43 Journal of Technology, Vol. 31, No. 1, pp. 43-49 (2016) 1, * 2 1 2 (GO) GO PMMA PET SEM GO PMMA (SEM) PET ITO A STUDYING FOR PREPARATION AND CHARACTERIZATION OF GRAPHENE OXIDE/SILVER NANOWIRE CONDUCTIVE COMPOSITE FILM Chi-Ying Huang 1, * Wei-Ming Chiu 2 1 Department of Chemical and materials Engineering National Chinyi University of Technology Taichung, Taiwan 411, R.O.C. 2 Graduate Institute of Precision Manufacture National Chinyi University of Technology Taichung, Taiwan 411, R.O.C. Key Words: Graphene oxide, Silver nanowire, Transparent conductive film. ABSTRACT The study use graphene oxide (GO) and silver nanowire (AgNW) and prepared transparent conductive films (TCFS) to research GO dispersion in solution and preparation condition, and silver nanowire synthesis temperature and PVP protection agent effect. We select the best conductivity formula analysis the film transmittance and conductivity and different graphene and nano silver wire content with PMMA oligomer to prepare transparent con- * e-mail: b24758792@yahoo.com.tw Corresponding author: Chi-Ying Huang, e-mail: b24758792@yahoo.com.tw
44 ductive film, using SEM observation GO dispersed in PMMA. Results show graphene content increase conductivity rise and transmittance decreased. Results also show graphene content increase conductivity rise and transmittance decreased. We put in silver nanowire to increase film conductivity and maintain the transmittance to achieve high transmittance and high conductivity targets. Coating on PET improved the traditional ITO bent resulting in an increase in resistance. : [1] ITO (GO) (TCFS) [2] [3] (Substrate) (nm) ( m) ITO [4] (conducting polymer) (silver nanowires) (carbon nanotube CNT) (graphene) (OLED) [5] 1. (ITO) (solar cell) (touch panel) (light emitting diode, LED) (E-paper) (low emissivity glass) (electro chromic, EC) [6] 2. [7] [8] [9] [10] Improving Hummer s ( ) [11] ITO ITO ITO 3% ITO ITO ITO [12-13] 1. Hummer s 1 H 2 SO 4 HNO 3 KMnO 4
45 (a) (b) (c) (d) 1 4 PVP 36,000 (a) 1.5 SEM (b) 2.5 SEM (c) 3.5 SEM (d) 4.5 SEM 1.4 1.2 1.0 PVP/AgNO 3 = 1.5 PVP/AgNO 3 = 2.5 PVP/AgNO 3 = 3.5 PVP/AgNO 3 = 4.5 Abs 0.8 0.6 1.10 1.05 2 DI water DMF 0.4 0.2 400 0 0 0 0 Wavelength (nm) 5 PVP 36,000 Abs 1.00 0.95 0. 0.85 0. 400 0 0 0 0 Wavelength nm 3 UV-Vis ( ) 2. 2 PVP PVP ( 40,000) ( 99.5%) PVP 1 C 1 1 c.c. 1 C 0 10 3. PMMA 3 230 nm DMF DMF GO 4 1 C 1.5 hr PVP 36,000 1.5 2.5 3.5 4.5 SEM 1.5 2.5 3.5 4.5 SEM 3.5 340 3 nm 5 3 nm
46 2 2 1 1 6 1 wt%go/ 2 2 1 1 9 7 wt%go/ 2 2 1 1 7 3 wt%go/ 2 2 1 1 40 30 20 10 10 wt%go/ 2 2 1 1 8 5 wt%go/ 3.5 400 nm 1.5 2.5 4.5 340 nm 400 nm 1. 6 7 8 9 10 1 wt% 3 wt% 5 wt% 7 wt% 10 wt%go GO/AgNws GO 1 wt%go 10 wt%agnws 97.2% 79 /sq 1 wt%go/agnws 1 wt%go 4 B 11 ITO ITO 12 1 wt%go/agnws 79 /sq 13 2. ( ) 10 wt% 74 /sq
