metal-organic papers Aquaoxobis(quinoline-2-carboxylato-N,O)- vanadium(iv) ethanol hemisolvate Comment

Σχετικά έγγραφα
Experimental. Crystal data

Triclinic, P1 a = (2) Å b = (3) Å c = (4) Å = (1) = (1) = (1) Data collection.

metal-organic compounds

Supplementary Material

metal-organic compounds

metal-organic compounds

organic papers 7,8-Dihydroxy-3-methyl-10-oxo-1H,10Hpyrano[4,3-b]chromene-9-carboxylic

Experimental. Crystal data. C 37 H 38 N 4 O 6 M r = Monoclinic, P2 1 a = (2) Å b = (7) Å c = (2) Å = 112.

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

IV. ANHANG 179. Anhang 178

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

data reports 2-(4-Methylphenyl)-2-oxoethyl 3,4-dimethoxybenzoate Structure description Synthesis and crystallization Refinement

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

Experimental. Crystal data. C 23 H 27 ClN 2 O M r = Triclinic, P1 a = (3) Å b = (6) Å c = (7) Å = (4) = 80.

metal-organic compounds

metal-organic compounds

Supporting Information

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting Information

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supplementary information

2-Carboxyquinolinium-2,4,6-trinitrobenzenesulfonatequinolinium-2-carboxylate

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Electronic Supplementary Information (ESI)

metal-organic compounds

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Table of Contents 1 Supplementary Data MCD

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Mouhamadou Birame Diop, a * Libasse Diop a and Allen G. Oliver b

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

metal-organic compounds

Supporting Information

2. Experimental Crystal data. C 22 H 29 F 3 O 5 S M r = Orthorhombic, P a = (10) Å b = (12) Å c = 27.

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Electronic Supplementary Information (ESI)

Experimental. Crystal data. C 13 H 17 N 3 O 2 M r = Monoclinic, Cc a = (4) Å b = (4) Å c = (3) Å = 111.

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supplementary Materials: Exploration of vanadate selenites Solid Phase Space, crystal structures and polymorphism

organic compounds 78 HeÂctor Novoa de Armas et al. C 24 H 36 O 6 Acta Cryst. (2000). C56, 78±79 Comment Experimental

metal-organic compounds

Supporting Information

Electronic Supplementary Information (ESI)

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Experimental. Crystal data. C 37 H 24 N 2 O 3 M r = Orthorhombic, P a = (1) Å b = (2) Å c = 26.

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supporting Information

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

4, Cu( II), Zn( II)

Supporting Information-B. A Facile Iterative Synthesis of 2,5-Terpyrimidinylenes as Non-peptidic α-helical Mimics

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Experimental. Crystal data

Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

metal-organic compounds

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

data reports a molecular salt Structure description

Experimental. Crystal data. C 15 H 12 BrN 3 O 2 S M r = Trigonal, R3 a = (9) Å c = (5) Å V = (4) Å 3.

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

2. Experimental Crystal data

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Supporting Information

Supporting Information

2-(5-Bromo-1H-indol-3-yl)-4-(4-bromophenyl)-5- (4-chlorobenzoyl)-1H-pyrrole-3-carbonitrile dimethyl sulfoxide monosolvate

Supporting Information

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting Information

Electronic Supplementary Information:

organic compounds 5-Chloro-3-methyl-4-[3-(4-nitro- phenyl)-4,5-dihydro-1h-pyrazol-5-yl]- 1-phenyl-1H-pyrazole: a chain of fused hydrogen-bonded rings

Elizabeth M. Horstman, a Jeffery A. Bertke, b Toby J. Woods b * and Paul J. A. Kenis a

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Fused Bis-Benzothiadiazoles as Electron Acceptors

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supporting Information

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław, Poland

Supplementary Information for

Derivation of Optical-Bloch Equations

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Mohamed Amedjkouh, Jacques Grimaldi, Jean-Pierre Reboul and Didier Siri

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Supporting Information

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Transcript:

metal-organic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Aquaoxobis(quinoline-2-carboxylato-N,O)- vanadium(iv) ethanol hemisolvate Nobuo Okabe* and Yasunori Muranishi Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan Correspondence e-mail: okabe@phar.kindai.ac.jp Key indicators Single-crystal X-ray study T = 296 K Mean (C±C) = 0.013 AÊ R factor = 0.067 wr factor = 0.245 Data-to-parameter ratio = 15.9 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, [VO(C 10 H 6 NO 2 ) 2 (H 2 O)] 2 C 2 H 5 OH, contains six-coordinate V IV atoms. The central V IV atom in each of the two crystallographically independent molecules has a distorted octahedral coordination geometry, involving O atoms of the oxo and aqua ligands, together with two O and two N atoms of two organic ligands. Comment Quinoline-2-carboxylic acid, a tryptophan metabolite, forms complexes with various transition metals (Martell & Smith, 1974). Crystal structures have been determined for the Cu II (Haendler, 1986), Mn II (Haendler, 1996; Okabe & Koizumi, 1997), Fe II (Okabe & Makino, 1998), Co II (Okabe & Makino, 1999) and Ni II complexes (Odoko et al., 2001). Vanadate ions have an insulin-mimetic effect in living animals (Bhattacharyya & Tracey, 2001) and in intact cell systems (Kanamori et al., 2001; Sasagawa et al., 2002). Therefore, we aimed to prepare complexes of quinoline-2-carboxylic acid and vanadium and determine their structures. We have characterized the title oxovanadium(iv) complex, (I). Received 29 April 2002 Accepted 13 May 2002 Online 17 May 2002 # 2002 International Union of Crystallography Printed in Great Britain ± all rights reserved The molecular structure of (I) is shown in Fig. 1. There are two independent complex molecules in the asymmetric unit, with similar structures. In the complex, two organic ligand molecules and one water molecule coordinate to the oxovanadium(iv) centre. The central V IV atom has a distorted octahedral coordination geometry, involving the O atoms of oxo and aqua ligands, together with two O and two N atoms of the quinoline-2-carboxylate ligands. The carboxyl groups of the ligands are ionized and are essentially coplanar with the quinoline ring planes, as shown by relevant torsion angles [O2AÐC11AÐC2AÐN1A 2.4 (9), O2BÐC11BÐC2BÐ Acta Cryst. (2002). E58, m287±m289 DOI: 10.1107/S1600536802008619 Okabe and Muranishi [VO(C 10 H 6 NO 2 ) 2 (H 2 O)] 2 C 2 H 5 OH m287

