ΡΟΛΟΤΙΛ. 2ίΩΦΈΩ9{οί Τ 09^% βΰ^ή :Λ ^Χ Ω ΰ^ ^ Χ 0 β!κ 2 Ι0 ΐχ Κ ^ ^ Σ. ΟΐχΟΤίΟΜΙΛ'Σ

ΑΡΙΘΜΟΣ 0555/ ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΕΝΙΑΙΑ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΧΙΟΥ

Π Ρ Ο Κ Η Ρ Υ Ξ Η. ΓΙΑ ΤΗΝ ΠΡΟΣΛΗΨΗ ΔΙΔΑΚΤΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ ΜΕ ΩΡΙΑΙΑ ΑΠΟΖΗΜΙΩΣΗ ΓΙΑ ΤΗΝ 3 η ΕΚΠΑΙΔΕΥΤΙΚΗ ΠΕΡΙΟΔΟ, ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΣΕΙΡΑΣ

ΕΞΑΙΡΕΤΙΚΑ ΕΠΕΙΓΟΝ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ Ε Λ Λ Η Ν Ι Κ Η Δ Η Μ Ο Κ Ρ Α Τ Ι Α ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ

Δ Ι Η Μ Ε Ρ Ι Δ Α Μ Ε Α Φ Ο Ρ Μ Η Τ Η Ν Ε Ο Ρ Τ Η Τ Ω Ν Τ Ρ Ι Ω Ν Ι Ε Ρ Α Ρ Χ Ω Ν

Τηλ. : ΣΕ ΕΥΡΩ - ΕΛΕΥΘΕΡΟ FAX : ΓΙΑ ΤΟΝ ΦΟΡΕΑ: ΥΠΟΥΡΓΕΙΟ ΕΜΠΟΡΙΚΗΣ ΝΑΥΤΙΛΙΑΣ

β) κίνημα στο Γουδί: σχολ. βιβλ σελ «το 1909 μέσω της Βουλής».

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕ ΡΙΑΣΗ Ν. Πέµπτη 28 Ιανουαρίου 2010

5. ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΟΥ ΜΑΘΗΤΗ

ΑΠΟΦΑΣΗ ΟΙ ΥΠΟΥΡΓΟΙ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΔΙΚΑΙΟΣΥΝΗΣ

ΑΔΑ: Β464Ν-ΡΔ5. Έχοντας υπόψη:

Ε.Π. ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ, (ΕΠΕΑΕΚ ΙΙ) ΜΕΤΡΟ 2.5, ΕΝΕΡΓΕΙΑ 2.5.1, ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ α

Η Λίμνη Λαγκαδά και η Μυγδονία Λεκάνη Η Πράσινη Χημεία και η Προστασία του Περιβάλλοντος

Φιλολογικό Φροντιστήριο

Π Ρ Ο Κ Η Ρ Υ Ξ Η Ο ΑΡΧΗΓΟΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΑΣΤΥΝΟΜΙΑΣ

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΤΗΝ ΠΡΟΣΛΗΨΗ ΔΙΔΑΣΚΟΝΤΩΝ ΣΥΜΦΩΝΑ ΜΕ ΤΟ Π.Δ.407/80

Αξιολόγηση των Επιδράσεων του Σχεδίου Τοποθέτησης Άνεργων Νέων Αποφοίτων Γυμνασίων, Λυκείων, Τεχνικών Σχολών και Μεταλυκειακής Εκπαίδευσης μέχρι και

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΥΛΙΝ ΡΟΥ

Ε Λ Λ Η Ν Ι Κ Η ΔΗΜΟΚΡΑΤΙΑ

ΠΑΡΑΡΤΗΜΑ ΣΤ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ

ΘΕΜΑ: «Ορισμός αριθμού εισακτέων κατά τις εισιτήριες εξετάσεις για τη Σχολή Αρχιπυροσβεστών της Πυροσβεστικής Ακαδημίας». Ο Υπουργός Εσωτερικών

ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗΣ Πρόγραμμα Μεταπτυχιακών Σπουδών Φιλοσοφίας ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ

