2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)



Σχετικά έγγραφα
2 Composition. Invertible Mappings

Uniform Convergence of Fourier Series Michael Taylor

ST5224: Advanced Statistical Theory II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Every set of first-order formulas is equivalent to an independent set

Example Sheet 3 Solutions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

C.S. 430 Assignment 6, Sample Solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Homework 3 Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 8.3 Trigonometric Equations

Finite Field Problems: Solutions

EE512: Error Control Coding

Reminders: linear functions

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

A Note on Intuitionistic Fuzzy. Equivalence Relation

Matrices and Determinants

Statistical Inference I Locally most powerful tests

SOME PROPERTIES OF FUZZY REAL NUMBERS

Bounding Nonsplitting Enumeration Degrees

1. Introduction and Preliminaries.

Lecture 2. Soundness and completeness of propositional logic

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Approximation of distance between locations on earth given by latitude and longitude

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Areas and Lengths in Polar Coordinates

F A S C I C U L I M A T H E M A T I C I

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 13 - Root Space Decomposition II

Fractional Colorings and Zykov Products of graphs

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

12. Radon-Nikodym Theorem

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

The challenges of non-stable predicates

Chapter 3: Ordinal Numbers

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Knaster-Reichbach Theorem for 2 κ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 15 - Root System Axiomatics

The Simply Typed Lambda Calculus

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

F19MC2 Solutions 9 Complex Analysis

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

w o = R 1 p. (1) R = p =. = 1

Congruence Classes of Invertible Matrices of Order 3 over F 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Other Test Constructions: Likelihood Ratio & Bayes Tests

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homomorphism in Intuitionistic Fuzzy Automata

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

( y) Partial Differential Equations

Solutions to Exercise Sheet 5

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

derivation of the Laplacian from rectangular to spherical coordinates

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Math221: HW# 1 solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

TMA4115 Matematikk 3

On a four-dimensional hyperbolic manifold with finite volume

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Concrete Mathematics Exercises from 30 September 2016

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 21: Properties and robustness of LSE

Parametrized Surfaces

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Tridiagonal matrices. Gérard MEURANT. October, 2008

( ) 2 and compare to M.

Numerical Analysis FMN011

Problem Set 3: Solutions

MATH1030 Linear Algebra Assignment 5 Solution

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

Math 6 SL Probability Distributions Practice Test Mark Scheme

5. Choice under Uncertainty

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Mean-Variance Analysis

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Iterated trilinear fourier integrals with arbitrary symbols

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

6.3 Forecasting ARMA processes

Oscillatory integrals

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Completeness Theorem for System AS1

Transcript:

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok Introductory Functional Analysis with Applications och Strömbergssons häfte Spectral theorem for compact, self-adjoint operators. 1. Let X and Y be normed spaces and fix some elements f 1, f 2 X and y 1, y 2 Y. For each x X we define T (x) = f 1 (x) y 1 + f 2 (x) y 2. Prove that T is a bounded linear operator from X to Y. 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). 3. (a). Prove that the set M = {y 1, y 2, y 3,...} is not total in l 2 if y 1 = (1, 1, 0, 0, 0,...) y 2 = (1, 1, 1, 0, 0, 0,...) y 3 = (1, 1, 1, 1, 0, 0, 0,...) y 4 = (1, 1, 1, 1, 1, 0, 0, 0,...) (b). Prove that the set M = {x 1, x 2, x 3,...} is total in l 2 if x 1 = (1, 1, 0, 0, 0,...) x 2 = (1, 1, 1, 0, 0, 0,...) x 3 = (1, 1, 1, 1, 0, 0, 0,...) x 4 = (1, 1, 1, 1, 1, 0, 0, 0,...) (Hint: One may eg. use Theorem 3.6-2.) (4p)