metal-organic papers Re nement Re nement on F 2 R[F 2 >2(F 2 )] = 0.067 wr(f 2 ) = 0.245 S = 1.09 8754 re ections 550 parameters H-atom parameters not re ned w = 1/[ 2 (F o 2 ) + (0.081P) 2 ] where P =(F o 2 +2F c 2 )/3 (/) max = 0.001 max = 0.87 e A Ê 3 min = 0.91 e A Ê 3 Table 1 Selected geometric parameters (A Ê, ). V1AÐO1VA 1.599 (6) V1AÐO2A 2.005 (5) V1AÐO2B 1.990 (6) V1AÐO2VA 2.294 (5) V1AÐN1A 2.191 (7) V1AÐN1B 2.145 (7) V1BÐO1VB 1.602 (5) V1BÐO2C 1.982 (6) V1BÐO2D 2.020 (5) V1BÐO2VB 2.251 (5) V1BÐN1C 2.155 (7) V1BÐN1D 2.139 (6) Figure 1 ORTEPII (Johnson, 1976) drawing of the asymmetric unit of the title compound, with the atomic numbering scheme. Ellipsoids correspond to 50% probability. N1B 1 (1),O2CÐC11CÐC2CÐN1C 5.0 (9) and O2DÐ C11DÐC2DÐN1D 2 (1) ]. The quinoline-2-carboxylate ligands and the central V IV form ve-membered chelate rings. Such coplanarity and ve-membered ring formation are usually present in metal compounds of quinoline-2-carboxylic acid (Okabe & Makino, 1999). Planar ve-membered rings with similar bond lengths and angles are also found in a vanadium(iii) complex with picolinic acid (pyridine-2- carboxylic acid), [V III (pic) 3 ]H 2 O (Chatterjee et al., 1997), which has a similar coordination geometry. Experimental The green prism crystal of (I) used for X-ray analysis was obtained by slow evaporation from a 4:1 mixture of quinoline-2-carboxylic acid dissolved in ethanol and VOSO 4 dissolved in a small amount of water. Crystal data [VO(C 10 H 6 NO 2 ) 2 (H 2 O)] 2 C 2 H 5 OH M r = 904.63 Triclinic, P1 a = 11.745 (3) A Ê b = 16.727 (6) A Ê c = 10.425 (2) A Ê = 106.94 (2) = 93.58 (2) = 101.33 (3) V = 1905.3 (10) A Ê 3 Data collection Rigaku AFC-5R diffractometer!±2 scans Absorption correction: scan (North et al., 1968) T min = 0.945, T max = 0.972 9184 measured re ections 8754 independent re ections 2975 re ections with I > 2(I) Z =2 D x = 1.577 Mg m 3 Mo K radiation Cell parameters from 25 re ections = 10.5±13.0 = 0.57 mm 1 T = 296.2 K Prism, green 0.10 0.10 0.05 mm R int = 0.089 max = 27.5 h =0! 15 k = 21! 21 l = 13! 13 3 standard re ections every 150 re ections intensity decay: 0.3% O1VAÐV1AÐO2A 103.6 (3) O1VAÐV1AÐO2B 102.3 (3) O1VAÐV1AÐO2VA 177.2 (2) O1VAÐV1AÐN1A 93.4 (3) O1VAÐV1AÐN1B 94.9 (3) O2AÐV1AÐO2B 154.0 (2) O2AÐV1AÐO2VA 78.1 (2) O2AÐV1AÐN1A 78.2 (2) O2AÐV1AÐN1B 97.7 (2) O2BÐV1AÐO2VA 76.0 (2) O2BÐV1AÐN1A 102.2 (3) O2BÐV1AÐN1B 78.1 (3) O2VAÐV1AÐN1A 84.9 (2) O2VAÐV1AÐN1B 86.9 (2) N1AÐV1AÐN1B 171.4 (2) O1VBÐV1BÐO2C 104.4 (3) O1VBÐV1BÐO2D 100.4 (3) O1VBÐV1BÐO2VB 176.4 (3) O1VBÐV1BÐN1C 94.0 (3) O1VBÐV1BÐN1D 93.9 (3) O2CÐV1BÐO2D 154.9 (2) O2CÐV1BÐO2VB 79.2 (2) O2CÐV1BÐN1C 78.7 (2) O2CÐV1BÐN1D 95.5 (2) O2DÐV1BÐO2VB 76.0 (2) O2DÐV1BÐN1C 103.5 (2) O2DÐV1BÐN1D 78.9 (2) O2VBÐV1BÐN1C 86.5 (2) O2VBÐV1BÐN1D 85.8 (2) N1CÐV1BÐN1D 171.1 (2) V1AÐO2AÐC11A 119.4 (4) V1AÐO2BÐC11B 118.8 (5) V1BÐO2CÐC11C 119.2 (5) V1BÐO2DÐC11D 116.5 (5) V1AÐN1AÐC2A 112.2 (5) V1AÐN1AÐC10A 128.5 (6) V1AÐN1BÐC2B 111.9 (5) V1AÐN1BÐC10B 130.0 (5) V1BÐN1CÐC2C 112.1 (5) V1BÐN1CÐC10C 128.7 (5) V1BÐN1DÐC2D 112.2 (6) V1BÐN1DÐC10D 129.2 (5) H atoms, located from a difference map, were included in idealized positions (except for those on H 2 O) and then xed. Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation & Rigaku Corporation, 1999); cell re nement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1992); program(s) used to re ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN. References Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115±119. Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands. Bhattacharyya, S. & Tracey, A. S. (2001). J. Inorg. Biochem. 85, 9±13. Chatterjee, M., Ghosh, S. & Nandi, A. K. (1997). Polyhedron, 16, 2917±2923. Haendler, H. M. (1986). Acta Cryst. C42, 147±149. Haendler, H. M. (1996). Acta Cryst. C52, 801±803. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Kanamori, K., Nishida, K., Miyata, N., Okamoto, K., Miyoshi, Y., Tamura, A. & Sakurai, H. (2001). J. Inorg. Biochem. 86, 649±656. m288 Okabe and Muranishi [VO(C 10 H 6 NO 2 ) 2 (H 2 O)] 2 C 2 H 5 OH Acta Cryst. (2002). E58, m287±m289

metal-organic papers Martell, A. E. & Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78 and 372, Vol. 2, p. 219. New York: Plenum Press. Molecular Structure Corporation & Rigaku Corporation (1999). MSC/AFC Diffractometer Control Software and TEXSAN (Version 1.10). MSC, 9009 New Trails Drive, The Woodlands, TX 77381-209, USA, and Rigaku Corporation, 3-9-2 Akishima, Tokyo, Japan. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351± 359. Okabe, N. & Koizumi, M.(1997). Acta Cryst. C53, 852±854. Okabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279±1280. Okabe, N. & Makino, T. (1999). Acta Cryst. C55, 300±302. Odoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267±m269. Sasagawa, T., Yoshikawa, Y., Kawabe, K., Sakurai, H. & Kojima, Y. (2002). J. Inorg. Biochem. 88, 108±112. Sheldrick, G. M. (1997). SHELXL97. University of GoÈttingen, Germany. Acta Cryst. (2002). E58, m287±m289 Okabe and Muranishi [VO(C 10 H 6 NO 2 ) 2 (H 2 O)] 2 C 2 H 5 OH m289

supporting information [doi:10.1107/s1600536802008619] Aquaoxobis(quinoline-2-carboxylato-N,O)vanadium(IV) ethanol hemisolvate Nobuo Okabe and Yasunori Muranishi S1. Comment Quinoline-2-carboxylic acid, a tryptophan metabolite, forms complexes with various transition metals (Martell & Smith, 1974). Crystal strutures have been determined for the Cu II (Haendler, 1986), Mn II (Haendler, 1996; Okabe & Koizumi, 1997), Fe II (Okabe & Makino, 1998) and Co II (Okabe & Makino, 1999) and Ni II complexes (Odoko et al., 2001). Vanadate ions have an insulin-mimetic effect in living animals (Bhattacharyya & Tracey, 2001) and in intact cell systems (Kanamori et al., 2001; Sasagawa et al., 2002). Therefore, we aimed to prepare complexes of quinoline-2-carboxylic acid and vanadium and determine their structures. We have characterized the title oxovanadium(iv) complex, (I). The molecular structure of (I) is shown in Fig. 1. There are two independent complex molecules in the asymmetric unit, with similar structures. In the complex, two organic ligand molecules and one water molecule coordinate to the oxovanadium(iv) centre. The central V IV atom has a distorted octahedral coordination geometry, involving the O atoms of oxo and aqua ligands, together with two O and two N atoms of the quinoline-2-carboxylate ligands. The carboxyl groups of the ligands are ionized and are essentially coplanar with the quinoline ring planes, as shown by relevant torsion angles [O2A C11A C2A N1A 2.4 (9), O2B C11B C2B N1B -1(1), O2C C11C C2C N1C -5.0 (9) and O2D C11D C2D N1D -2(1) ]. The quinoline-2-carboxylate ligands and the central V IV form five-membered chelate rings. Such coplanarity and five-membered ring formation are usually present in metal compounds of quinoline-2-carboxylic acid (Okabe & Makino, 1999). Planar five-membered rings with similar bond lengths and angles are also found in a vanadium(iii) complex with picolinic acid (pyridine-2-carboxylic acid), [V III (pic) 3 ] H 2 O (Chatterjee et al., 1997), which has a similar coordination geometry. S2. Experimental The green prism crystal of (I) used for X-ray analysis was obtained by slow evaporation from a 4:1 mixture of quinoline-2-carboxylic acid dissolved in ethanol and VOSO 4 dissolved in a small amount of water. S3. Refinement H atoms, located from a difference map, were included in idealized positions (except for those on H 2 O) and then fixed. sup-1