Α Π Ο Φ Α Σ Η Η ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΑΣ ΑΠΟΚΕΝΤΡΩΜΕΝΗΣ ΔΙΟΙΚΗΣΗΣ ΗΠΕΙΡΟΥ - ΔΥΤ. ΜΑΚΕΔΟΝΙΑΣ

Α Π Ο Φ Α Σ Η Ο ΥΠΟΥΡΓΟΣ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ

Παραμένει ο Δήμος της Πρέσπας;

ΘΕΜΑ: «Χορήγηση επιδόματος πετρελαίου θέρμανσης και καθορισμός του ύψους, των δικαιούχων, των προϋποθέσεων και της διαδικασίας χορήγησης αυτού».

ΟΡΑΚΟΝ ΙΚΕ δτ: ORACON ΙΚΕ Αριθμ. ΓΕΜΗ :

«ΑΣΦΑΛΤΟΣΤΡΩΣΗ ΑΓΡΟΤΙΚΟΥ ΔΡΟΜΟΥ ΕΝΤΟΣ ΑΝΑΔΑΣΜΟΥ ΛΑΨΙΣΤΑΣ»

Α Π Ο Σ Π Α Σ Μ Α Πρακτικού Συνεδρίασης του Δημοτικού Συμβουλίου Κερκυραίων στις Αριθμ. Αποφ:

Μετρώ από πόσα τετραγωνάκια αποτελείται το καθένα από τα παρακάτω σχήματα:

ΕΓΧΕΙΡΙΔΙΟ ΤΩΝ ΣΥΝΗΘΕΣΤΕΡΩΝ ΕΡΩΤΗΜΑΤΩΝ ΠΟΛΙΤΩΝ ΚΑΙ ΤΩΝ ΑΝΤΙΣΤΟΙΧΩΝ ΑΠΑΝΤΗΣΕΩΝ, ΣΕ ΘΕΜΑΤΑ:

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα, ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ

=========================

Ορθη επαναληψη ΔΙΑΚΗΡΥΞΗ ΠΡΟΧΕΙΡΟY ΜΕΙΟΔΟΤΙΚΟY ΔΙΑΓΩΝΙΣΜΟY ΜΕ ΣΦΡΑΓΙΣΜΕΝΕΣ ΠΡΟΣΦΟΡΕΣ ΓΙΑ ΤΗΝ ΠΡΟΜΗΘΕΙΑ ΔΙΑΦΟΡΩΝ ΕΙΔΩΝ ΔΙΑΤΡΟΦΗΣ ΓΙΑ ΤΟ ΕΤΟΣ 2011.

Transcript:

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ γ έκδοση

Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και 5 α) Να γράψετε το διάνυσμα ως γραμμικό συνδυασμό των και (Μονάδες 3) β) Να δείξετε ότι τα διανύσματα και είναι παράλληλα (Μονάδες ) _8604 Δίνεται παραλληλόγραμμο ΑΒΓΔ και Ε,Ζ σημεία τέτοια ώστε :, 5 7 α) Να γράψετε τα διανύσματα και ως γραμμικό συνδυασμό των και (Μονάδες 3) β) Να αποδείξτε ότι τα σημεία B, Z και E είναι συνευθειακά (Μονάδες ) _0054 Θεωρούμε τα σημεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση: 5 3 α) Να αποδείξετε ότι τα σημεία Κ, Λ και Μ είναι συνευθειακά β) Για τα παραπάνω σημεία Κ, Λ και Μ να δείξετε ότι ισχύει: 3, όπου Α και Β είναι σημεία του επιπέδου (Μονάδες 5) Συντεταγμένες στο επίπεδο ο Θέμα _8605 Δίνονται τα διανύσματα i 4j, 3i j και 5i 5j, όπου i και j είναι τα μοναδιαία διανύσματα των αξόνων xx και yy αντίστοιχα α) Να βρείτε τις συντεταγμένες των και (Μονάδες ) β) Να εξετάσετε αν τα σημεία, και μπορεί να είναι κορυφές τριγώνου (Μονάδες 3) _0055 Θεωρούμε τα σημεία α,3, α,4 και Γ (-4, 5α+4), α α) Να βρείτε τα διανύσματα AB και (μονάδες 8) β) Να βρείτε για ποια τιμή του α, τα Α, Β, Γ είναι συνευθειακά (μονάδες 0) γ) Αν α, να βρείτε αριθμό λ ώστε λ (μονάδες 7)