2 4. Define T : l 1 l by T ( (ξ 1, ξ 2, ξ 3,...) ) ( = ξ j, j=2 ξ j, j=3 ξ j, ) j=4 ξ j,... Prove that T is a bounded linear operator T : l 1 l and compute the norm T. 5. Let α n,m be complex numbers with α n,m 1 for all n, m 1, and assume that the limit α m = lim n α n,m exists for all m 1. For each n 1 we let T n : l 1 l 1 be the bounded linear operator given by T n ((ξ 1, ξ 2, ξ 3,...)) = (α n,1 ξ 1, α n,2 ξ 2, α n,3 ξ 3,...). Prove that the sequence (T n ) is strongly operator convergent. Also give an example to show that (T n ) is not necessarily uniformly operator convergent. 6. Let X be the normed space given by X = {(ξ n ) ξ n C, and N Z + : n N : ξ n = 0}, (ξ n ) := ξ n 2. n=1 Prove that X is meager in itself. 7. Define T : l l by T ((ξ 1, ξ 2, ξ 3,...)) = (0, ξ 1, ξ 2, ξ 3,...). Prove that 1 σ 2 r(t ), i.e. prove that = 1 belongs to the residual 2 spectrum of T. GOOD LUCK!

3 Solutions 1. T is linear since for all x 1, x 2 X and all α 1, α 2 K we have T (α 1 x 1 + α 2 x 2 ) = f 1 (α 1 x 1 + α 2 x 2 ) y 1 + f 2 (α 1 x 1 + α 2 x 2 ) y 2 = (α 1 f 1 (x 1 ) + α 2 f 1 (x 2 )) y 1 + (α 1 f 2 (x 1 ) + α 2 f 2 (x 2 )) y 2 = α 1 (f 1 (x 1 ) y 1 + f 2 (x 1 ) y 2 ) + α 2 (f 1 (x 2 ) y 1 + f 2 (x 2 ) y 2 ) = α 1 T (x 1 ) + α 2 T (x 2 ). T is bounded since for all x X we have T (x) = f 1 (x) y 1 + f 2 (x) y 2 f 1 (x) y 1 + f 2 (x) y 2 = f 1 (x) y 1 + f 2 (x) y 2 f 1 x y 1 + f 2 x y 2 = ( f 1 y 1 + f 2 y 2 ) x. 2. [T (H 1 )] = 1 {y H 2 z T (H 1 ) : y, z = 0} = 2 {y H 2 x H 1 : y, T x = 0} = 3 {y H 2 x H 1 : T y, x = 0} = 4 {y H 2 T y = 0} = 5 N (T ). 1. By definition of orthogonal complement. 2. By definition of T (H 1). 3. By definition of T. 4. By Lemma 3.8-2 and the trivial fact that 0, x = 0 for all x H 1. 5. By definition of N (T ) 3. Note that y n (1, 1, 0, 0, 0,...) for all n 1. Hence by Theorem 3.6-2(a), M = {y 1, y 2,...} is not total in l 2.

4 (b). Let x = (ξ n ) l 2 be an arbitrary vector which is orthogonal to M = {x 1, x 2,...}. Then etc. It follows that (ξ n ) x 1 = ξ 1 ξ 2 = 0; (ξ n ) x 2 = ξ 1 + ξ 2 ξ 3 = 0; (ξ n ) x 3 = ξ 1 + ξ 2 + ξ 3 ξ 4 = 0, ( j ) (ξ n ) x j = ξ n ξ j+1 = 0, ξ 2 = ξ 1 ; n=1 ξ 3 = ξ 1 + ξ 2 = 2ξ 1 ; ξ 4 = ξ 1 + ξ 2 + ξ 3 = 4ξ 1 ξ 5 = ξ 1 + ξ 2 + ξ 3 + ξ 4 = 8ξ 1 We get by induction: ξ n = 2 n 2 ξ 1 for n 2. Hence if ξ 1 0 then ξ n 2 = ξ 1 (1 + 2 2(n 2) ) =. n=1 This is impossible since (ξ n ) l 2. Hence ξ 1 = 0, and thus ξ n = 2 n 2 ξ 1 = 0 for all n 2. Hence there does not exist any nonzero vector x l 2 which is orthogonal to every element in M. By Theorem 3.6-2(b), this proves that M is total in l 2. 4. Note that if (ξ j ) l 1 then ξ j is absolutely convergent, and hence all series ξ j (n = 1, 2, 3,...) are also absolutely convergent. Hence also ξ j ξ j ξ j = (ξ j ), so that T ((ξ j )) is indeed a well-defined element in l. T is linear, for if (ξ n ), (η n ) l 1 and α, β K then where and thus ν n = n=2 T (α(ξ n ) + β(η n )) = (ν n ), (αξ j + βη j ) = α ξ j + β η j, T (α(ξ n ) + β(η n )) = (ν n ) = αt ((ξ n )) + βt ((η n )).

