Optimal Placing of Crop Circles in a Rectangle



Σχετικά έγγραφα
Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Oscillatory integrals

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Analytical Expression for Hessian

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Solutions_3. 1 Exercise Exercise January 26, 2017

EE512: Error Control Coding

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Web Searching

2 Composition. Invertible Mappings

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

Section 8.3 Trigonometric Equations

Tutorial Note - Week 09 - Solution

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Laplace s Equation in Spherical Polar Coördinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Inverse trigonometric functions & General Solution of Trigonometric Equations

Math 6 SL Probability Distributions Practice Test Mark Scheme

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

The Simply Typed Lambda Calculus

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Matrix Hartree-Fock Equations for a Closed Shell System

Example 1: THE ELECTRIC DIPOLE

Finite Field Problems: Solutions

Section 7.6 Double and Half Angle Formulas

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

derivation of the Laplacian from rectangular to spherical coordinates

Approximation of distance between locations on earth given by latitude and longitude

Second Order RLC Filters

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Matrices and Determinants

Areas and Lengths in Polar Coordinates

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Example Sheet 3 Solutions

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Section 9.2 Polar Equations and Graphs

Areas and Lengths in Polar Coordinates

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Solutions to Exercise Sheet 5

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

PhysicsAndMathsTutor.com

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

1 String with massive end-points

Statistical Inference I Locally most powerful tests

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Strain gauge and rosettes

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Instruction Execution Times

Other Test Constructions: Likelihood Ratio & Bayes Tests

1 3D Helmholtz Equation

ST5224: Advanced Statistical Theory II

Fractional Colorings and Zykov Products of graphs

Srednicki Chapter 55

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Homework 3 Solutions

On a four-dimensional hyperbolic manifold with finite volume

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

PARTIAL NOTES for 6.1 Trigonometric Identities

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homework 8 Model Solution Section

( ) 2 and compare to M.

TMA4115 Matematikk 3

Scale effects modeling in bubbles and trusses using first strain gradient elasticity

Problem Set 3: Solutions

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

6.3 Forecasting ARMA processes

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Math221: HW# 1 solutions

Assalamu `alaikum wr. wb.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Μηχανική Μάθηση Hypothesis Testing

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Differential equations

A Note on Intuitionistic Fuzzy. Equivalence Relation

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

«ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE

Solution to Review Problems for Midterm III

Concrete Mathematics Exercises from 30 September 2016

Reminders: linear functions

Transcript:

Optiml Plcing of Cop Cicles in Rectngle Abstct Mny lge-scle wteing configutions fo fming e done with cicles becuse of the cicle s pcticlity, but cicle obviously cnnot tessellte plne, no do they fit vey well in ectngle. Unfotuntely, most plots of lnd e ectngul. Additionlly, thee e occsionlly ext obstcles, like ods o houses. In this ppe, we use Geomety Expessions to investigte the optiml method of plcing cicles. Poblem In this ppe, we look t simple sitution: optimlly plcing two cicles in ectngle with spect tio less thn. In ddition to the size nd loction of the cicles, thee is nothe vible to conside. Insted of using full cicle, we cn use pc-mn shpe, o secto. Thus, we lso hve to detemine whethe the lge o smlle cicle should be the pc-mn. We divide the investigtion into two pts: one fo spect tios between nd.5, nd one fo spect tios between.5 nd. Fo simplicity, we ssume the shote side of the ectngle is, nd the longe side will be. Solution We conside few cses. The simplest solution is to simply plce two full cicles, ech tngent to two sides of the ectngle nd the othe cicle (.).. O, we cn hve eithe the smlle cicle (.) o the lge cicle (.3) be pc-mn.

[.] [.3] Thee e two vibles we chnge, spect tio nd dius, to lte the totl e, so we would gph in 3D. Howeve, due to the limittions of dwing 3D gph on D ppe, we simply tke coss-sections of the 3D gph nd look fo the mximum e fo the given spect tio. Lemm Fist, we show tht once the lge cicle hs been plced, it is lwys optiml to plce the smlle cicle in cone, tngent to two sides of the ectngle, the thn centeed, tngent to only one side of the ectngle (.). [.] VS Tke full smlle cicle with given dius, the tivil cse. The smlle cicle is clely the lgest when it is in the cone, tngent to two sides. Howeve, now conside the pc-mn cse. Tke one cicle with mximl dius, nd tke given dius fo the othe cicle. The totl e is thus only dependent on the ngle of the pc-mn s mouth. This ngle will be t minimum when the centes of the cicles e futhest pt. Thus, the smlle cicle should be in the cone, tngent to two sides nd the othe cicle. Pt : Aspect Rtio between nd.5 Once we detemine tht the optiml plcement of the smlle cicle is in the cone nd tngent to two sides, we detemine if nd when it is bette to hve the smll cicle s pc-mn (3.) o the big cicle s pc-mn (3.).

