The Structure and Properties of Supercritical Water



Σχετικά έγγραφα
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

2. Chemical Thermodynamics and Energetics - I

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Supporting Information. Experimental section

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

Molecular Dynamics Simulation of High Temperature and Pressure Water

Conductivity Logging for Thermal Spring Well

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Calculating the propagation delay of coaxial cable

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CH 3 CH 2 COOCH 2 CH 2 CH 3 + H 2 O

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.

CONCENTRATIVE PROPERTIES OF AQUEOUS SOLUTIONS: DENSITY, REFRACTIVE INDEX, FREEZING POINT DEPRESSION, AND VISCOSITY

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

; +302 ; +313; +320,.

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Second Order RLC Filters

Temperature Change of Orientation Function of Polymer Crystals Evaluated by the Simultaneous DSC-XRD and DSC-FTIR Methods

of the methanol-dimethylamine complex

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Supporting Information

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Correction Table for an Alcoholometer Calibrated at 20 o C

Electronic Supplementary Information

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

ST5224: Advanced Statistical Theory II

Higher Derivative Gravity Theories

EE512: Error Control Coding

Complex Formation of Large-ring Cyclodextrins with Iodine in Aqueous Solution as Revealed by Isothermal Titration Calorimetry

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

The Significance of Thermal Analysis in the Development of Teaching Materials for Chemistry Education

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Design Method of Ball Mill by Discrete Element Method

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Supplementary Information

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homework 3 Solutions

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Table of Contents 1 Supplementary Data MCD

2 Composition. Invertible Mappings

X g 1990 g PSRB

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

IV. ANHANG 179. Anhang 178

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Instruction Execution Times

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Lecture 34 Bootstrap confidence intervals

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Probability and Random Processes (Part II)

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Math 6 SL Probability Distributions Practice Test Mark Scheme

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Aluminum Electrolytic Capacitors

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

) ; GSP ) ;PXD g, 100 ml

Aluminum Electrolytic Capacitors (Large Can Type)

APPENDIX A. Summary of the English Engineering (EE) System of Units

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Thin Film Chip Resistors

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

w o = R 1 p. (1) R = p =. = 1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. Supplementary to Theoretical Study on the Gas Adsorption Capacity and

Approximation of distance between locations on earth given by latitude and longitude

Σπανό Ιωάννη Α.Μ. 148

Matrices and Determinants

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Strain gauge and rosettes

STEAM TABLES. Mollier Diagram

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

MECHANICAL PROPERTIES OF MATERIALS

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Transcript:

@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@ @?h@?e @?h@?@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @?@?f@?@?@? @?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@? @?@?f@?@ @?@?@@@?@?@?@? @@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@? @?@?@@@?@?@?@? @?e@??e@??e@??e@??e@??e@??e@??e@??e@??e@??e@??e@??e? @?@?@@@?@?@?@? @?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@? @?@?@@@?@?@ @?@?f@?@?@? @?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@? @?@?f@?@ @@? @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?@@@@@@@? @?h@?e @?h@ @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@ @?h@?@h?@?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?@@@@@@@?@@ @?@?f@?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@?@?@f?@?@ @?@?@@@?@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@?@?@@@?@?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@??@ @?@?@@@?@?@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@?@@@?@?@ @?@?f@?@?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@?@f?@?@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@? @?h@?@h?@ @@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@ Netsu Sokutei 31 1 14-22 2003 11 212003 12 25 The Structure and Properties of Supercritical Water Masaru Nakahara (Received November 21, 2003; Accepted December 25, 2003) First we explain the importance of the investigation on the structure and properties of supercritical water in relation to the chemical evolution and the environmental and energy issues of the 21 st century. Molecular interpretations are given to the temperature dependence of the density, dielectric constant, and viscosity, hydrogen-bonding structure, and dynamics of supercritical water. The three-dimensional network structure, characteristic of ambient water, is broken down in hot expanded water at temperatures higher than 200 and densities lower than 0.9gcm 3. The number of hydrogen bonds per molecule has been determined by the NMR method combined with computer simulation; it decreases from 4 for ambient water to 1-2 for supercritical water at 400 and the critical density ( 0.32 g cm 3 ). The NMR rotational correlation time (τ 2R) for supercritical water at the medium densities is in the range of 50-70 fs, two orders of magnitude smaller than the ambient value (2 ps). Supercritical water is shown to be an alternative to hazardous organic solvents; there are being found new hydrothermal organic reactions without catalyst for the development of green chemistry. 21 1-11) H 2COHCOOH COCO 2 C1 H 2 H 2O 12) 2004 The Japan Society of Calorimetry and Thermal Analysis. 14