Figure 1 ORTEPII (Johnson, 1976) drawing of the title compound with the atomic numbering scheme. Ellipsoids correspond to 50% probability. (I) Crystal data [VO(C 10 H 6 NO 2 ) 2 (H 2 O)] 2 C 2 H 5 OH M r = 904.63 Triclinic, P1 Hall symbol: -P 1 a = 11.745 (3) Å b = 16.727 (6) Å c = 10.425 (2) Å α = 106.94 (2) β = 93.58 (2) γ = 101.33 (3) V = 1905.3 (10) Å 3 Z = 2 F(000) = 928.0 D x = 1.577 Mg m 3 Mo Kα radiation, λ = 0.7107 Å Cell parameters from 25 reflections θ = 10.5 13.0 µ = 0.57 mm 1 T = 296 K Prism, green 0.10 0.10 0.05 mm sup-2

Data collection Rigaku AFC-5R diffractometer ω 2θ scans Absorption correction: ψ scan (North et al., 1968) T min = 0.945, T max = 0.972 9184 measured reflections 8754 independent reflections 2975 reflections with I > 2σ(I) R int = 0.089 θ max = 27.5 h = 0 15 k = 21 21 l = 13 13 3 standard reflections every 150 reflections intensity decay: 0.3% Refinement Refinement on F 2 R[F 2 > 2σ(F 2 )] = 0.067 wr(f 2 ) = 0.245 S = 1.09 8754 reflections 550 parameters H-atom parameters not refined w = 1/[σ 2 (F o2 ) + (0.081P) 2 ] where P = (F o 2 + 2F c2 )/3 (Δ/σ) max = 0.001 Δρ max = 0.87 e Å 3 Δρ min = 0.91 e Å 3 Special details Refinement. Refinement using reflections with F 2 > -10.0 σ(f 2 ). The weighted R-factor (wr) and goodness of fit (S) are based on F 2. R-factor (gt) are based on F. The threshold expression of F 2 > 2.0 σ(f 2 ) is used only for calculating R-factor (gt). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq V1A 0.2619 (1) 0.26425 (8) 0.6196 (1) 0.0312 (4) V1B 1.2393 (1) 0.81096 (9) 0.8821 (1) 0.0317 (4) O1A 0.0029 (4) 0.3558 (4) 0.4893 (6) 0.045 (1) O1B 0.4998 (5) 0.1209 (4) 0.5290 (7) 0.058 (2) O1C 1.5519 (5) 0.8260 (4) 0.7421 (6) 0.050 (2) O1D 0.8899 (4) 0.7299 (4) 0.7755 (6) 0.044 (1) O1E 0.6738 (6) 0.2678 (6) 0.5468 (8) 0.091 (3) O1VB 1.2616 (4) 0.8436 (4) 1.0440 (5) 0.042 (1) O1VA 0.2717 (5) 0.3005 (3) 0.7806 (6) 0.046 (1) O2A 0.1015 (4) 0.2738 (3) 0.5570 (5) 0.037 (1) O2B 0.4140 (4) 0.2306 (4) 0.5919 (6) 0.045 (1) O2C 1.3888 (4) 0.7831 (3) 0.8266 (5) 0.038 (1) O2D 1.0688 (4) 0.8139 (3) 0.8513 (5) 0.039 (1) O2VA 0.2564 (4) 0.2167 (3) 0.3889 (5) 0.039 (1) O2VB 1.1966 (4) 0.7669 (3) 0.6555 (5) 0.042 (1) N1A 0.2975 (5) 0.3925 (4) 0.5964 (6) 0.030 (1) N1B 0.2183 (5) 0.1319 (4) 0.6105 (6) 0.034 (2) N1C 1.3305 (5) 0.9312 (4) 0.8630 (6) 0.033 (2) N1D 1.1557 (5) 0.6829 (4) 0.8707 (6) 0.029 (1) C1E 0.813 (1) 0.278 (1) 0.724 (1) 0.132 (6) C2A 0.1999 (6) 0.4134 (5) 0.5554 (7) 0.031 (2) C2B 0.3017 (6) 0.0921 (5) 0.5674 (8) 0.032 (2) C2C 1.4332 (6) 0.9260 (5) 0.8166 (7) 0.034 (2) C2D 1.0395 (6) 0.6650 (5) 0.8306 (8) 0.037 (2) sup-3

C2E 0.725 (1) 0.296 (2) 0.675 (2) 0.25 (2) C3A 0.1964 (7) 0.4934 (5) 0.5460 (8) 0.035 (2) C3B 0.2941 (7) 0.0058 (5) 0.5451 (9) 0.042 (2) C3C 1.5105 (6) 0.9963 (6) 0.7996 (8) 0.040 (2) C3D 0.9655 (7) 0.5844 (6) 0.8088 (9) 0.050 (2) C4A 0.2954 (7) 0.5555 (5) 0.5823 (8) 0.040 (2) C4B 0.1942 (7) 0.0419 (5) 0.5720 (9) 0.042 (2) C4C 1.4813 (7) 1.0732 (6) 0.8340 (9) 0.044 (2) C4D 1.0120 (9) 0.5239 (6) 0.8317 (10) 0.058 (3) C5A 0.3997 (7) 0.5390 (5) 0.6302 (8) 0.036 (2) C5B 0.1052 (7) 0.0011 (5) 0.6253 (8) 0.036 (2) C5C 1.3771 (6) 1.0831 (5) 0.8896 (8) 0.035 (2) C5D 1.1310 (9) 0.5385 (5) 0.8793 (8) 0.045 (2) C6A 0.5072 (8) 0.6011 (5) 0.6751 (9) 0.044 (2) C6B 0.0047 (8) 0.0446 (5) 0.6655 (9) 0.045 (2) C6C 1.3461 (7) 1.1624 (5) 0.9316 (8) 0.043 (2) C6D 1.186 (1) 0.4756 (6) 0.909 (1) 0.062 (3) C7A 0.6051 (7) 0.5813 (6) 0.7204 (8) 0.048 (2) C7B 0.0741 (7) 0.0026 (6) 0.7214 (9) 0.047 (2) C7C 1.2447 (8) 1.1690 (5) 0.9845 (9) 0.046 (2) C7D 1.303 (1) 0.4968 (8) 0.957 (1) 0.070 (3) C8A 0.6037 (7) 0.4997 (6) 0.7230 (9) 0.048 (2) C8B 0.0602 (7) 0.0837 (6) 0.7410 (9) 0.046 (2) C8C 1.1700 (7) 1.0963 (5) 1.0001 (9) 0.043 (2) C8D 1.3699 (9) 0.5779 (7) 0.9775 (10) 0.059 (3) C9A 0.5044 (7) 0.4364 (6) 0.6812 (9) 0.044 (2) C9B 0.0343 (7) 0.1288 (5) 0.7031 (8) 0.037 (2) C9C 1.1978 (6) 1.0194 (5) 0.9605 (8) 0.039 (2) C9D 1.3245 (8) 0.6394 (6) 0.9497 (9) 0.049 (2) C10A 0.3998 (6) 0.4549 (5) 0.6356 (7) 0.031 (2) C10B 0.1196 (7) 0.0852 (5) 0.6436 (8) 0.033 (2) C10C 1.3004 (6) 1.0106 (5) 0.9020 (7) 0.029 (2) C10D 1.2033 (7) 0.6209 (5) 0.8990 (8) 0.038 (2) C11A 0.0884 (6) 0.3435 (5) 0.5305 (8) 0.032 (2) C11B 0.4157 (7) 0.1496 (6) 0.5587 (9) 0.043 (2) C11C 1.4628 (6) 0.8382 (5) 0.7906 (7) 0.035 (2) C11D 0.9938 (6) 0.7407 (5) 0.8176 (8) 0.033 (2) H1E 0.6496 0.2166 0.5284 0.1421* H1E1 0.7979 0.2178 0.7177 0.1441* H1E2 0.8809 0.2891 0.6790 0.1441* H1E3 0.8387 0.3091 0.8206 0.1441* H1W 0.2180 0.2389 0.3320 0.0494* H2E2 0.6693 0.2859 0.7344 0.2849* H2E1 0.7522 0.3594 0.7008 0.2849* H2W 0.2981 0.1892 0.3252 0.0494* H3A 0.1267 0.5040 0.5154 0.0439* H3B 0.3549 0.0193 0.5128 0.0539* H3C 1.5806 0.9906 0.7660 0.0513* sup-4