Using Geomety Expessions, we detemine the ngle of the fn in tems of spect tio () nd dius (). The two configutions e shown below with thei coesponding ngle fomule. A: Smll Cicle s Pc-mn B: Big Cicle s Pc-mn [3.] [3.] Angle Fomule: With the ngle fomul the e coveed by the cicle nd the pc-mn s pecentge of totl e possible cn be detemined. Pecentge of Ae Coveed (A): 8 8 ctn.5 π Pecentge of Ae Coveed (B): > < : 0.5ctn.5 : 0.5ctn.5 π π π π Note: Becuse the invese tngent hs limited nge, the fomul poduces negtive vlues fo ngles lge thn π. Configution A does not tke into ccount the pt of the eqution fo less thn π becuse ngles gete thn π e clely optiml. The piecewise function fo Configution B is split t =, whee is the ngle is equl to π.

Pecent e coveed fo configutions A nd B e plotted in 3D below (3.3). [[3.3] As seen in (3.) nd (3.), thee e two vibles tht detemine the e coveed by the cicle nd the pc-mn. The gph bove shows the pecentge of e coveed fo ll combintions of (.0-.5) nd (0.0-0.5) fo the given nges. The yellow sufce is A nd the ed sufce is B. Wht we ce bout is the getest pecentge of e coveed fo ech given spect tio fom.0 to.5. Using the Optimiztion pogm fom Mple, we isolte t intevls of 0.0 nd find the mximum t ech step fo Configution A nd B. The outcome fo the mximum dius nd pecent e coveed is shown in the dt tble in the conclusion. The plot of the mximums t ech intevl of is shown below (3.). Once gin, the yellow cuve epesents Configution A nd the ed cuve epesents configution B. [3.]

Fom comping the lists poduced by clculting the locl mximum fo evey 0.0 intevl of, it is ppent tht configution A is bette until the spect tio is ppoximtely.6. At tht point on until =.5, configution B is optiml. Pt : Aspect Rtio between.5 nd The obvious solution is to plce two cicles of dius.5, nd mke one pc-mn (.). [.] But is it the optiml configution? Ae thee ny cses whee thee is bette configution? As it tuns out, it is indeed the best configution fo most spect tios, but not ll. We investigte some ltentives in moe detil. We look t thee cses, s descibed in the solution outline. Fist, we exmine the cse of two full cicles (.). - - [.] We denote the dius of one cicle. Geomety expessions then clcultes the dius of the othe cicle s shown, nd the totl e of the two cicles is. The totl pecent covege is thus.

Next, we look t the two pc-mn configutions, stting with the smlle cicle s the pc-mn. Thee e two cses: one with dii tngent to the lge cicle (.3) nd one with dii endpoints on the lge cicle (.). We now set the dius of the lge cicle s, nd the dius of the smlle s. πctn - -88 - - [.3] [.] Fo (.3), the pecent covege is. Unfotuntely, Geomety Expession s clcultion fo the ngle in (.) is too lge to fit on the pge. Howeve, we cn still input the expession into Mthemtic. Now, we look t the bigge cicle s the pc-mn. Agin, we hve two cses whee the dii e tngent to (.5) nd lying on (.6) the smlle cicle.

πctn - - - - [.5] [.6] Fo (.5), the pecent covege is fo (.6) is unfotuntely too big to fit on the pge. ( ). Agin, the eqution fo the ngle Now tht we hve the fomule fo ech cse, we plot them to detemine the optiml dii. Due to the impcticlity of plotting 3D gph s is necessy, we look t set of given vlues fo, nd detemine the optiml fo ech. The esults e summized in this plot.