(The manipulations are permitted since all sums involved are absolutely convergent.) T is bounded since T ((ξ n )) = sup n 1 ξ j sup n 1 ξ j = ξ j = (ξ n ) for all (ξ n ) l 1. This also proves T 1. Let e 1 = (1, 0, 0, 0,...) (vector in l 1 or in l ). Then T (e 1 ) = e 1, and e 1 = 1 both in l 1 and in l. Hence T = 1. 5. Let T : l 1 l 1 be the bounded linear operator given by T ((ξ 1, ξ 2, ξ 3,...)) = (α 1 ξ 1, α 2 ξ 2, α 3 ξ 3,...), We claim that (T n ) is strongly operator convergent to T. Let x = (ξ m ) be an arbitrary vector in l 1. Then T n x T x = ( (α n,1 α 1 )ξ 1, (α n,2 α 2 )ξ 2, (α n,3 α 3 )ξ 3,... ) = α n,m α m ξ m. m=1 Let ε > 0. Then since (ξ m ) l 1 there is some M such that m=m+1 ξ m < ε. Furthermore, for each m there is some N 10 m 1 such that α n,m ε α m < for all n N 10M(1+ ξ m ) m, since lim n α n,m = α m. Hence, for all n max(n 1, N 2,..., N M ) we have: M T n x T x = α n,m α m ξ m + α n,m α m ξ m m=1 M m=1 M m=1 ε 10M(1 + ξ m ) ξ m + ε 10M + 2 ε 10 < ε. m=m+1 m=m+1 2 ξ m This proves that (T n ) is strongly operator convergent to T. We now give an example to show that (T n ) is not necessarily uniformly operator convergent to T. Let { 1 if n m α n,m = 0 if n > m. Then α m = lim n α n,m = 0 for all m 1. Hence T = 0 above. Hence if (T n ) is uniformly operator convergent then the limit must be T = 0, 5

6 since (T n ) is strongly operator convergent with limit T = 0. We would then have T n 0 0. However, T n ((ξ m )) = (0, 0,..., 0, ξ n, ξ n+1, ξ n+2,...), and in particular, for e n = (0,..., 0, 1, 0,...) (the 1 in the nth position), T n (e n ) = e n, and thus T n T n(e n ) e n = 1. This shows that T n 0 does not hold! Hence (T n ) is not uniformly operator convergent in this case. 6. Let U N = {(ξ n ) X n N : ξ n = 0}. Then by definition, X = N=1 U N. Hence it suffices to prove that each U N is rare in X. But U N is finite dimensional, hence U N is closed in X (Theorem 2.4-3). Hence it only remains to prove that U N has no interior points. Let x = (ξ n ) U N and r > 0. Then the vector v (ξ 1, ξ 2,..., ξ N, r/2, 0, 0, 0,...) X has distance r/2 from (ξ n ) (since ξ n = 0 for all n > N), and thus v B(x, r). We also have v / U N. Hence B(x, r) U N. This is true for every x U N and every r > 0. Hence U N has no interior points. 7. Let = 1. Note that 2 T ((ξ n )) = ( ξ 1, ξ 1 ξ 2, ξ 2 ξ 3,...) = ( 1 2 ξ 1, ξ 1 1 2 ξ 2, ξ 2 1 2 ξ 3,...). Hence if (η n ) = T ((ξ n )) for (ξ n ) l then ξ 1 = 2η 1 ξ 2 = 2η 2 4η 1 ξ 3 = 2η 3 4η 2 8η 1... ξ n = n 2j η n+1 j... This proves that T is injective, i.e. T 1 exists. It follows from the above computation that } ( ) {(η ) n ) l n (ξn ) l for ξ n = 2 j η n+1 j.