21 SCWO80 C-C C-H C-OH 1 20 Table 1 Critical temperature, pressure, and density for widely used substances. Species T c/ P c/mpa ρ c/g cm 3 Water 374.2 22.1 0.315 Methanol 239.4 8.2 0.272 Ethanol 240.7 6.1 0.276 Ethane 31.1 4.9 0.205 Carbon Dioxide 31.0 7.4 0.468 Benzene 289.0 4.9 0.302 8,13-17) 18) T c P c ρ c Table 1 CO 2 H 2O CO 2 T c P c ρ cvan der Waals aba/b 19,20) 1,3,4,20) 15

ST2 MCY TIP4P SPC SPC/E 3 H-O-H 105 2 2 Lennard-Jones 2 δ 2δ 2 2δ SPC SPC/E ST2 1.8 Debye OH OH 1/20 1/30 k BT 10 subnanometer scale 1 1/2 nanometer scale2 Debye micrometer scale 80 Fig.1 Water sealed in a capillary made of quartz; (a) ambient and (b) high-temperature conditions. The arrow indicates the vapor-liquid meniscus. For the in-situ observation of microscopic properties of hot water, the capillary is set in an NMR tube containing DEMNUM (Daikin, perfluoroether) as the high-temperature heat medium and mounted on a high-temperature NMR probe. The NMR observation is thus carried out under isochoric conditions as a function of the temperature. Filling factor y is defined as v / v 0, where v and v 0 are the sample (water) and quartz capillary volumes, respectively. In the case of water, the density is 1 and ρ in g cm 3 in ambient supercritical conditions, respectively. Hence the density of supercritical water is equal to the filling factor in number (y ρ ), because the supercritical water fills the whole volume of the capillary. Fig.1 2 1 0.1 MPa 10 100 21) Fig.1(b) 22) P ρ T P -ρ Fig.2 ρ -T Fig.3 b y ρ/g cm 3 Fig.2 ρ c ρ c ρ G 16

P / MPa Density / g cm 3 Density / kg m 3 T / K Fig.2 The isothermal pressure of H 2O plotted against the density at several temperatures above, at, and below the critical temperature. The broken line like a mountain indicates the liquid-gas transition, and the horizontal dotted line shows the coexistence tie line. ρ L ρ G ρ L Fig.1 1 gcm 3 ρ y 2 Fig.2 Fig.3 The densities of the liquid and the gas in equilibrium plotted against the temperature. Fig.3 Cailletet- Mathias's law; (ρ L ρ G)/2 a bt 22) Fig.4 Fig.3 Kirkwood g K g K 1 g K NMR 10,11,23) 10 % 17

Dielectric Constant Viscosity / m Pa s T / K T / K Fig.4 The temperature dependence of the dielectric constants of the liquid and gas phases of water (H 2O) in equilibrium up to the critical temperature and the isochoric values under the supercritical conditions at the different densities. Fig.5 The viscosity coefficients for the liquid and gas phases of water (H 2O) in equilibrium plotted against the temperature and the isochoric values under the supercritical conditions at the different densities. NMR 24) Born Kirkwood 20) 25,26) Debye τ Dτ D ps 22) Fig.5 Fig.3 Fig.4 Einstein-Stokes-Debye Hubbard-Onsager 27,28) 18

