19 7Π8 2007 8 PROGRESS IN CHEMISTRY Vol. 19 No. 7Π8 Aug., 2007 3 3 3 ( 100083) 4 :TK6 ; S21612 : A : 10052281X(2007) 07Π821109207 The Fuel Ethanol Production from Sweet Sorghum Stalk Liu Li Sun Junshe 3 3 Kang Liping Liu Ping (College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China) Abstract The progress of fuel ethanol production from sweet sorghum stalk is introduced in this paper, including methods of preserving raw materials, liquid2state fermentation of juice, solid2stated fermentation of smashed stalks, pretreatment of stalk bagasse and simultaneous saccharification and fermentation ( SSF). The key technologies of converting sweet sorghum stalks into fuel ethanol are discussed in detail, which are raw materials preservation and pretreatment of stalk bagasse. A more economical and feasible process flow, found promising for further investigation is suggested. Key words sweet sorghum ; ethanol ; liquid2state fermentation ; solid2state fermentation ; pretreatments, [1, ], [2 4 ] [7 ], [8 ] [5,6 ] [9 ] C 4, 4,, 102 ( ), [10,11 ] : 2006 5 3 (No. 20436020) 3 3 e2mail :sunjsh61 @163. com
1110 19 [21, 200 ] 500kg, [12,13 1 4 000 5 000kg 18 % 24 % ], 79 % [14, ] [22 ] 4 6, 50 % 1, [15 ] 1 Table 1 Chemical composition a bark [15 ] of sweet sorghum, pith and whole sorghum pith bark cellulose 1214 817 1912 hemicellulose 1012 613 1715 lignin 418 016 818 sucrose 5510 6714 3212 glucose 312 317 214 ash 013 012 015 a The results are expressed as percentage ( %) of dry weight. Mean S. D. between duplicates were less than 10 %, [23 ] [24 ] [25 ],, 1975 [26 ] Eliand [27 ] 24h,, 1978 [28 ] 1982, 1991 [16 ],, : Wyman [17 ] 3 0117 %,, 516 %, [18,19 ], 27 25 40cm 19 [20 ] 90 %, [29 ],, Eckhoff [30 ] 3 ;, (015 % 115 % 310 %) 5 ( - 16 2 12 22 32 )
7Π8 1111 3 ph 1618 % (vπv), Schmidt [31 ] [32 35 ] (enzyme2assisted ensiling), [47 ], 2816 %, Schmidt, [36,37 ] [48 ] [49 ], 66Brix,, [38 ] 3 2,, 1 [50, ] 713 %(vπv) 3 60 % 80 % 2, : [39,40 ] [51,52 ; ] [53 55 ] [41 ] (NH 4 ) 2 SO 4 MgSO 4 KH 2 PO 4 CaCl 2 13 % 80 % MgSO 4 CaCl 2 24h, 01298g Πg, 8918 % 1t [42 45, ] 3101t 1995, Mamma 16gΠ100g 31gΠ100g Fusarium oxysporum Saccharomyces cerevisiae 5815 % Fusarium oxysporum Bvochora [46 ] Saccharomyces cerevisiae ( 34gΠ100ml ) 512 814g Π100g
1112 19, [58, ] 1 :, ( < 20 %) 4 70 % 80 % 90 %, [56 ], [57 ] ( 2) 50 % 70 % [59 ] 1 Fig. 1 SEM images of unpretreated and hot2water pretreated [57 ] corn stover [59 ] A : unpretreated corn stover ( 500) ; B : 3h 2 Table 2 Composition of lignocellulosic raw materials a [57 ] enzymatically hydrolyzed, unpretreated corn stover ( 1 000) ; C : hot2water pretreated corn stover ( 500 ) ; D : 3h substrate xylose glucose acid insoluble ash lignin enzymatically hydrolyzed, hot2water pretreated corn stover P. nigra 1710 110 3514 115 2516 015 313 013 ( 1 000) E. globules 1212 019 3610 018 3111 017 316 015 wheat straw sweet sorghum bagasse B. carinata residue 2618 211 3518 113 1617 018 1113 019 2513 116 4416 118 1810 017 418 017 1411 112 3217 119 1817 019 512 016 a The results are expressed as percentage based on dry weight of raw material. Data are mean values of triplicate analysis standard deviation 20 70 (DOE) (NREL) [60 ] [61 ] (SSF) [62,63 ] [64 68 ] 2000, National Renewable Energy Laboratory ( NREL ), Auburn University, Dartmouth College, Michigan State University, Purdue University, Texas,, A&M University [69 71 ] 6, NREL,,,