H3D 0.8859 0.5739 0.7788 0.0643* H3W 1.2323 0.7421 0.5966 0.0494* H4A 0.2942 0.6091 0.5748 0.0502* H4B 0.1855 0.1005 0.5545 0.0537* H4C 1.5302 1.1204 0.8209 0.0547* H4D 0.9653 0.4692 0.8149 0.0747* H4W 1.1212 0.7245 0.6215 0.0494* H6A 0.5096 0.6562 0.6720 0.0559* H6B 0.0074 0.1025 0.6542 0.0582* H6C 1.3956 1.2104 0.9220 0.0550* H6D 1.1423 0.4200 0.8930 0.0773* H7A 0.6733 0.6230 0.7502 0.0604* H7B 0.1399 0.0316 0.7483 0.0593* H7C 1.2245 1.2213 1.0107 0.0587* H7D 1.3373 0.4549 0.9755 0.0884* H8A 0.6718 0.4866 0.7527 0.0593* H8B 0.1159 0.1125 0.7808 0.0564* H8C 1.1006 1.1008 1.0366 0.0547* H8D 1.4486 0.5900 1.0114 0.0760* H9A 0.5048 0.3808 0.6823 0.0559* H9B 0.0432 0.1875 0.7174 0.0466* H9C 1.1486 0.9717 0.9713 0.0492* H9D 1.3712 0.6934 0.9632 0.0616* Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 V1A 0.0251 (7) 0.0313 (8) 0.0381 (9) 0.0061 (6) 0.0035 (6) 0.0122 (7) V1B 0.0223 (7) 0.0342 (8) 0.0373 (9) 0.0058 (6) 0.0035 (6) 0.0095 (7) O1A 0.026 (3) 0.051 (4) 0.056 (4) 0.010 (3) 0.003 (3) 0.015 (3) O1B 0.036 (3) 0.070 (4) 0.088 (5) 0.030 (3) 0.024 (3) 0.041 (4) O1C 0.035 (3) 0.072 (4) 0.053 (4) 0.028 (3) 0.021 (3) 0.019 (3) O1D 0.027 (3) 0.056 (4) 0.051 (4) 0.012 (3) 0.001 (3) 0.018 (3) O1E 0.040 (4) 0.148 (8) 0.067 (5) 0.003 (4) 0.011 (4) 0.022 (5) O1VB 0.035 (3) 0.055 (4) 0.033 (3) 0.007 (3) 0.001 (3) 0.011 (3) O1VA 0.062 (4) 0.044 (4) 0.037 (4) 0.013 (3) 0.006 (3) 0.017 (3) O2A 0.023 (3) 0.038 (3) 0.048 (4) 0.006 (2) 0.009 (2) 0.011 (3) O2B 0.023 (3) 0.053 (4) 0.057 (4) 0.008 (3) 0.001 (3) 0.017 (3) O2C 0.030 (3) 0.036 (3) 0.051 (4) 0.014 (2) 0.010 (3) 0.014 (3) O2D 0.032 (3) 0.038 (3) 0.047 (4) 0.012 (3) 0.003 (3) 0.010 (3) O2VA 0.039 (3) 0.049 (4) 0.034 (3) 0.021 (3) 0.011 (3) 0.009 (3) O2VB 0.035 (3) 0.048 (4) 0.037 (3) 0.005 (3) 0.003 (2) 0.008 (3) N1A 0.031 (3) 0.033 (4) 0.025 (4) 0.002 (3) 0.004 (3) 0.009 (3) N1B 0.031 (4) 0.035 (4) 0.038 (4) 0.006 (3) 0.004 (3) 0.015 (3) N1C 0.026 (3) 0.041 (4) 0.024 (4) 0.001 (3) 0.003 (3) 0.005 (3) N1D 0.027 (3) 0.031 (4) 0.035 (4) 0.015 (3) 0.004 (3) 0.012 (3) C1E 0.10 (1) 0.24 (2) 0.10 (1) 0.09 (1) 0.038 (9) 0.09 (1) C2A 0.021 (4) 0.040 (5) 0.026 (4) 0.000 (3) 0.001 (3) 0.006 (4) sup-5