(a) (b) δ / ppm δ / ppm T / T / δ / ppm Fig.6 Proton NMR spectrum for water as a function of temperature. The proton chemical shift δ is relative to that for an isolated water at 200 (reference). The supercritical water is at the density of 0.4 g cm 3 at 400. 27) 29) 150 200 IAPWS SF-95 30) 22) Nature 31) 1993 0.66 g cm 3 NMR 1994 1-4) 5-7) 32) 0.8 mm 0.6 mm Fig.7 Temperature and density dependence of the proton chemical shifts of hot water including the supercritical. Part (b) is the expanded portion of the supercritical region of part (a); the numbers indicate the densities in g cm 3. The upper and the lower portions of part (a) correspond to the liquid and the gas phases, respectively, in the subcritical conditions. Fig.1 NMR NMR 21) Fig.6 δ /ppm Fig.7 4.3 ppm δ 400 ρ c 1.3 ppm 0 ppm 1) NMR 21) OH 13 C NMR 33) 13 C Fig.7 19

N HB τ 2R / ps ρ / g cm 3 ρ / g cm 3 Fig.8 The hydrogen bond number N HB. The points at 400 are for the supercritical water at the corresponding densities. Fig.9 Rotational correlation times τ 2R for D 2O as a function of the density. The data in the density range of 0 to 0.6 g cm 3 are for the supercricial (heavy) water at 400. 2 Boltzmann k BT 400 2 NMR 31) O-H 2,4,10,11) 23) Fig.8 4 0.4 0.6 g cm 3 2 HF 2 D 2O NMR T 1 1,34-36) T 1 Jonas 37) H 2O H 2O NMR T 1 spin-rotation T 1 τ J D 2O D T 1 spin-rotation T 1 D 2O T 1 OD 2 τ 2R 0 t OD θ (t) τ 2R 3 τ 2R dt cos 2 θ (t ) 1 0 2 2 τ D Debyeτ 2R 3 τ 2R ρ H 2O 20

Fig.9 τ 2R 2ps 10 fs 0.1 0.6 g cm 3 τ 2R 40 % 20 % 0.1gcm 3 τ 2R 0 gcm 3 τ 2R 0.1 g cm 3 τ 2R Jonas τ J τ 2R τ J τ J τ 2R 400 τ 2R τ 2R 4 38) 21 8,13-17,39-41) 8) CH 2Cl 2 14,15,17) 2 14,15,17) 17,39) THF (tetrahydrofuran) 40) 13,16,39) topochemical H/D 41) landscape 42-45) 46) A, B 1) (a) 4, 186 (1995). (b) M. Nakahara and C. Wakai, J. Mol. Liq. 65/66, 149 (1995). 2), 51, 691 (1996). 3) M. Nakahara, T. Yamaguchi, and H. Ohtaki, Recent Res. Devel. in Phys. Chem. 1, 17 (1997). 4),, 2,,,,, p.21 (1997). 5) N. Matubayasi, C. Wakai, and M. Nakahara, Phys. Rev. Lett. 78, 2573 (1997). 6) N. Matubayasi, C. Wakai, and M. Nakahara, J. Chem. Phys. 107, 9133 (1997). 7),, 6, 16 (1997). 8) M. Nakahara, T. Tennoh, C. Wakai, E. Fujita, and H. Enomoto, Chem. Lett. 1997, 163. 9) Cellulose Commun. 6, 60-66 (1999). 10) Electrochemistry 67, 988 (1999). 11),,,, 4.2,,, p.23 (2002). 12),, 77,, p.146 (2004). 13) Y. Tsujino, C. Wakai, N. Matubayasi, and M. Nakahara, Chem. Lett. 1999, 287. 14) Y. Yamasaki, H. Enomoto, N. Yamasaki, and M. Nakahara, Chem. Lett. 1999, 83. 15) Y. Yamasaki, H. Enomoto, N. Yamasaki, and M. Nakahara, Bull. Chem. Soc. Jpn. 73, 2687 (2000). 16) Y. Nagai, C. Wakai, N. Matubayasi, and M. Nakahara, Chem. Lett. 32, 310 (2003). 17) M. Nakahara, C. Wakai, Y. Tsujino, and M. Nakahara, in "Steam, Water, and Hydrothermal 21