7Π8 1113 [72,73 ] [74,75 ] 78 ] ph 81 ], [76 [79 [82,83 ], [84 ] ;, Mamma [85 ] ;,, ( 2), Manzanares 3 2 5 2 3 [57 ] 3 smashed stalk Table 3 Composition of fibrous residue a of different raw materials after steam explosion pretreatment at selected conditions [57 ] substrate solids recovery P. nigra 6214 012 316 117 (212) E. globules 6219 116 416 210 (219) wheat straw sweet sorghum bagasse B. carinata residue 5010 012 617 110 (313) 6215 114 119 013 (112) 5318 018 418 119 (215) xylose b glucose b acid insoluble lignin b 5210 019 (3214) 5313 117 (3315) 5613 015 (2811) 5219 111 (3310) 5417 017 (2914) 4115 15 (2519) 4415 210 (2810) 3512 014 (1716) 3614 111 (2217) 3611 118 (1914) a The results are expressed as percentage based on dry weight of raw material. Data are mean values of triplicate analysis standard deviation b Data are expressed in brackets as a percentage based on dry weight of raw material sweet sorghum stalk inorganic salts, (xylose + glucose) 70 % 5, 6215 %,,,, 60 % 70 % 6019 % 5,, smash juice fermentation distillation rectification ethanol squeeze C5,6 sugars stalk bagasse pretreatment, hydrolysis residue chemical production, burning 2 Fig. 2 Process flow diagram of conversion of sweet sorghum into fuel ethanol 5,
1114 19 [ 1 ] Yang B, Lu Y P. J. Chem. Technol. Biot., 2007, 82 : 6 10 [ 2 ] Helena L C, Ralph P O. Fuel Proc. Technol., 2001, 71 : 187 195 [ 3 ] Ghasem N, Habibollah Y, Ku S, et al. Bioresource Technol., 2004, 92 : 251 260 [ 4 ] Kim S, Dale B E. Biomass Bioenerg., 2004, 26 : 361 375 [ 5 ] Wyman C E. Trends Biotechnol., 2007, 25 (4) : 153 157 [ 6 ] Wyman C E. Annu. Rev. Energy Environ., 1999, 24 : 189 226 [ 7 ] Martin C, Galbe M, Wahlbom C, et al. Enzyme Microb. Tech., 2002, 31 : 274 282 [ 8 ] Kalogeris E, Iniotaki F, Topakas E, et al. Bioresource Technol., 2003, 86 : 207 213 [ 9 ] Maman D, Koullks D. Biomass Bioenerg., 1995, 8 : 99 103 [10] Smith G A, Bagby M O, Lewellam R T, et al. Crop Sci., 1987, 27 : 788 793 [11] Jasberg B K, Montgomery R R, Anderson R A. Biotechnol. Bioeng. Syrup., 1983, 13 : 113 120 [12] (Liu Z Q), (Li D). ( Farm Products Processing), 2005, (6) : 34 35 [13] (Li D J ). ( Transactions of the Chinese Society of Agricultural Engineering), 2003, 19 ( supplement ) : 168 171 [14] (Ning X B), (Ma Z H), (Li D). (Journal of Shenyang Agricultural University), 1995, 26 (1) : 46 47 [15] Billa E, Koullas D P, Monties B, et al. Ind. Crop. Prod., 1997, 6 : 297 302 [16] Gosse G. Biomass for Energy, Environment, Agriculture and Industry ( eds. Chartier P, Beenackers A, Grossi A). Oxford, UK: Pergamon Press, 1995. 