C2B 0.028 (4) 0.038 (5) 0.036 (5) 0.012 (4) 0.002 (3) 0.016 (4) C2C 0.025 (4) 0.044 (5) 0.027 (4) 0.006 (3) 0.003 (3) 0.004 (4) C2D 0.028 (4) 0.044 (5) 0.035 (5) 0.003 (4) 0.003 (4) 0.012 (4) C2E 0.09 (1) 0.56 (4) 0.06 (1) 0.15 (2) 0.008 (9) 0.00 (2) C3A 0.037 (4) 0.033 (5) 0.037 (5) 0.016 (4) 0.001 (4) 0.010 (4) C3B 0.045 (5) 0.035 (5) 0.055 (6) 0.024 (4) 0.005 (4) 0.017 (4) C3C 0.021 (4) 0.058 (6) 0.041 (5) 0.005 (4) 0.000 (3) 0.023 (4) C3D 0.043 (5) 0.044 (6) 0.065 (7) 0.002 (4) 0.007 (5) 0.024 (5) C4A 0.054 (5) 0.022 (4) 0.047 (5) 0.006 (4) 0.012 (4) 0.015 (4) C4B 0.054 (5) 0.023 (4) 0.046 (6) 0.011 (4) 0.010 (4) 0.007 (4) C4C 0.033 (4) 0.044 (5) 0.054 (6) 0.006 (4) 0.002 (4) 0.026 (5) C4D 0.066 (7) 0.038 (6) 0.059 (7) 0.012 (5) 0.005 (5) 0.014 (5) C5A 0.046 (5) 0.028 (4) 0.033 (5) 0.002 (4) 0.010 (4) 0.010 (4) C5B 0.041 (5) 0.034 (5) 0.033 (5) 0.001 (4) 0.001 (4) 0.019 (4) C5C 0.028 (4) 0.035 (5) 0.035 (5) 0.003 (4) 0.004 (3) 0.006 (4) C5D 0.075 (7) 0.034 (5) 0.029 (5) 0.020 (5) 0.016 (5) 0.010 (4) C6A 0.051 (5) 0.028 (5) 0.048 (6) 0.000 (4) 0.017 (4) 0.007 (4) C6B 0.049 (5) 0.040 (5) 0.045 (6) 0.006 (4) 0.006 (4) 0.024 (4) C6C 0.043 (5) 0.040 (5) 0.039 (5) 0.002 (4) 0.005 (4) 0.012 (4) C6D 0.096 (8) 0.038 (6) 0.057 (7) 0.026 (6) 0.028 (6) 0.012 (5) C7A 0.042 (5) 0.045 (6) 0.041 (6) 0.017 (4) 0.001 (4) 0.011 (4) C7B 0.044 (5) 0.058 (6) 0.037 (5) 0.005 (4) 0.009 (4) 0.021 (5) C7C 0.058 (6) 0.031 (5) 0.042 (5) 0.012 (4) 0.006 (4) 0.004 (4) C7D 0.108 (10) 0.080 (8) 0.046 (7) 0.068 (7) 0.021 (6) 0.024 (6) C8A 0.031 (4) 0.049 (6) 0.056 (6) 0.002 (4) 0.005 (4) 0.013 (5) C8B 0.044 (5) 0.051 (6) 0.045 (6) 0.012 (4) 0.011 (4) 0.018 (5) C8C 0.050 (5) 0.038 (5) 0.047 (6) 0.026 (4) 0.014 (4) 0.009 (4) C8D 0.063 (7) 0.079 (8) 0.054 (7) 0.043 (6) 0.014 (5) 0.029 (6) C9A 0.038 (5) 0.050 (6) 0.042 (5) 0.001 (4) 0.004 (4) 0.020 (4) C9B 0.040 (5) 0.035 (5) 0.042 (5) 0.012 (4) 0.013 (4) 0.018 (4) C9C 0.028 (4) 0.044 (5) 0.040 (5) 0.008 (4) 0.006 (4) 0.007 (4) C9D 0.049 (5) 0.063 (6) 0.045 (6) 0.026 (5) 0.007 (4) 0.022 (5) C10A 0.031 (4) 0.031 (4) 0.028 (4) 0.001 (3) 0.006 (3) 0.007 (3) C10B 0.038 (4) 0.031 (4) 0.033 (5) 0.009 (4) 0.001 (4) 0.015 (4) C10C 0.028 (4) 0.030 (4) 0.024 (4) 0.007 (3) 0.002 (3) 0.002 (3) C10D 0.049 (5) 0.038 (5) 0.033 (5) 0.014 (4) 0.012 (4) 0.016 (4) C11A 0.030 (4) 0.034 (5) 0.032 (5) 0.009 (3) 0.013 (3) 0.005 (4) C11B 0.030 (4) 0.062 (6) 0.047 (6) 0.021 (4) 0.009 (4) 0.025 (5) C11C 0.024 (4) 0.052 (5) 0.025 (4) 0.014 (4) 0.005 (3) 0.004 (4) C11D 0.026 (4) 0.039 (5) 0.035 (5) 0.008 (3) 0.004 (3) 0.012 (4) Geometric parameters (Å, º) V1A O1VA 1.599 (6) C3C C4C 1.35 (1) V1A O2A 2.005 (5) C3C H3C 0.926 V1A O2B 1.990 (6) C3D C4D 1.31 (2) V1A O2VA 2.294 (5) C3D H3D 0.933 V1A N1A 2.191 (7) C4A C5A 1.40 (1) sup-6

V1A N1B 2.145 (7) C4A H4A 0.925 V1B O1VB 1.602 (5) C4B C5B 1.41 (1) V1B O2C 1.982 (6) C4B H4B 0.926 V1B O2D 2.020 (5) C4C C5C 1.40 (1) V1B O2VB 2.251 (5) C4C H4C 0.932 V1B N1C 2.155 (7) C4D C5D 1.40 (1) V1B N1D 2.139 (6) C4D H4D 0.931 O1A C11A 1.207 (10) C5A C6A 1.42 (1) O1B C11B 1.20 (1) C5A C10A 1.42 (1) O1C C11C 1.217 (10) C5B C6B 1.42 (1) O1D C11D 1.231 (9) C5B C10B 1.37 (1) O1E C2E 1.34 (2) C5C C6C 1.40 (1) O1E H1E 0.808 C5C C10C 1.41 (1) O2A C11A 1.31 (1) C5D C6D 1.43 (2) O2B C11B 1.30 (1) C5D C10D 1.42 (1) O2C C11C 1.293 (10) C6A C7A 1.35 (1) O2D C11D 1.298 (9) C6A H6A 0.927 O2VA H1W 0.924 C6B C7B 1.33 (1) O2VA H2W 0.919 C6B H6B 0.921 O2VB H3W 0.822 C6C C7C 1.35 (1) O2VB H4W 0.990 C6C H6C 0.929 N1A C2A 1.34 (1) C6D C7D 1.37 (2) N1A C10A 1.377 (8) C6D H6D 0.933 N1B C2B 1.32 (1) C7A C8A 1.37 (1) N1B C10B 1.387 (10) C7A H7A 0.921 N1C C2C 1.336 (10) C7B C8B 1.37 (1) N1C C10C 1.39 (1) C7B H7B 0.933 N1D C2D 1.351 (9) C7C C8C 1.41 (1) N1D C10D 1.37 (1) C7C H7C 0.922 C1E C2E 1.26 (3) C7D C8D 1.38 (2) C1E H1E1 0.966 C7D H7D 0.933 C1E H1E2 0.960 C8A C9A 1.36 (1) C1E H1E3 0.989 C8A H8A 0.927 C2A C3A 1.38 (1) C8B C9B 1.36 (1) C2A C11A 1.526 (10) C8B H8B 0.935 C2B C3B 1.38 (1) C8C C9C 1.34 (1) C2B C11B 1.51 (1) C8C H8C 0.928 C2C C3C 1.40 (1) C8D C9D 1.34 (2) C2C C11C 1.53 (1) C8D H8D 0.929 C2D C3D 1.40 (1) C9A C10A 1.41 (1) C2D C11D 1.51 (1) C9A H9A 0.936 C2E H2E2 0.950 C9B C10B 1.42 (1) C2E H2E1 0.987 C9B H9B 0.932 C3A C4A 1.35 (1) C9C C10C 1.40 (1) C3A H3A 0.928 C9C H9C 0.929 C3B C4B 1.38 (1) C9D C10D 1.43 (1) C3B H3B 0.930 C9D H9D 0.927 sup-7