_006 Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α(,), Γ(4, 3) και Δ(, 3) α) Να υπολογίσετε τα μήκη των πλευρών του ΑΒΓΔ (Μονάδες 9) β) Να υπολογίσετε τις συντεταγμένες του σημείου τομής Κ των διαγωνίων ΑΓ και ΒΔ, καθώς και τις συντεταγμένες της κορυφής Β (Μονάδες 6) _007 Θεωρούμε τα σημεία α, 4α και 5α, α, α α) Να γράψετε το συναρτήσει του α και να βρείτε το α ώστε 0 (Μονάδες ) β) Έστω α Να βρείτε σημείο Μ του άξονα x x ώστε το τρίγωνο ΜΑΒ να είναι ισοσκελές με βάση την ΑΒ (Μονάδες 3) _0073 Δίνονται τα σημεία,3,,5 και, 4 α) Να αποδείξετε ότι σχηματίζουν τρίγωνο β) Να βρείτε το συμμετρικό Δ του Β ως προς το μέσο Μ της ΑΓ γ) Τι σχήμα είναι το ΑΒΓΔ; Να αιτιολογήσετε τον ισχυρισμό σας _048 Δίνονται τα διανύσματα α i j, β i 5 j και γ 7,3 α) Να αποδείξετε ότι τα διανύσματα α, β, γ είναι μη συγγραμικά ανά δύο β) Να γραφεί το διάνυσμα γ ως γραμμικός συνδυασμός των διανυσμάτων α και β (Μονάδες 5) Εσωτερικό γινόμενο ο Θέμα _8556 Δίνονται τα διανύσματα α,β π με α, β και α, β 3 α) Να βρείτε το εσωτερικό γινόμενο α β β) Αν τα διανύσματα α β και κα β είναι κάθετα, να βρείτε την τιμή του κ γ) Να βρείτε το μέτρο του διανύσματος α β _8558 Σε τρίγωνο ΑΒΓ είναι: AB 4, 6, A, 8 α) Να βρείτε τις συντεταγμένες του διανύσματος,όπου ΑΜ είναι η διάμεσος του τριγώνου ΑΒΓ β) Να αποδείξετε ότι η γωνία ˆ είναι οξεία γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ

_858 Έστω τα διανύσματα α και β για τα οποία ισχύει : α β και α, β 60 α) Να αποδείξετε ότι α β β) Να υπολογίσετε τα μέτρα των διανυσμάτων α β και α β (Μονάδες 5) _8598 Δίνονται τα διανύσματα κ 6κ 9, κ 3 και,6, όπου κ α) Να βρείτε το εσωτερικό γινόμενο β) Να βρείτε τις τιμές του κ, ώστε τα διανύσματα και να είναι κάθετα (Μονάδες 9) γ) Για κ = να βρείτε το διάνυσμα _0053 Δίνονται τα διανύσματα α,β με β α 4 και α β 8 α) Να υπολογίσετε τη γωνία α, β β) Να αποδείξετε ότι β α 0 (Μονάδες 5) _0056 Έστω α και β 5π δύο διανύσματα με α, β και (α, β) και u α β 6 α) Να υπολογίσετε τα εσωτερικά γινόμενα α β και β u (Μονάδες 6) β) Να βρείτε το μέτρο του διανύσματος u (Μονάδες 9) _0070 Έστω α,β δύο διανύσματα του επιπέδου για τα οποία ισχύουν: 3 α β 9, α β και π α, β 3 α) Να βρείτε τα μέτρα των διανυσμάτων α,β και το εσωτερικό γινόμενο α β (Μονάδες ) β) Να υπολογίσετε το μέτρο του διανύσματος u α 3β (Μονάδες 3) _0057 Δίνονται τα διανύσματα α και β π α, β και α, β Να υπολογίσετε τα εξής: 3 α) το εσωτερικό γινόμενό των διανυσμάτων α και β και κατόπιν την τιμή της παράστασης: α α β β) Το συνημίτονο της γωνίας των διανυσμάτων α β και β α (Μονάδες 5) _0058 Δίνονται τα διανύσματα α(, 3) α) τη γωνία α, β β) το διάνυσμα u α β(α β) α και β( 3, 3) Να υπολογίσετε: (Μονάδες 5) 3