47 1 wt%go/ (wt%) 1% 3% 5% 7% 10% (Sheet Resistance) ( /sq) 2 203 161 99 79 (%) 97.1 97.1 97.2 97.0 97.2 3 wt%go/ (wt%) 1% 3% 5% 7% 10% (Sheet Resistance) ( /sq) 281 199 1 97 76 (%) 93. 93.5 93.6 93.7 93.4 5 wt%go/ (wt%) 1% 3% 5% 7% 10% (Sheet Resistance) ( /sq) 282 197 159 75 (%) 77.0 77.1 77.0 77.0 77.2 7 wt%go/ (wt%) 1% 3% 5% 7% 10% (Sheet Resistance) ( /sq) 288 197 162 74 (%) 65.4 65.7 65.4 65.5 65.7 10 wt%go/ (wt%) 1% 3% 5% 7% 10% (Sheet Resistance) ( /sq) 310 166 92 74 (%) 46.0 46.0 45.5 45.5 46.1 (wt%) 1% 3% 5% 7% 10% ASTM 4B 4B 4B 4B 4B ITO 0 10 20 1 2 2 (Sheet Resistance) ( /sq) 40.7 3920 3910 5840 6 7440 8920 9264 93 8920 9264 97 00 00 00 4000 0 40 0 1 2 Bending Number 11 ITO 75 65 55 1 2 Bending Number 12
48 1 2 (Sheet Resistance) ( /sq) 79.2 77.8 79.1 78.1 79.1 78.2 3.5 3. PMMA 79 /sq 97.2% 4. 13 ( ) PMMA 1 wt% ASTM 4B 97% ( ) 1%GO/10% 4 /sq 97% ( ) ( ) ( ) 1. Hummer s KMnO 4 PET 1% 2. PVP PVP 1 C PVP 3.5 1.5 2.5 4.5 1. Lee, D., H. Lee, Y. Ahn, and Y. Lee. 2015. High-Performance Flexible Transparent Conductive Film Based on Graphene/AgNW/Graphene Sandwich Structure. Carbon 81: 439-446. 2. Myekhlai, M., S. Lee, T. Lee, H. Chung, and H. Jeong. 2015. A Facile and Eco-Friendly Synthesis of Graphene-Silver Hybrid Materials for Transparent Conductive Films. Ceramics Internationa. 41 (1): 983-989. 3. 2011 33 2 163-167 4. Liu, B. T., and H. L. Kuo. 2013. Graphene/Silver Nanowire Sandwich Structures for Transparent Conductive Films. Carbon 63: 3-396. 5. Oh, S. Y., S. H. Kim, Y. S. Chi, and T. J. Kang. 2012. Fabrication of Oxide-Free Graphene Suspension and Transparent Thin Films Using Amide Solvent and Thermal Treatment. Applied Surface Science 258 (22): 8837-8844. 6. Lee, S. H., S. Lim, and H. Kim. 2015. Smooth-Surface Silver Nanowire Electrode with High Conductivity and Transparency on Functional Layer Coated Flexible Film. Thin Solid Films 589: 403-407. 7. 2010 24 4 176-179 8. Nekahi, A, P. H. Marashi, and D. Haghshenas. 2014. Transparent Conductive Thin Film of Ultra Large Reduced Graphene Oxide Monolayers. Applied surface Science 295: 59-65. 9. Deokar, G, J. Avila, I. Razado-Colambo, J.-L. Codron, C. Boyaval, E. Galopin, M.-C. Asensio, and D. Vignaud. 2015. Towards High Quality CVD Graphene Growth and Transfer. Carbon 89: 82-92. 10. Tian, J., B. Hu, Z. Wei, Y. Jin, Z. Luo, M. Xia, Q. Pan, Y. Liu. 2014. Suface Structure Deduced Differences of Copper
49 Foil and Film for Graphene CVD Growth. Applied Surface Sciene : 73-79. 11. Knieke, C., A. Berger, M. Voigt, R. N. K. Taylor, J. Röhrl, and W. Peukert. 2010. Scalable Production of Graphene Sheets by Mechanical Delamination. Carbon 48 (11): 3196-3204. 12. Ahmadi-Moghadam, B., M. Sharafimasooleh, S. Shadlou, and F. Taheri. 2015. Effect of Functionalization of Graphene Nanoplatelets on the Mechanical Response of Graphene/ Epoxy Composites. Materials & Design 66: 142-149. 13. Valentini, L., M. Cardinali, E. Fortunati, L. Torre, and J. M. Kenny. 2013. A Novel Method to Prepare Conductive Nanocrystalline Cellulose/Graphene Oxide Composite Films. Materials Letters 105: 4-7. 2015 09 08 2015 09 11 2015 11 27 2015 12 01