O1A O2VB i 2.757 (6) C5A C8A i 3.54 (1) O1A C11D i 3.155 (9) C5B C10B xi 3.48 (1) O1A O1D i 3.215 (8) C5B C9C iv 3.49 (1) O1A C2D i 3.24 (1) C5B C5B xi 3.50 (2) O1A C3D i 3.56 (1) C5B C10C iv 3.51 (1) O1B O1C ii 3.26 (1) C5B C9B xi 3.554 (10) O1B C3C ii 3.397 (10) C5B C6B xi 3.56 (1) O1B C3B iii 3.50 (1) C5C C11C v 3.47 (1) O1B C4C iv 3.51 (1) C6A C10A i 3.41 (1) O1C O2VA ii 2.810 (8) C6A C9A i 3.57 (1) O1C C11B ii 3.31 (1) C6B C10B xi 3.27 (1) O1C O2B ii 3.404 (8) C6B C9C iv 3.47 (1) O1C C6C v 3.47 (1) C6C C11C v 3.56 (1) O1C C6A vi 3.54 (1) C7A C10A i 3.58 (1) O1C C7C v 3.57 (1) C7C C10B x 3.52 (1) O1D O2VA i 2.795 (9) C7C C9B x 3.53 (1) O1D C11A i 3.113 (9) C7D C8A xii 3.43 (1) O1D C7C vii 3.27 (1) C7D C10A vi 3.53 (1) O1D C8C vii 3.387 (10) C11A C11D i 3.48 (1) O1D O2A i 3.457 (8) C2A C5A 2.722 (10) O1D C2A i 3.533 (8) C2A C6D ix 3.55 (1) O1E O2VB ii 2.672 (9) C2B C5B 2.73 (1) O1E C11C ii 3.555 (10) C2B C5C iv 3.47 (1) O1E C4A i 3.55 (1) C2B C4C iv 3.51 (1) O1VB C4C v 3.085 (9) C2C C5C 2.74 (1) O1VB C3C v 3.331 (8) C2D C5D 2.71 (1) O1VB C8B viii 3.51 (1) C3A C5D ix 3.50 (1) O1VA C7D ix 3.20 (1) C3B C4C iv 3.38 (1) O1VA C6D ix 3.23 (1) C3B C5C iv 3.45 (1) O1VA C6C iv 3.36 (1) C4A C8A i 3.40 (1) O1VA C7C iv 3.46 (1) C4B C8B xi 3.35 (1) O2C C6A vi 3.58 (1) C4B C9B xi 3.55 (1) O2VB C2E ii 3.54 (2) C4D C6D 2.51 (2) O2VB C4B x 3.56 (1) C5A C8A 2.79 (1) N1A C6D ix 3.59 (1) C5A C9D ix 3.52 (1) N1B C6C iv 3.43 (1) C5A C8D ix 3.54 (1) N1B C6B xi 3.517 (10) C5A C8A i 3.54 (1) N1C C4B x 3.53 (1) C5B C8B 2.76 (1) C2A C6D ix 3.55 (1) C5B C9C iv 3.49 (1) C2B C5C iv 3.47 (1) C5B C5B xi 3.50 (2) C2B C4C iv 3.51 (1) C5B C9B xi 3.554 (10) C3A C5D ix 3.50 (1) C5B C6B xi 3.56 (1) C3B C4C iv 3.38 (1) C5C C8C 2.78 (1) C3B C5C iv 3.45 (1) C5D C8D 2.81 (1) C4A C8A i 3.40 (1) C6A C9A 2.77 (1) C4A C10D ix 3.48 (1) C6A C9A i 3.57 (1) C4B C8B xi 3.35 (1) C6B C9B 2.76 (1) C4B C10C iv 3.38 (1) C6B C9C iv 3.47 (1) sup-8

C4B C9B xi 3.55 (1) C6C C9C 2.77 (1) C4C C11B x 3.57 (1) C6D C9D 2.79 (1) C5A C9D ix 3.52 (1) C7C C9B x 3.53 (1) C5A C8D ix 3.54 (1) C7D C8A xii 3.43 (1) O1VA V1A O2A 103.6 (3) C3B C4B H4B 119.8 O1VA V1A O2B 102.3 (3) C5B C4B H4B 120.5 O1VA V1A O2VA 177.2 (2) C3C C4C C5C 120.7 (8) O1VA V1A N1A 93.4 (3) C3C C4C H4C 120.2 O1VA V1A N1B 94.9 (3) C5C C4C H4C 119.1 O2A V1A O2B 154.0 (2) C3D C4D C5D 122.1 (8) O2A V1A O2VA 78.1 (2) C3D C4D H4D 119.5 O2A V1A N1A 78.2 (2) C5D C4D H4D 118.4 O2A V1A N1B 97.7 (2) C4A C5A C6A 124.3 (8) O2B V1A O2VA 76.0 (2) C4A C5A C10A 118.8 (6) O2B V1A N1A 102.2 (3) C6A C5A C10A 116.9 (8) O2B V1A N1B 78.1 (3) C4B C5B C6B 122.7 (8) O2VA V1A N1A 84.9 (2) C4B C5B C10B 118.4 (7) O2VA V1A N1B 86.9 (2) C6B C5B C10B 118.9 (8) N1A V1A N1B 171.4 (2) C4C C5C C6C 122.4 (8) O1VB V1B O2C 104.4 (3) C4C C5C C10C 118.9 (8) O1VB V1B O2D 100.4 (3) C6C C5C C10C 118.8 (7) O1VB V1B O2VB 176.4 (3) C4D C5D C6D 124.6 (8) O1VB V1B N1C 94.0 (3) C4D C5D C10D 118.4 (9) O1VB V1B N1D 93.9 (3) C6D C5D C10D 117.0 (9) O2C V1B O2D 154.9 (2) C5A C6A C7A 121.5 (8) O2C V1B O2VB 79.2 (2) C5A C6A H6A 118.6 O2C V1B N1C 78.7 (2) C7A C6A H6A 119.9 O2C V1B N1D 95.5 (2) C5B C6B C7B 120.6 (8) O2D V1B O2VB 76.0 (2) C5B C6B H6B 120.7 O2D V1B N1C 103.5 (2) C7B C6B H6B 118.7 O2D V1B N1D 78.9 (2) C5C C6C C7C 120.3 (8) O2VB V1B N1C 86.5 (2) C5C C6C H6C 119.2 O2VB V1B N1D 85.8 (2) C7C C6C H6C 120.5 N1C V1B N1D 171.1 (2) C5D C6D C7D 120.1 (9) C2E O1E H1E 107.1 C5D C6D H6D 119.5 V1A O2A C11A 119.4 (4) C7D C6D H6D 120.4 V1A O2B C11B 118.8 (5) C6A C7A C8A 120.6 (7) V1B O2C C11C 119.2 (5) C6A C7A H7A 119.7 V1B O2D C11D 116.5 (5) C8A C7A H7A 119.6 V1A O2VA H1W 122.8 C6B C7B C8B 121.0 (8) V1A O2VA H2W 139.2 C6B C7B H7B 120.1 H1W O2VA H2W 95.5 C8B C7B H7B 118.9 V1B O2VB H3W 130.0 C6C C7C C8C 120.5 (8) V1B O2VB H4W 113.8 C6C C7C H7C 119.7 H3W O2VB H4W 94.8 C8C C7C H7C 119.8 V1A N1A C2A 112.2 (5) C6D C7D C8D 121 (1) V1A N1A C10A 128.5 (6) C6D C7D H7D 118.8 sup-9