_0059 Δίνονται τα διανύσματα α(,3) και β(,) α) Να βρείτε τις συντεταγμένες του διανύσματος u α β β) Να βρείτε τον θετικό αριθμό x για τον οποίο τα διανύσματα u και ν x,x κάθετα (Μονάδες 5) 4ο Θέμα 4_8606 Δίνονται τα διανύσματα O(4, ) και O(,), όπου Ο είναι η αρχή των αξόνων α) Να αποδείξετε ότι τα διανύσματα και O είναι κάθετα (Μονάδες 4) β) Αν Γ (α, β) είναι σημείο της ευθείας που διέρχεται από τα σημεία Α και Β, τότε: i) να αποδείξετε ότι: ( 3,4) και (α 4,β ) (Μονάδες 5) ii) να αποδείξετε ότι: 4α + 3β = 0 (Μονάδες 6) iii) αν επιπλέον τα διανύσματα και είναι κάθετα, να βρείτε τις συντεταγμένες του σημείου Γ 4_866 Δίνονται τα διανύσματα a,β και γ για τα οποία ισχύουν: α, β α,β 60, κ γ α β, όπου κ α) Να υπολογίσετε το εσωτερικό γινόμενο α β (Μονάδες 3) β) Αν ισχύει β γ κ, τότε: i) να αποδείξετε ότι: κ = (Μονάδες 6) ii) να υπολογίσετε το μέτρο του διανύσματος γ iii) να αποδείξετε ότι τα διανύσματα 3α γ και β γ είναι κάθετα 4_868 α) Να εξετάσετε πότε ισχύει καθεμιά από τις ισότητες: u v u v και u v u v β) Δίνονται τα διανύσματα a,β, γ για τα οποία ισχύουν: α β γ 0 και a β γ 3 4 7 i) Να αποδείξετε ότι: α β και β γ ii) Να αποδείξετε ότι: 7α 3γ 0 είναι και _0050 Δίνονται τα διανύσματα α,7 και β,4 Προβολή διανύσματος σε διάνυσμα α) Να βρεθεί η προβολή του α πάνω στο β 4

β) Να αναλύσετε το α σε δύο κάθετες μεταξύ τους συνιστώσες από τις οποίες η μία να είναι παράλληλη στο β (Μονάδες 5) _005 Δίνονται τα διανύσματα α,β με α α β β 7 και α β, α) Να υπολογίσετε τα α και β (Μονάδες 6) β) Να υπολογίσετε το μέτρο του διανύσματος α β (Μονάδες 9) γ) Να βρείτε την προβολή του α β στο διάνυσμα β _0069 Δίνονται τα διανύσματα α, 3 και β, α) Να βρείτε τη προβολή του α πάνω στο β β) Να αναλύσετε το α σε δύο κάθετες συνιστώσες από τις οποίες η μία να είναι παράλληλη με το β (Μονάδες 5) Ευθεία Εξίσωση ευθείας ο Θέμα _8575 Δίνονται τα σημεία Α(,) και Β (5,6 ) α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από τα σημεία Α και B β) Να αποδείξετε ότι η μεσοκάθετος ε του ευθυγράμμου τμήματος ΑΒ έχει εξίσωση την y x 7 (Μονάδες 5) _8600 Θεωρούμε την ευθεία ε που τέμνει τους άξονες χ χ και ψ ψ στα σημεία 3,0 και 0,6 αντίστοιχα α) Να βρείτε την εξίσωση της ευθείας ε β) Αν ε είναι η ευθεία που διέρχεται από την αρχή των αξόνων και είναι κάθετη στην ε, τότε να βρείτε: i) την εξίσωση της ευθείας ε (Μονάδες 9) ii) τις συντεταγμένες του σημείου τομής των ευθειών ε και ε _860 Έστω Μ (3, 5) το μέσο ευθυγράμμου τμήματος ΑΒ με Α(,) α) Να βρείτε: i) τις συντεταγμένες του σημείου Β (Μονάδες 6) ii) την εξίσωση της ευθείας που διέρχεται από τα σημεία Α και Β β) Να βρείτε τις συντεταγμένες σημείου Κ του άξονα χ χ έτσι ώστε να ισχύει (Μονάδες ) 5