1 : 322 330 [17] Gnansounou E, Dauriat A, Wyman C E. Bioresource Technol., 2005, 96 : 985 1002 [18] Mamma D, Koullas D, Fountoukidis G, et al. Proc. Biochem., 1996, 31 : 377 381 [19] Reddy B V S, Ramesh S, Reddy P S, et al. International Sorghum and Millets Newsletter, 2005, 46 : 79 86 [20] Zhan X, Wang D, Tuinstra M R, et al. Ind. Crop. Prod., 2003, 18 : 245 255 [21] (Shen F), (Liu R H). (Journal of Agricultural Mechanization Research), 2007, (2) : 149 152 [22] (Zhang Z P), ( Yang Z), ( Zhu K). (Rain Fed Crops), 2005, 25 (5) : 334 335 [23] Billa E, Koullas D P, Monties B, et al. Ind. Crop. Prod., 1997, (6) : 297 302 [24] Edkhoff S R, Bender D A. Transactions of The ASAE, 1985, 28 (2) : 606 609 [25] (Zhang G S). (China Foreign Energy), 2006, 11 (4) : 104 107 [26] ( Cao W B). ( China Seed Industry), 2005, (4) : 43 [27] Eiland B R, Clayton J E, Bryan W L. Trans. Am. Soc. Agric. Engng., 1983, 26 : 1596 1600 [28] (Mao L C), (Liu W X). (Scientia Agricultura Sinica), 2000, 33 (5) : 1 7 [29] (Ma H T), ( Huang R D). ( World Agriculture), 1994, 8 : 13 16 [30] Eckhoff S R, Bender D A, Okos M R, et al. T. ASAE, 1985, 28(2) : 606 609 [31] Schmidt J, Sipocz J, Kaszfis I, et al. Bioresource Technol., 1997, 60 : 9 13 [32] Linden J C, Henk L L, Murphy V G. Biotechnol. Bioengng., 1987, 30 : 860 867 [33] Schmidt J, Tengerdy R P, Sipocz J, et al. Acta Agronomica Ovariensis, 1995, 37 : 121 130 [34] Tengerdy R P, Schmidt J, Nyeste L, et al. Biomass for Energy, Environment, Agriculture and Industry ( eds. Chartier P, Beenackers A, Grassi G). Oxford, UK: Pergamon Press, 1995. 2 : 1455 1459 [35] Tengerdy R P, Sipoez J. Appl. Biochem. Biotechnol., 1996, 57Π58 : 563 569 [36] Lindgren S, Lingvall P, Kaspersson A, et al. Swed. J. Agric. Res., 1983, 13 : 91 100 [37] Narasimhalu P, Halliday L J, Sanderson J B, et al. Can. J. Animal Sci., 1992, 72 : 431 434 [38] (Wang T T), (Liu R H), (Shen F). (Jiangsu Agricultural Sciences), 2006, (3) : 159 161 [39] Mohite U, SivaRaman H. Biotechnol. Bioeng., 1984, 26 (9) : 1126 1127 [40] Bulawayo B, Bvochora J M, Muzondo M I. World J. Microb. Biot., 1996, 12 (4) : 357 360 [41] (Zhang E M), (Liu R H), (Sun Q). (Journal of Agricultural Mechanization Research), 2005, (6) : 175 180 [42] Thomas K C, Hynes S H, Jones A M. Appl. Biochem. Biotechnol., 1993, 43 : 211 226 [43] Thomas K C, Hynes S H, Ingledew W M. Appl. Environ. Microbiol., 1994, 60 : 1519 1524 [44] Thomas K C, Hynes S H, Ingledew W M. Process Biochem., 1995, 321 331 [45] Jones A M, Thomas K C, Ingledew W M. J. Agric. Food Chem., 1994, 42 : 1242 1246 [46] Bvochora J M, Read J S, Zvauya R. Ind. Crop Prod., 2000, 11 (1) : 11 17 [47] ( Xiao M S), ( Feng J ). (Transactions of the Chinese Society of Agricultural Engineering), 2006, (22) : 217 220 [48] (Wu Z H), (Li Z J), (Luo X J). ( Liquor2Making Science & Technology ), 2000, ( 1 ) : 44 45
