The Fuel Ethanol Production from Sweet Sorghum Stalk

Σχετικά έγγραφα
Approximation Expressions for the Temperature Integral

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Screening of Respiration-deficient Saccharomyces cerevisiae Strains with Sugar-and Thermo-tolerances

6. Διεργασίες παραγωγής αιθανόλης από λιγνινοκυτταρινούχα υλικά

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Advance in Nanorealgar Studies

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Optimization of fermentation process for achieving high product concentration high yield and high productivity

Study on the Solubility of Kiwi Fruit Seed Oil in Supercritical Carbon Dioxide

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Supplementary material

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Preparation and Application of Amorphous Alloy Catalyst

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

[11].,, , 316 6, ,., 15.5%, 9.8%, 2006., IDF,, ,500, 2,830.,, ,200.,,, β, [12]. 90% 2,,,,, [13-15].,, [13,

Βιολογικοί πόροι: Σύσταση, Προκατεργασίες

ER-Tree (Extended R*-Tree)

Electronic Supplementary Information

Quick algorithm f or computing core attribute

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Supporting Information

Fenton. COD ρ NH N TP ENVIRONMENTAL PROTECTION OF CHEMICAL INDUSTRY

MUL TIL EVEL2USER2ORIENTED AGRICUL TURAL INFORMATION CLASSIFICATION

ph Maillard MRPs maillard reaction products Maillard ph kDa Maillard Maillard DOI /j. issn

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Major substratesforbiotechnologicalproductionof Biopolymers, biofuels and biochemicals: Industrial producersof Wastestreams: Dairy Industry: Whey

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Progress of Gas Diff usion Layer for Proton Exchage Membrane Fuel Cells

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Accumulation of Soil Arsenic by Panax notoginseng and Its Associated Health Risk

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Multi-objective design of control chart for short-run production

Protective Effect of Surface Coatings on Concrete

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Inhibition of mushroom tyrosinase by flavonoid from Sorbus tianschanica Ruper in Xinjiang

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

Fe II aq Fe III oxide electron transfer and Fe exchange: effect of organic carbon

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

CorV CVAC. CorV TU317. 1

ZnO-Bi 2 O 3 Bi 2 O 3

Η Βιοδιύλιση ως Αειφόρος Μέθοδος Παραγωγής Ενέργειας και Χημικών Εφοδίων από Βιομάζα

Rapid determination of soluble reactive silicate in seawater by flow injection analysis with spectrophotometric detection and its application

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Comparison of nutrient components in muscle of wild and farmed groups of Myxocyprinus asiaticus

Studies on Synthesis and Biological Activities of 2( 1 H21,2,42 Triazol212yl)2 2Arylthioethyl Substituted Phenyl Ketones

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Nguyen Hien Trang* **

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

ph 60% ~70% 1 C/N d 53% 6% NY d % 1985

Synthesis Characterization and Application of Phosphorus-Containing Derivatives of Chitosan

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Composition Analysis of Protein and Oil and Amino Acids of the Soybean Varieties in Heilongjiang Province of China

Influence of Flow Rate on Nitrate Removal in Flow Process

Conductivity Logging for Thermal Spring Well

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

,,, (, ) , ;,,, ; -

Electronic Supplementary Information

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Vol. 30,No. 4 April,2008 RESOURCES SCIENCE : (2008) %,, ( 1) [1 ] : ; : E2mail ac.

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Supporting Information

Supplementary Table 1. Construct List with key Biophysical Properties of the expression

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

ΜΕΛΕΤΗ ΑΠΟΤΙΜΗΣΗΣ ΠΑΡΑΓΟΜΕΝΗΣ ΕΝΕΡΓΕΙΑΣ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΕΓΚΑΤΕΣΤΗΜΕΝΩΝ ΣΕ ΕΛΛΑ Α ΚΑΙ ΤΣΕΧΙΑ

,35 , 96 %, China Academic Journal Electronic Publishing House. All rights reserved. CHINA BIOTECHNOLOGY ( )

Electronic Supplementary Information

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

2016, Vol.37, No

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Emulsifying Properties of Egg Yolk as a Function of Diacylglycerol Oil

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Polymer-Based Composites with High Dielectric Constant and Low Dielectric Loss