_860 Δίνεται η ευθεία (ε): y x και το σημείο, 4 α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από το Α και είναι κάθετη στην (ε) β) Να βρείτε την προβολή του σημείου Α πάνω στην ευθεία (ε) (Μονάδες 5) _0060 Δίνονται τα διανύσματα α(, ) και β(3,0) α) Να βρείτε τις συντεταγμένες του διανύσματος u 4α β 3 u β) Να βρείτε την εξίσωση της ευθείας που έχει συντελεστή διεύθυνσης 5,α β (Μονάδες 5) και διέρχεται από το σημείο _0063 Θεωρούμε το ευθύγραμμο τμήμα ΑΒ με μέσο Μ και,,,5 α) Να βρείτε τις συντεταγμένες του σημείου Β β) Να βρείτε την εξίσωση της μεσοκαθέτου ε του ευθυγράμμου τμήματος ΑΒ, καθώς και τα κοινά σημεία αυτής με τους άξονες x x και y y (Μονάδες 5) _0066 Δίνεται τρίγωνο ΑΒΓ με κορυφές τα σημεία 3,,, και,4 α) Να βρείτε την εξίσωση της πλευράς ΑΓ β) Να βρείτε τις εξισώσεις του ύψους ΒΔ και της διαμέσου ΑΜ _0068 Δίνεται τρίγωνο ΑΒΓ με Α( 5,4), Β(,6), Γ(4,) και σημείο Μ της πλευράς ΑΒ για το οποίο ισχύει 4 α) Να βρείτε τις συντεταγμένες του διανύσματος (Μονάδες 6) β) Να βρείτε τις συντεταγμένες του σημείου Μ (Μονάδες 9) 9 γ) Αν το σημείο Μ έχει συντεταγμένες 4,, να υπολογίσετε την εξίσωση της ευθείας που διέρχεται από τα σημεία Γ, Μ 4_047 4ο Θέμα Δίνονται τα σημεία λ,λ,, και 4,6, λ α) Να βρείτε την μεσοκάθετο του τμήματος ΒΓ β) Αν το σημείο Α ισαπέχει από τα σημεία Β και Γ,να βρείτε την τιμή του λ γ) Για λ 4,να βρείτε σημείο Δ ώστε το τετράπλευρο ΑΒΔΓ να είναι ρόμβος 6