C2A N1A C10A 118.6 (7) C8D C7D H7D 119.9 V1A N1B C2B 111.9 (5) C7A C8A C9A 121.4 (9) V1A N1B C10B 130.0 (5) C7A C8A H8A 119.8 C2B N1B C10B 118.1 (7) C9A C8A H8A 118.8 V1B N1C C2C 112.1 (5) C7B C8B C9B 120.9 (8) V1B N1C C10C 128.7 (5) C7B C8B H8B 120.1 C2C N1C C10C 119.0 (6) C9B C8B H8B 118.9 V1B N1D C2D 112.2 (6) C7C C8C C9C 120.2 (8) V1B N1D C10D 129.2 (5) C7C C8C H8C 120.5 C2D N1D C10D 118.5 (7) C9C C8C H8C 119.3 C2E C1E H1E1 111.1 C7D C8D C9D 121.7 (10) C2E C1E H1E2 113.3 C7D C8D H8D 118.9 C2E C1E H1E3 114.0 C9D C8D H8D 119.4 H1E1 C1E H1E2 107.3 C8A C9A C10A 119.7 (9) H1E1 C1E H1E3 105.0 C8A C9A H9A 120.6 H1E2 C1E H1E3 105.5 C10A C9A H9A 119.6 N1A C2A C3A 123.8 (6) C8B C9B C10B 118.9 (8) N1A C2A C11A 114.7 (7) C8B C9B H9B 120.2 C3A C2A C11A 121.3 (7) C10B C9B H9B 120.8 N1B C2B C3B 124.1 (7) C8C C9C C10C 120.3 (8) N1B C2B C11B 115.4 (7) C8C C9C H9C 120.1 C3B C2B C11B 120.1 (7) C10C C9C H9C 119.6 N1C C2C C3C 122.9 (8) C8D C9D C10D 119.3 (8) N1C C2C C11C 114.6 (7) C8D C9D H9D 120.4 C3C C2C C11C 122.4 (7) C10D C9D H9D 120.3 N1D C2D C3D 123.6 (8) N1A C10A C5A 119.5 (7) N1D C2D C11D 114.2 (6) N1A C10A C9A 120.7 (7) C3D C2D C11D 122.2 (7) C5A C10A C9A 119.7 (6) O1E C2E C1E 127 (1) N1B C10B C5B 121.5 (7) O1E C2E H2E2 110.4 N1B C10B C9B 118.9 (7) O1E C2E H2E1 108.1 C5B C10B C9B 119.6 (7) C1E C2E H2E2 102.3 N1C C10C C5C 119.7 (7) C1E C2E H2E1 100.0 N1C C10C C9C 120.4 (7) H2E2 C2E H2E1 106.3 C5C C10C C9C 119.8 (7) C2A C3A C4A 118.9 (8) N1D C10D C5D 119.5 (7) C2A C3A H3A 120.2 N1D C10D C9D 120.0 (7) C4A C3A H3A 120.9 C5D C10D C9D 120.5 (9) C2B C3B C4B 118.1 (8) O1A C11A O2A 125.4 (7) C2B C3B H3B 120.6 O1A C11A C2A 119.1 (8) C4B C3B H3B 121.3 O2A C11A C2A 115.5 (7) C2C C3C C4C 118.7 (7) O1B C11B O2B 124.9 (8) C2C C3C H3C 121.1 O1B C11B C2B 121.0 (9) C4C C3C H3C 120.2 O2B C11B C2B 114.0 (7) C2D C3D C4D 117.8 (8) O1C C11C O2C 125.8 (8) C2D C3D H3D 121.2 O1C C11C C2C 119.4 (7) C4D C3D H3D 121.0 O2C C11C C2C 114.8 (7) C3A C4A C5A 120.3 (8) O1D C11D O2D 124.3 (8) C3A C4A H4A 119.5 O1D C11D C2D 119.0 (7) sup-10

C5A C4A H4A 120.2 O2D C11D C2D 116.7 (6) C3B C4B C5B 119.7 (7) V1A O2A C11A O1A 178.1 (6) C2B N1B C10B C9B 173.7 (7) V1A O2A C11A C2A 2.0 (8) C2B C3B C4B C5B 2 (1) V1A O2B C11B O1B 173.8 (7) C2B C3B C4B H4B 177.5 V1A O2B C11B C2B 9.4 (10) C2C N1C C10C C5C 1 (1) V1A N1A C2A C3A 173.3 (6) C2C N1C C10C C9C 175.1 (7) V1A N1A C2A C11A 1.7 (7) C2C C3C C4C C5C 1 (1) V1A N1A C10A C5A 170.3 (5) C2C C3C C4C H4C 177.9 V1A N1A C10A C9A 9 (1) C2D N1D C10D C5D 3 (1) V1A N1B C2B C3B 176.4 (7) C2D N1D C10D C9D 176.1 (7) V1A N1B C2B C11B 10.6 (8) C2D C3D C4D C5D 1 (1) V1A N1B C10B C5B 177.2 (6) C2D C3D C4D H4D 177.7 V1A N1B C10B C9B 5 (1) C3A C2A N1A C10A 2 (1) V1B O2C C11C O1C 172.4 (6) C3A C4A C5A C6A 177.8 (8) V1B O2C C11C C2C 9.2 (8) C3A C4A C5A C10A 1 (1) V1B O2D C11D O1D 168.4 (6) C3B C2B N1B C10B 4 (1) V1B O2D C11D C2D 11.1 (9) C3B C4B C5B C6B 174.8 (8) V1B N1C C2C C3C 177.9 (6) C3B C4B C5B C10B 2 (1) V1B N1C C2C C11C 1.0 (7) C3C C2C N1C C10C 2 (1) V1B N1C C10C C5C 175.2 (5) C3C C4C C5C C6C 177.4 (8) V1B N1C C10C C9C 1.1 (10) C3C C4C C5C C10C 3 (1) V1B N1D C2D C3D 176.9 (7) C3D C2D N1D C10D 3 (1) V1B N1D C2D C11D 6.1 (8) C3D C4D C5D C6D 178.6 (10) V1B N1D C10D C5D 177.7 (6) C3D C4D C5D C10D 1 (1) V1B N1D C10D C9D 3 (1) C4A C3A C2A C11A 173.2 (7) O1A C11A C2A N1A 177.7 (7) C4A C5A C6A C7A 179.9 (8) O1A C11A C2A C3A 7 (1) C4A C5A C6A H6A 0.7 O1B C11B C2B N1B 175.3 (8) C4A C5A C10A C9A 178.9 (8) O1B C11B C2B C3B 1 (1) C4B C3B C2B C11B 171.3 (8) O1C C11C C2C N1C 176.5 (7) C4B C5B C6B C7B 176.7 (8) O1C C11C C2C C3C 6 (1) C4B C5B C6B H6B 2.8 O1D C11D C2D N1D 176.6 (7) C4B C5B C10B C9B 177.0 (7) O1D C11D C2D C3D 6 (1) C4C C3C C2C C11C 175.3 (7) O1E C2E C1E H1E1 64.9 C4C C5C C6C C7C 180.0 (8) O1E C2E C1E H1E2 56.0 C4C C5C C6C H6C 0.5 O1E C2E C1E H1E3 176.6 C4C C5C C10C C9C 178.2 (8) O1VB V1B O2C C11C 98.9 (5) C4D C3D C2D C11D 175.3 (8) O1VB V1B O2D C11D 103.0 (6) C4D C5D C6D C7D 179.0 (10) O1VB V1B N1C C2C 108.1 (5) C4D C5D C6D H6D 2.4 O1VB V1B N1C C10C 66.2 (6) C4D C5D C10D C9D 178.8 (8) O1VB V1B N1D C2D 108.8 (5) C5A C4A C3A H3A 179.1 O1VB V1B N1D C10D 70.4 (7) C5A C6A C7A C8A 0 (1) O1VA V1A O2A C11A 91.5 (6) C5A C6A C7A H7A 179.0 O1VA V1A O2B C11B 104.1 (6) C5A C10A C9A C8A 1 (1) O1VA V1A N1A C2A 102.6 (5) C5A C10A C9A H9A 178.3 O1VA V1A N1A C10A 67.5 (6) C5B C4B C3B H3B 177.9 sup-11