Pecent Covege Optiml Cicle-plcing 0.850000 0.830000 0.80000 0.790000 0.770000 0.750000 0.730000 0.70000 0.690000 0.670000 0.650000.5.6.7.8.9 Aspect Rtio Full Cicle Lge Pc-mn Smll Pc-mn Conclusion Fo pcticl puposes, we include tble with the ppopite dt fo spect tios to the neest hundedth. The bolded column is the optiml sttegy, with the idel dius nd pecent covege. Note tht between tios of.53 nd.9, the optiml sttegy is to simply hve cicle nd pc-mn, both with mximl dius. Thus, thee is no bigge cicle, so sttegies A nd B e essentilly the sme. At.95, it becomes pefeble to hve no pc-mn t ll, nd two full cicles insted. A-Smll B-Big C-Full Cicle Aspect tio % Coveed Rdius % Coveed Rdius % Coveed Rdius 0.8003 0.397 0.7905 0.300 0.80857 0.085786.0 0.879 0.880 0.78558 0.836 0.80 0.088733.0 0.80938 0.5375 0.7899 0.330 0.795905 0.097.03 0.8039 0.5875 0.777077 0.3863 0.789893 0.09730.0 0.79977 0.638 0.77309 0.379 0.7807 0.097779.05 0.79 0.6896 0.76959 0.8950 0.77836 0.0086.06 0.78997 0.765 0.7669 0.503 0.7798 0.03978.07 0.785635 0.7933 0.763090 0.595 0.7677 0.076.08 0.7856 0.8768 0.76000 0.606 0.766 0.0306.09 0.777706 0.9070 0.75755 0.6956 0.757689 0.358. 0.77065 0.95638 0.755 0.770 0.75933 0.6760. 0.770638 0.073 0.7595 0.79886 0.783 0.003. 0.767 0.06777 0.75095 0.85058 0.7397 0.3337.3 0.76 0.8 0.790 0.9038 0.73965 0.6670

. 0.76630 0.889 0.7767 0.956 0.7355 0.30033.5 0.75908 0.3999 0.76355 0.3006 0.73587 0.335.6 0.756675 0.9879 0.759 0.30587 0.7778 0.3685.7 0.7550 0.3583 0.735 0.30 0.730 0.09.8 0.7555 0.85 0.73659 0.366 0.706 0.377.9 0.750805 0.7950 0.7369 0.395 0.7759 0.775. 0.7965 0.50 0.7876 0.3673 0.7038 0.50807. 0.7965 0.60365 0.7780 0.3398 0.70956 0.5365. 0.76808 0.66686 0.7876 0.33738 0.7080 0.57950.3 0.75893 0.7308 0.736 0.350 0.70503 0.656. 0.7587 0.7956 0.7363 0.37773 0.7057 0.6598.5 0.769 0.868 0.789 0.35305 0.69998 0.6886.6 0.708 0.9756 0.75 0.358337 0.697566 0.759.7 0.7336 0.9976 0.7637 0.36369 0.69577 0.766.8 0.778 0.3068 0.773 0.36898 0.6933 0.80000.9 0.7836 0.337 0.78683 0.3733 0.69073 0.8376.3 0.75 0.3055 0.7500 0.37955 0.68955 0.8758.3 0.75 0.376 0.75903 0.38863 0.687356 0.9359.3 0.773 0.33390 0.753759 0.39087 0.685676 0.959.33 0.7865 0.369 0.755775 0.39557 0.68 0.9909.3 0.79933 0.39006 0.75798 0.39557 0.6866 0.099.35 0.7563 0.35663 0.76075 0.069 0.6839 0.0683.36 0.753565 0.360 0.7675 0.5 0.68005 0.0758.37 0.755735 0.3769 0.76538 0.6896 0.678993 0.705.38 0.7588 0.37970 0.76856 0.56 0.677989 0.8675.39 0.760807 0.38736 0.77075 0.76 0.677093 0.667. 0.76378 0.39537 0.773 0.399 0.676303 0.6680. 0.766886 0.03505 0.777333 0.38373 0.67568 0.307. 0.77037 0.765 0.780668 0.3758 0.675037 0.3770.3 0.7708 0.057 0.7836 0.950 0.67558 0.3887. 0.777997 0.8688 0.787737 0.559 0.6780 0.9.5 0.786 0.8688 0.7966 0.59955 0.67390 0.706.6 0.78680 0.69 0.79533 0.65368 0.67373 0.599.7 0.7968 0.5578 0.79930 0.70788 0.6736 0.55357.8 0.796860 0.633 0.80308 0.766 0.673655 0.59535.9 0.80365 0.7366 0.807633 0.8653 0.673765 0.6373.5 0.808 0.838 0.8976 0.87097 0.673969 0.6799.5 0.83 0.990 0.8636 0.959 0.6766 0.785.5 0.8088 0.500000 0.800 0.9800 0.67655 0.760.53 0.8539 0.500000 0.8539 0.500000 0.67535 0.807.5 0.8787 0.500000 0.8787 0.500000 0.675705 0.85007.55 0.89369 0.500000 0.89369 0.500000 0.67636 0.8938.56 0.83005 0.500000 0.83005 0.500000 0.677 0.9368.57 0.8308 0.500000 0.8308 0.500000 0.67796 0.97995