Γενική μορφή εξίσωσης ευθείας ο Θέμα _8584 Δίνονται οι παράλληλες ευθείες ε : x y 8 = 0, ε : x 4y + 0 = 0 και το σημείο Α της ε που έχει τετμημένη το 4 α) Να βρείτε τις συντεταγμένες του σημείου Α (Μονάδες 5) β) Να βρείτε την εξίσωση της ευθείας ε η οποία διέρχεται από το σημείο Α και είναι κάθετη στην ευθεία ε γ) Αν Β είναι το σημείο τομής των ευθειών ε και ε, τότε να βρείτε τις συντεταγμένες του Β _8587 Δίνονται οι ευθείες ε : x 8y 6 0 και ε : x y 5 0 οι οποίες τέμνονται στο σημείο Μ Αν οι ευθείες ε και ε τέμνουν τον άξονα y y στα σημεία Α και B αντίστοιχα, τότε: α) να βρείτε τις συντεταγμένες των σημείων Μ, A και B β) αν Κ είναι το μέσο του τμήματος ΑΒ, να βρείτε τον συντελεστή διεύθυνσης του διανύσματος (Μονάδες 5) _8589 Δίνονται οι ευθείες ε :8x y 8 0 και ε : x y 0 οι οποίες τέμνονται στο σημείο α) Να βρείτε τις συντεταγμένες του σημείου και στη συνέχεια, να βρείτε την εξίσωση της ευθείας που διέρχεται από το και είναι κάθετη στον άξονα x x β) Να αποδείξετε ότι οι ευθείες που διέρχονται από το και έχουν συντελεστή διεύθυνσης λ έχουν εξίσωση την: λx y 3λ 4 0, όπου λ (Μονάδες 5) _ 859 Δίνονται οι ευθείες ε : x 3y 5 0 και ε :3x y 5 0 α) Να αποδείξετε ότι οι ευθείες ε και ε είναι κάθετες μεταξύ τους (Μονάδες 9) β) Να βρείτε τις συντεταγμένες του σημείου τομής των ευθειών ε και ε (Μονάδες 9) γ) Να βρείτε την εξίσωση της ευθείας που διέρχεται από το σημείο και την αρχή των αξόνων _8595 Δίνονται οι ευθείες ε :3x y 3 0 και ε : x y 4 0 α) Να βρείτε τις συντεταγμένες του σημείου τομής των ευθειών ε και ε β) Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο και η ευθεία ε τέμνει τον άξονα xx στο σημείο, τότε: i) να βρείτε τις συντεταγμένες των σημείων και ii) να αποδείξετε ότι η ευθεία που διέρχεται από τα σημεία και έχει εξίσωση την 3x 4y 0 (Μονάδες 9) _0065 Δίνεται η ευθεία ε : x + y + = 0 και το σημείο Α(5,) α) Να βρείτε την εξίσωση της ευθείας η, η οποία διέρχεται από το Α και είναι κάθετη προς την ευθεία ε (Μονάδες 9) 7

β) Να βρείτε την εξίσωση της ευθείας η, η οποία διέρχεται από το Α και είναι παράλληλη προς τον άξονα x x γ) Να βρείτε το σημείο τομής των ευθειών η και η και την απόστασή του από την αρχή των αξόνων (Μονάδες 9) _007 Θεωρούμε μια ευθεία (ε) και ένα σημείο 6, εκτός της (ε) Έστω, η προβολή του Α στην (ε) Να βρείτε: α) Την εξίσωση της ευθείας (ε) (Μονάδες 3) β) Το συμμετρικό του Α ως προς την (ε) (Μονάδες ) Απόσταση σημείου από ευθεία - Εμβαδόν τριγώνου _006 Δίνονται τα σημεία Α(, ) και Β(, 3) α) Να βρείτε την εξίσωση της ευθείας ε που διέρχεται από τα σημεία Α, Β (Μονάδες ) β) Να υπολογίσετε το εμβαδόν του τριγώνου ΟΚΛ, όπου Ο είναι η αρχή των αξόνων και Κ, Λ είναι τα σημεία τομής της ε με τους άξονες xx και yy αντίστοιχα (Μονάδες 4) _0067 Δίνεται τρίγωνο ΑΒΓ με κορυφές τα σημεία Α(3,), Β( 3,) και Γ(4,0) α) Να βρείτε την εξίσωση της πλευράς ΑΒ (Μονάδες 9) β) Να υπολογίσετε το ύψος ΓΔ καθώς και την εξίσωση της ευθείας πάνω στην οποία βρίσκεται αυτό (Μονάδες 6) 4ο Θέμα 4_86 Δίνεται η εξίσωση: x xy y 6x 6y 8 0 α) Να αποδείξετε ότι η εξίσωση παριστάνει γεωμετρικά δύο ευθείες γραμμές ε και ε οι οποίες είναι παράλληλες μεταξύ τους β) Αν ε : x y 0 και ε : x y 4 0, να βρείτε την εξίσωση της μεσοπαράλληλης ε των ε και ε γ) Αν Α είναι σημείο της ευθείας ε με τεταγμένη το και Β σημείο της ευθείας ε με τετμημένη το, τότε: i) να βρείτε τις συντεταγμένες των σημείων A και Β (Μονάδες ) ii) να βρείτε τις συντεταγμένες δύο σημείων Γ και Δ της ευθείας ε έτσι, ώστε το τετράπλευρο ΑΓΒΔ να είναι τετράγωνο 4_863 Δίνεται η εξίσωση x y xy 3λx 3λy λ 0, με λ διαφορετικό του 0 α) Να αποδείξετε ότι η παραπάνω εξίσωση παριστάνει στο επίπεδο, δύο ευθείες παράλληλες μεταξύ τους, καθεμιά από τις οποίες έχει κλίση ίση με (Μονάδες ) β) Αν το εμβαδόν του τετραγώνου του οποίου οι δύο πλευρές βρίσκονται πάνω στις ευθείες του ερωτήματος α) είναι ίσο με, να βρείτε την τιμή του λ (Μονάδες 3) 8