Systems: Physics and Chemistry Meeting the Needs of Industry", ed. by P. R. Tremaine et al., NRC Press, Ottawa, p.456 (2000). 18), Electrochemistry 68, 1028 (2000). 19) E. Eisenberg and W. Kauzmann, "The Properties and Structure of Water", Oxford Express, London (1964);, (1975). 20),, I 1,,. 21),,,, 4,,, p.147 (2003). 22),, (1999). 23) N. Matubayasi, C. Wakai, and M. Nakahara, J. Chem. Phys. 110, 8000 (1999). 24) (a) H. Sato and F. Hirata, J. Chem. Phys. 110, 8000 (1999). (b),, 54, 696 (1999). 25) K. Okada, Y. Imashuku, and M. Yao, J. Chem. Phys. 111, 8545 (1999). 26) K. Okada, M. Yao, Y. Imashuku, and M. Yao, J. Chem. Phys. 110, 3026 (1999). 27) K. Ibuki, M. Ueno, and M. Nakahara, J. Phys. Chem. B 104, 5139 (2000). 28) K. Ibuki, M. Ueno, and M. Nakahara, J. Mol Liq. 98-99, 129 (2002). 29) M. Kubo, P. Rossky, R. Levy, N. Matubayasi, and M. Nakahara, J. Phys. Chem. B 106, 3979 (2002). 30) IAPWS, The International Association for the Properties of Water and Steam; ITS (1995 ), Scientific Formulation (SF-95). 31) P. Postorino, R. H. Tromp, M. A. Ricci, A. K. Soper, and G. W. Neilson, Nature 366, 668 (1993). 32) M. M. Hoffmann and M. K. Conradi, J. Am. Chem. Soc. 119, 3811 (1997). 33) Y. Takebayashi,. Yorita, T. Sugata, M. Ohtake, and M. Nakahara, J. Chem. Phys., in press. 34) N. Matubayasi, N. Nakao, and M. Nakahara, J. Chem. Phys. 114, 4107 (2001). 35) M. Nakahara, N. Matubayasi, C. Wakai, and Y. Tsujino, J. Mol. Liq. 90, 75 (2001). 36),,, 10, 283 (2000). 37) W. J. Lamb and J. Jonas, J. Chem. Phys. 74, 913 (1981). 38) T. Yamaguchi, N. Matubayasi, and M. Nakahara, J. Phys. Chem. A, in press. 39) C. Wakai, T. Morooka, N. Matubayasi, and M. Nakahara, submitted. 40) Y. Nagai, M. Matubayasi, and M. Nakahara, Bull. Chem. Soc. Jpn. 77 (2004). 41) M. Kubo, C. Wakai, N. Matubayasi, and M. Nakahara, submitted. 42) N. Matubayasi and M. Nakahara, J. Chem. Phys. 112, 8089 (2000). 43) N. Matubayasi and M. Nakahara, J. Chem. Phys. 113, 6070 (2000). 44) N. Matubayasi and M. Nakahara, J. Phys. Chem. B 104, 10352 (2000). 45) N. Matubayasi and M. Nakahara, J. Chem. Phys. 117, 3605 (2002). 46), 4, 11,, 2.4,,, p.149 (1993). Masaru Nakahara, Div. of Solution and Interface Chemistry, Kyoto Univ., TEL./FAX. 0774-38-3070, e-mail: nakahara@scl.kyoto-u.ac.jp NMR 22