7Π8 1115 [49] (Liu R H), (Li J X), (Shen F). ( Transactions of the Chinese Society of Agricultural Engineering), 2005, 21 (9) : 137 140 [50] (Song J P), (Chen H Z), (Ma R Y). (Liquor Making), 2007, 34 (1) : 81 83 [51] Lezinou V, Christakopoulos P, Kekos D, et al. Biotechnol. Lett., 1994, 16 : 983 988 [52] Bryan W L. Enzyme Microb. Tech., 1990, 12 (6) : 437 442 [53] Christakopoulos P, Li L W, Kekos D. Bioresource Technol., 1993, 45 (2) : 89 92 [54] Kargi E, Curme J A, Sheehan J J. Biotechnol. Bioeng., 1985, 27 : 34 40 [55] Kargi E, Curme J A. Biotechnol. Bioeng., 1985, 27 ( 8 ) : 1122 1125 [56] Bryan W L, Monroe G E, Caussanel P M. Transactions of the ASAE, 1985, 28 (1) : 268 274 [57] Ballesteros M, Oliva J M, Negro M J, et al. Process Biochemistry, 2004, 39 : 1843 1849 [58] Mosier N, Wyman C E, Dale B, et al. Bioresource Technol., 2005, 96 : 673 686 [59] Zeng M J, Mosier N S, Huang C P, et al. Biotechnol. Bioeng., 2007, 97(2) : 265 278 [60] Mosier N, Wyman C, Dale B, et al. Bioresoure Technol., 2005, 96 : 673 686 [61] Gan Q, Allen S J, Taylor G. Proc. Biochem., 2003, 38 : 1003 1018 [62] Stenberg K, Boll k M, R czey K, et al. Biotechnol. Bioeng., 2000, 68 : 204 210 [63] Varga E, Klinke H B, R czey K, et al. Biotechnol. Bioeng., 2004, 88 : 567 574 [64] Aristidou A, PenttilgM. Current Opinion Biotechnol., 2000, 11 : 187 198 [65] Ho N W Y, Chen Z, Brainard A P, et al. ACS Symposium (eds. Anastas P T, Heine G H, Williamson T C). Washington DC: American Chemical Society, 20001 142 159 [66] Sedlak M, Ho N W Y. Appl. Biochem. Biotechnol., 2004, 113Π116 : 403 416 [67] Lima K G C, Takahashi C M. J. Ind. Microbial. Biotechnol., 2002, 29 : 124 128 [68] Dien B S, Nichols N N, Bothast R J. J. Ind. Microbial. Biotechnol., 2001, 27 : 259 264 [69] Mosier N, Wyman C E, Dale B, et al. Bioresource Technol., 2005, 96 : 673 686 [70] Wyman C E, Dale B E, Elander R T, et al. Bioresource Technol., 2005, 96 : 1959 1966 [71] Yang B, Wyman C E. Biotechnol. Bioeng., 2006, 94 ( 4) : 611 617 [72] Lloyd T A, Wyman C E. Bioresource Technol., 2005, 96 : 1967 1977 [73] Liu C G, Wyman C E. Carbohydr. Res., 2006, 341 : 2550 2556 [74] Kim T H, Lee Y Y. Bioresource Technol., 2005, 96 : 2007 2013 [75] Kim T H, Lee Y Y. Bioresource Technol., 2006, 97 : 224 232 [76] Teymouri F, Perez L L, Alizadeh H, et al. Bioresource Technol., 2005, 96 : 2014 2018 [77] Chundawat S P S, Venkatesh B, Dale B E. Biotechnol. Bioeng., 2007, 96 (2) : 219 231 [78] Lu Y P, Yang B, Gregg D, et al. Appl. Biochem. Biotech., 2002, 98Π100 : 641 654 [79] Liu C G, Wyman C E. Bioresource Technol., 2005, 96 : 1978 1985 [80] Mosier N, Hendrickson R, Ho N, et al. Bioresource Technol., 2005, 96 : 1986 1993 [81] Allen S G, Kam L C, Zemann A J, et al. Ind. Eng. Chem. Res., 1996, 35 : 2709 2715 [82] Kim S, Holtzapple M T. Bioresource Technol., 2005, 96 : 1994 2006 [83] Kim S, Holtzapple M T. Bioresource Technol., 2006, 97 : 778 785 [84] Chang V S, Nagwani M, Kim C H, et al. Appl. Biochem. Biotech., 2001, 94 : 1 28 [85] Mamma D, Christakopoulos P, Koullas D, et al. Biomass Bioenerg., 1995, 8 (2) : 99 103