4_867 Δίνονται τα διανύσματα a και b με μέτρα, 6 αντίστοιχα και φ [0,π] η μεταξύ τους γωνία a b x a b y 5 0 Επίσης δίνεται η εξίσωση α) Να αποδείξετε ότι η () παριστάνει ευθεία για κάθε φ [0,π] (Μονάδες 3) β) Αν η παραπάνω ευθεία είναι παράλληλη στον άξονα y y, να αποδείξετε ότι b 3a γ) Αν η παραπάνω ευθεία είναι παράλληλη στον άξονα χ χ, να αποδείξετε ότι b 3a δ) Αν η παραπάνω ευθεία είναι παράλληλη στην διχοτόμο πρώτης και τρίτης γωνίας των αξόνων, να αποδείξετε ότι b a 4_8609 Εμβαδόν τριγώνου 4ο Θέμα Σε τρίγωνο ΑΒΓ είναι λ, λ, 3λ, λ μέσο της πλευράς ΒΓ α) Να αποδείξετε ότι λ, λ, όπου λ 0 και λ, και Μ είναι το β) Να βρείτε την τιμή του λ για την οποία το διάνυσμα AΜ είναι κάθετο στο διάνυσμα α, λ λ γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ 4_860 Δίνονται οι ευθείες ε : x y 0λ 6 0 και ε : 0x y λ 4 0, όπου λ R α) Να αποδείξετε ότι για κάθε τιμή της παραμέτρου λ οι ευθείες ε και ε τέμνονται, και να βρείτε τις συντεταγμένες του σημείου τομής τους M β) Να αποδείξετε ότι για κάθε τιμή της παραμέτρου λ το σημείο M ανήκει στην ευθεία ε : 8x + y 6 = 0 γ) Αν η ευθεία ε τέμνει τους άξονες χ χ και ψ ψ στα σημεία Α και Β αντίστοιχα, τότε: i) να βρείτε την εξίσωση της ευθείας ζ που διέρχεται από την αρχή Ο των αξόνων και να αποδείξετε ότι είναι παράλληλη προς την ευθεία ΑΒ (Μονάδες 5) 9 ii) αν Κ είναι τυχαίο σημείο της ευθείας ζ, να αποδείξετε ότι () 4 (Μονάδες 6) 9