O1VA V1A N1B C2B 113.3 (5) C5B C6B C7B C8B 0 (1) O1VA V1A N1B C10B 65.9 (7) C5B C6B C7B H7B 179.5 O2A V1A O2B C11B 71.5 (9) C5B C10B C9B C8B 0 (1) O2A V1A O2VA H1W 34.9 C5B C10B C9B H9B 179.1 O2A V1A O2VA H2W 167.7 C5C C4C C3C H3C 177.7 O2A V1A N1A C2A 0.6 (5) C5C C6C C7C C8C 1 (1) O2A V1A N1A C10A 170.7 (6) C5C C6C C7C H7C 179.1 O2A V1A N1B C2B 142.2 (5) C5C C10C C9C C8C 2 (1) O2A V1A N1B C10B 38.6 (7) C5C C10C C9C H9C 177.9 O2A C11A C2A N1A 2.4 (9) C5D C4D C3D H3D 178.8 O2A C11A C2A C3A 172.7 (7) C5D C6D C7D C8D 0 (1) O2B V1A O2A C11A 92.9 (7) C5D C6D C7D H7D 180.0 O2B V1A O2VA H1W 148.0 C5D C10D C9D C8D 0 (1) O2B V1A O2VA H2W 9.4 C5D C10D C9D H9D 179.5 O2B V1A N1A C2A 154.0 (5) C6A C5A C4A H4A 2.7 O2B V1A N1A C10A 35.9 (6) C6A C5A C10A C9A 1 (1) O2B V1A N1B C2B 11.8 (5) C6A C7A C8A C9A 0 (1) O2B V1A N1B C10B 167.4 (7) C6A C7A C8A H8A 178.8 O2B C11B C2B N1B 1 (1) C6B C5B C4B H4B 5.6 O2B C11B C2B C3B 175.0 (8) C6B C5B C10B C9B 0 (1) O2C V1B O2D C11D 68.2 (9) C6B C7B C8B C9B 0 (1) O2C V1B O2VB H3W 12.0 C6B C7B C8B H8B 179.6 O2C V1B O2VB H4W 131.4 C6C C5C C4C H4C 2.8 O2C V1B N1C C2C 4.2 (5) C6C C5C C10C C9C 2 (1) O2C V1B N1C C10C 170.1 (6) C6C C7C C8C C9C 1 (1) O2C V1B N1D C2D 146.3 (5) C6C C7C C8C H8C 179.8 O2C V1B N1D C10D 34.5 (7) C6D C5D C4D H4D 2.2 O2C C11C C2C N1C 5.0 (9) C6D C5D C10D C9D 1 (1) O2C C11C C2C C3C 171.9 (7) C6D C7D C8D C9D 0 (1) O2D V1B O2C C11C 90.1 (7) C6D C7D C8D H8D 179.2 O2D V1B O2VB H3W 164.0 C7A C6A C5A C10A 0 (1) O2D V1B O2VB H4W 44.7 C7A C8A C9A C10A 0 (1) O2D V1B N1C C2C 150.2 (5) C7A C8A C9A H9A 179.2 O2D V1B N1C C10C 35.5 (6) C7B C6B C5B C10B 0 (1) O2D V1B N1D C2D 9.0 (5) C7B C8B C9B C10B 0 (1) O2D V1B N1D C10D 170.3 (7) C7B C8B C9B H9B 179.6 O2D C11D C2D N1D 2 (1) C7C C6C C5C C10C 0 (1) O2D C11D C2D C3D 174.3 (8) C7C C8C C9C C10C 0 (1) O2VA V1A O2A C11A 86.3 (5) C7C C8C C9C H9C 179.7 O2VA V1A O2B C11B 78.2 (6) C7D C6D C5D C10D 1 (1) O2VA V1A N1A C2A 79.5 (5) C7D C8D C9D C10D 0 (1) O2VA V1A N1A C10A 110.4 (6) C7D C8D C9D H9D 179.2 O2VA V1A N1B C2B 64.6 (5) C8A C7A C6A H6A 178.6 O2VA V1A N1B C10B 116.2 (6) C8B C7B C6B H6B 179.7 O2VB V1B O2C C11C 81.0 (5) C8C C7C C6C H6C 179.5 O2VB V1B O2D C11D 77.4 (5) C8D C7D C6D H6D 178.3 O2VB V1B N1C C2C 75.5 (5) C9A C8A C7A H7A 179.3 O2VB V1B N1C C10C 110.2 (6) C9B C8B C7B H7B 179.9 sup-12

O2VB V1B N1D C2D 67.6 (5) C9C C8C C7C H7C 179.0 O2VB V1B N1D C10D 113.2 (7) C9D C8D C7D H7D 178.7 N1A V1A O2A C11A 0.8 (5) C10A N1A C2A C11A 172.9 (6) N1A V1A O2B C11B 159.6 (6) C10A C5A C4A H4A 177.6 N1A V1A O2VA H1W 44.1 C10A C5A C6A H6A 179.6 N1A V1A O2VA H2W 113.3 C10A C9A C8A H8A 180.0 N1A C2A C3A C4A 1 (1) C10B N1B C2B C11B 168.8 (7) N1A C2A C3A H3A 178.8 C10B C5B C4B H4B 177.0 N1A C10A C5A C4A 1 (1) C10B C5B C6B H6B 179.8 N1A C10A C5A C6A 178.5 (7) C10B C9B C8B H8B 179.4 N1A C10A C9A C8A 178.2 (8) C10C N1C C2C C11C 174.0 (6) N1A C10A C9A H9A 1.8 C10C C5C C4C H4C 176.4 N1B V1A O2A C11A 171.5 (5) C10C C5C C6C H6C 178.7 N1B V1A O2B C11B 11.6 (6) C10C C9C C8C H8C 178.4 N1B V1A O2VA H1W 133.5 C10D N1D C2D C11D 173.2 (7) N1B V1A O2VA H2W 69.1 C10D C5D C4D H4D 177.2 N1B C2B C3B C4B 1 (1) C10D C5D C6D H6D 177.0 N1B C2B C3B H3B 178.6 C10D C9D C8D H8D 179.3 N1B C10B C5B C4B 0 (1) C11A C2A C3A H3A 6.5 N1B C10B C5B C6B 177.8 (7) C11B C2B C3B H3B 8.7 N1B C10B C9B C8B 177.2 (7) C11C C2C C3C H3C 4.4 N1B C10B C9B H9B 1.7 C11D C2D C3D H3D 4.9 N1C V1B O2C C11C 7.6 (5) H1E O1E C2E H2E2 61.9 N1C V1B O2D C11D 160.3 (5) H1E O1E C2E H2E1 177.9 N1C V1B O2VB H3W 91.2 H1E1 C1E C2E H2E2 64.49 N1C V1B O2VB H4W 149.5 H1E1 C1E C2E H2E1 172.7 N1C C2C C3C C4C 1 (1) H1E2 C1E C2E H2E2 175.7 N1C C2C C3C H3C 179.0 H1E2 C1E C2E H2E1 66.4 N1C C10C C5C C4C 1 (1) H1E3 C1E C2E H2E2 55.0 N1C C10C C5C C6C 178.9 (7) H1E3 C1E C2E H2E1 54.3 N1C C10C C9C C8C 178.9 (7) H3A C3A C4A H4A 1.4 N1C C10C C9C H9C 1.6 H3B C3B C4B H4B 2.5 N1D V1B O2C C11C 165.6 (5) H3C C3C C4C H4C 2.4 N1D V1B O2D C11D 11.0 (5) H3D C3D C4D H4D 2.1 N1D V1B O2VB H3W 84.4 H6A C6A C7A H7A 1.6 N1D V1B O2VB H4W 34.9 H6B C6B C7B H7B 0.1 N1D C2D C3D C4D 1 (1) H6C C6C C7C H7C 0.4 N1D C2D C3D H3D 178.3 H6D C6D C7D H7D 1.3 N1D C10D C5D C4D 0 (1) H7A C7A C8A H8A 1.4 N1D C10D C5D C6D 179.0 (8) H7B C7B C8B H8B 0.1 N1D C10D C9D C8D 179.8 (8) H7C C7C C8C H8C 0.1 N1D C10D C9D H9D 0.3 H7D C7D C8D H8D 1.2 C1E C2E O1E H1E 63.2 H8A C8A C9A H9A 0.0 C2A N1A C10A C5A 0 (1) H8B C8B C9B H9B 0.5 C2A N1A C10A C9A 179.2 (7) H8C C8C C9C H9C 1.2 C2A C3A C4A C5A 0 (1) H8D C8D C9D H9D 0.7 sup-13

C2A C3A C4A H4A 178.8 H8D C8D C9D H9D 0.7 C2B N1B C10B C5B 3 (1) Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z+1; (iv) x 1, y 1, z; (v) x+3, y+2, z+2; (vi) x+1, y, z; (vii) x+2, y+2, z+2; (viii) x+1, y+1, z+2; (ix) x 1, y, z; (x) x+1, y+1, z; (xi) x, y, z+1; (xii) x+2, y+1, z+2. sup-14