(In fact we have ) = {(η n ) l (ξn ) l for ξ n = } n 2 j η n+1 j, for if (η n ) l and ξ n = n 2j η n+1 j then one checks T ((ξ n )) = (η n ), and hence if (ξ n ) l then (η n ) ). However, we only need (*) for our discussion.) We prove that ) is not dense in l by proving e 1 = (1, 0, 0,...) / ). Assume to the contrary that e 1 = (1, 0, 0,...) ). ξ n = n 2j η n+1 j ; then since (η n ) by (*) above. But η 1 1 < 1 and η 10 n < 1 10 7 Then there is some (η n ) ) such that (η n) e 1 < 1. Define 10 ) we have (ξ n) l, for all n 1 and hence, for each n 2, n ξ n = 2 j n 1 η n+1 j = 2n η 1 + 2 j η n+1 j n 1 2 n η 1 2 j η n+1 j > 2 n (1 1 ) n 1 10 2 j 1 10 = 2 n (1 1 10 ) 1 10 (2n 2) > 2 n (1 1 5 ) > 2n 1. This proves that (ξ n ) / l, a contradiction. Alternative (inspired by the solution of Patrik Thunström): We prove that ) is not dense in l by proving (1, 1, 1,...) / 1 ). Assume to the contrary that (1, 1, 1,...) D(T ). Then ) such that (η n) (1, 1, 1,...) < 1, i.e. η n 1 < 1 for all n. Then Re η n > 0 for all n, and hence defining ξ n = n 2j η n+1 j we have n there is some (η n ) Re ξ n = 2 j Re η n+1 j < 2 n Re η 1. Since Re η 1 > 0 this implies that Re ξ n as n. It follows that (ξ n ) / l, a contradiction.

8 Alternative approach, also proving that ) is closed. (Inspired by the solution of Martin Linder.) Note that if (η n ) = T ((ξ n )), then for each k 2: 2 j η j+k = = 2 j (ξ j+k 1 1ξ 2 j+k) 2 j ξ j+k 1 2 (j+1) ξ j+k = ξ k 1. (All sums above are clearly absolutely convergent, since (η n ) l and (ξ n ) l. Hence the above manipulations are permitted.) In particular, using the above for k = 2 it follows that ( ) η 1 = 1 2 ξ 1 = 1 2 2 j η j+2 = 2 1 j η j. j=2 Conversely, let (η n ) be any vector in l satisfying (*). Then define (ξ k ) through ξ k = 2 j η j+k+1. Then ξ k 2 j η j+k+1 (η n ) 2 j = 2 (η n ). Hence (ξ k ) l. We now look at T ((ξ k )). The first entry in T ((ξ k )) is 1ξ 2 1 = 1 2 j η 2 j+2 = 2 1 j η j = η 1, j=2 because of (*). The n:th entry in T ((ξ k )) is, for n 2: ξ n 1 1 2 ξ n = 2 j η j+n 1 2 = η n + 2 j η j+n+1 2 j η j+n 2 (j+1) η (j+1)+n = η n.

Hence T ((ξ k )) = (η n ), and thus (η n ) R(T ). We have proved that (η n ) l belongs to R(T ) if and only if (*) holds, i.e. { } ) = R(T ) = (η n ) l η1 = 2 1 j η j. But note that f((η n )) := n=1 21 n η n is a bounded linear functional f (l ), and by the above formula, ) = {(η n ) l f((ηn )) = 0 j=2 } = N (f). Hence ) is closed in l (cf. Cor. 2.7-10), and ) = N (f) l, since (e.g.) f((1, 0, 0, 0,...)) = 1 0. Hence ) is not dense in l. 9