4_86 Δίνεται η ευθεία ε : x 4y 7 0 και τα σημεία Α(,4 ) και B (,6) α) Να βρείτε τις συντεταγμένες σημείου M της ευθείας ε το οποίο ισαπέχει από τα σημεία A και B β) Να υπολογίσετε το εμβαδόν του τριγώνου ΜΑΒ γ) Να αποδείξετε ότι τα σημεία Κ ( x,y) για τα οποία ισχύει (ΚΑΒ) = (ΜΑΒ) ανήκουν στις ευθείες με εξισώσεις τις: x y 5 0 και x y 5 0 4_864 Δίνονται οι ευθείες ε : 3x y 3 0 και ε : x y 4 0 α) Να βρείτε τις συντεταγμένες του σημείου τομής Α των ευθειών ε και ε (Μονάδες 5) β) Αν η ευθεία ε τέμνει τον άξονα y y στο σημείο Β και η ευθεία ε τέμνει τον άξονα χ χ στο σημείο Γ, τότε: i) να βρείτε εξίσωση της ευθείας που διέρχεται από τα σημεία Β και Γ (Μονάδες 5) ii) να βρείτε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 5) γ) Να αποδείξετε ότι τα σημεία Κ ( χ,ψ) για τα οποία ισχύει (ΚΒΓ ) = ( ΑΒΓ ) ανήκουν σε δύο παράλληλες ευθείες, των οποίων να βρείτε τις εξισώσεις 4_865 Θεωρούμε ευθύγραμμο τμήμα ΑΒ που είναι παράλληλο προς την ευθεία ε : y = x, με Α(x,y ), Β ( x,y ) και x < x Αν το σημείο Μ (3, 5) είναι το μέσο του ευθυγράμμου τμήματος ΑΒ και το γινόμενο των τετμημένων των σημείων Α και Β ισούται με 5, τότε: α) να υπολογίσετε τις συντεταγμένες των σημείων Α και Β (Μονάδες 3) β) να αποδείξετε ότι (ΟΑΒ) = 4, όπου Ο είναι η αρχή των αξόνων (Μονάδες 5) γ) να αποδείξετε ότι τα σημεία Κ ( x,y) για τα οποία ισχύει (ΚΑΒ) = (ΟΑΒ) ανήκουν στις ευθείες με εξισώσεις τις : x y 0 και x y 6 0 _860 Δίνονται οι ευθείες, ε : λ x y 5 0, ε : λ 3 x y 5 0 με λ και το σημείο α) Να αποδείξετε ότι, για κάθε τιμή του λ οι ευθείες τέμνονται β) Αν οι ευθείες τέμνονται στο σημείο, να βρείτε την τιμή του λ γ) Έστω λ και, τα σημεία που οι ε και ε τέμνουν τον άξονα y y Να βρείτε το εμβαδόν του τριγώνου 4_86 Δίνονται οι ευθείες ε : κx κ y 3κ 0 και 0 ζ : 3κ x κ y 6κ 0, όπου κ α) Να εξετάσετε αν υπάρχει τιμή του κ, ώστε οι ευθείες να είναι παράλληλες

β) Να βρείτε την αμβλεία γωνία που σχηματίζουν οι ευθείες ε και ζ (Μονάδες 5) 4_86 3 Δίνονται τα σημεία A,, Β(, - ) και μ 4 μ,, όπου μ α) Να βρείτε τις συντεταγμένες των διανυσμάτων και β) Να αποδείξετε ότι για κάθε μ το σημείο Γ ανήκει στην ευθεία που διέρχεται από τα σημεία Α και Β γ) Να βρείτε την τιμή του μ έτσι, ώστε μ (Μονάδες 6) δ) Για την τιμή του μ που βρήκατε στο ερώτημα γ), να αποδείξετε ότι (ΟΒΓ ) =, όπου O είναι η αρχή των αξόνων (Μονάδες 3) 4 863 Δίνονται τα σημεία Α(3,4), B(5,7) και Γ (μ +,3μ ), όπου μ α) Να βρείτε τις συντεταγμένες των διανυσμάτων και και, στη συνέχεια, να αποδείξετε ότι τα σημεία Α, B και Γ δεν είναι συνευθειακά για κάθε τιμή του μ β) Να αποδείξετε ότι: i) το εμβαδόν του τριγώνου ΑΒΓ δεν εξαρτάται από το μ (Μονάδες 5) ii) για κάθε τιμή του μ το σημείο Γ ανήκει σε ευθεία ε, της οποίας να βρείτε την εξίσωση γ) Να ερμηνεύσετε γεωμετρικά γιατί το εμβαδόν του τριγώνου ΑΒΓ παραμένει σταθερό, ανεξάρτητα από την τιμή του μ; (Μονάδες 5)