.58 0.8973 0.500000 0.8973 0.500000 0.678866 0.3036.59 0.8893 0.500000 0.8893 0.500000 0.67987 0.30675.6 0.878 0.500000 0.878 0.500000 0.68096 0.36.6 0.865 0.500000 0.865 0.500000 0.6836 0.3556.6 0.8855 0.500000 0.8855 0.500000 0.683393 0.30000.63 0.83067 0.500000 0.83067 0.500000 0.6873 0.353.6 0.86 0.500000 0.86 0.500000 0.6865 0.3893.65 0.8903 0.500000 0.8903 0.500000 0.687650 0.3330.66 0.86806 0.500000 0.86806 0.500000 0.68930 0.33793.67 0.883 0.500000 0.883 0.500000 0.690888 0.333.68 0.8066 0.500000 0.8066 0.500000 0.6963 0.36970.69 0.809568 0.500000 0.809568 0.500000 0.6936 0.355.7 0.806997 0.500000 0.806997 0.500000 0.69636 0.35609.7 0.80369 0.500000 0.80369 0.500000 0.6989 0.360676.7 0.8077 0.500000 0.8077 0.500000 0.70033 0.36576.73 0.79936 0.500000 0.79936 0.500000 0.706 0.36989.7 0.79676 0.500000 0.79676 0.500000 0.7063 0.375.75 0.79350 0.500000 0.79350 0.500000 0.706895 0.3797.76 0.79003 0.500000 0.79003 0.500000 0.7099 0.38383.77 0.7897 0.500000 0.7897 0.500000 0.763 0.3885.78 0.787508 0.500000 0.787508 0.500000 0.70 0.3930.79 0.785363 0.500000 0.785363 0.500000 0.76657 0.3979.8 0.78389 0.500000 0.78389 0.500000 0.7973 0.0633.8 0.7890 0.500000 0.7890 0.500000 0.7959 0.07370.8 0.779368 0.500000 0.779368 0.500000 0.773 0..83 0.77757 0.500000 0.77757 0.500000 0.77536 0.6887.8 0.77577 0.500000 0.77577 0.500000 0.7305 0.667.85 0.7705 0.500000 0.7705 0.500000 0.73338 0.66.86 0.77535 0.500000 0.77535 0.500000 0.73605 0.370.87 0.77068 0.500000 0.77068 0.500000 0.7399 0.3609.88 0.7697 0.500000 0.7697 0.500000 0.768 0.098.89 0.76883 0.500000 0.76883 0.500000 0.75866 0.5778.9 0.767389 0.500000 0.767389 0.500000 0.799 0.506.9 0.7669 0.500000 0.7669 0.500000 0.7596 0.5558.9 0.765686 0.500000 0.765686 0.500000 0.755905 0.6008.93 0.76530 0.500000 0.76530 0.500000 0.759378 0.653.9 0.768 0.500000 0.768 0.500000 0.769 0.708.95 0.768 0.500000 0.768 0.500000 0.766508 0.7558.96 0.7658 0.500000 0.7658 0.500000 0.77066 0.800.97 0.76695 0.500000 0.76695 0.500000 0.77388 0.85057.98 0.777659 0.9005 0.7778 0.9005 0.77766 0.9005.99 0.7896 0.95006 0.7887 0.95006 0.78500 0.95006 0.785397 0.500000 0.785397 0.500000 0.785397 0.500000

This mteil is bsed upon wok suppoted by the Ntionl Science Foundtion unde Gnt No. 075008. Any opinions, findings, nd conclusions o ecommendtions expessed in this mteil e those of the utho(s) nd do not necessily eflect the views of the Ntionl Science Foundtion.