Distribution of Mercury and Selenium in the Proteins of Porcine Liver and Kidney Under Different Mercury Exposure Level

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Application of Statistical Process Control in Pretreatment Production Process of Gardenia jasminoides

Transcript:

19 7Π8 2007 8 PROGRESS IN CHEMISTRY Vol. 19 No. 7Π8 Aug., 2007 3 3 3 ( 100083) 4 :TK6 ; S21612 : A : 10052281X(2007) 07Π821109207 The Fuel Ethanol Production from Sweet Sorghum Stalk Liu Li Sun Junshe 3 3 Kang Liping Liu Ping (College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China) Abstract The progress of fuel ethanol production from sweet sorghum stalk is introduced in this paper, including methods of preserving raw materials, liquid2state fermentation of juice, solid2stated fermentation of smashed stalks, pretreatment of stalk bagasse and simultaneous saccharification and fermentation ( SSF). The key technologies of converting sweet sorghum stalks into fuel ethanol are discussed in detail, which are raw materials preservation and pretreatment of stalk bagasse. A more economical and feasible process flow, found promising for further investigation is suggested. Key words sweet sorghum ; ethanol ; liquid2state fermentation ; solid2state fermentation ; pretreatments, [1, ], [2 4 ] [7 ], [8 ] [5,6 ] [9 ] C 4, 4,, 102 ( ), [10,11 ] : 2006 5 3 (No. 20436020) 3 3 e2mail :sunjsh61 @163. com

1110 19 [21, 200 ] 500kg, [12,13 1 4 000 5 000kg 18 % 24 % ], 79 % [14, ] [22 ] 4 6, 50 % 1, [15 ] 1 Table 1 Chemical composition a bark [15 ] of sweet sorghum, pith and whole sorghum pith bark cellulose 1214 817 1912 hemicellulose 1012 613 1715 lignin 418 016 818 sucrose 5510 6714 3212 glucose 312 317 214 ash 013 012 015 a The results are expressed as percentage ( %) of dry weight. Mean S. D. between duplicates were less than 10 %, [23 ] [24 ] [25 ],, 1975 [26 ] Eliand [27 ] 24h,, 1978 [28 ] 1982, 1991 [16 ],, : Wyman [17 ] 3 0117 %,, 516 %, [18,19 ], 27 25 40cm 19 [20 ] 90 %, [29 ],, Eckhoff [30 ] 3 ;, (015 % 115 % 310 %) 5 ( - 16 2 12 22 32 )

7Π8 1111 3 ph 1618 % (vπv), Schmidt [31 ] [32 35 ] (enzyme2assisted ensiling), [47 ], 2816 %, Schmidt, [36,37 ] [48 ] [49 ], 66Brix,, [38 ] 3 2,, 1 [50, ] 713 %(vπv) 3 60 % 80 % 2, : [39,40 ] [51,52 ; ] [53 55 ] [41 ] (NH 4 ) 2 SO 4 MgSO 4 KH 2 PO 4 CaCl 2 13 % 80 % MgSO 4 CaCl 2 24h, 01298g Πg, 8918 % 1t [42 45, ] 3101t 1995, Mamma 16gΠ100g 31gΠ100g Fusarium oxysporum Saccharomyces cerevisiae 5815 % Fusarium oxysporum Bvochora [46 ] Saccharomyces cerevisiae ( 34gΠ100ml ) 512 814g Π100g

1112 19, [58, ] 1 :, ( < 20 %) 4 70 % 80 % 90 %, [56 ], [57 ] ( 2) 50 % 70 % [59 ] 1 Fig. 1 SEM images of unpretreated and hot2water pretreated [57 ] corn stover [59 ] A : unpretreated corn stover ( 500) ; B : 3h 2 Table 2 Composition of lignocellulosic raw materials a [57 ] enzymatically hydrolyzed, unpretreated corn stover ( 1 000) ; C : hot2water pretreated corn stover ( 500 ) ; D : 3h substrate xylose glucose acid insoluble ash lignin enzymatically hydrolyzed, hot2water pretreated corn stover P. nigra 1710 110 3514 115 2516 015 313 013 ( 1 000) E. globules 1212 019 3610 018 3111 017 316 015 wheat straw sweet sorghum bagasse B. carinata residue 2618 211 3518 113 1617 018 1113 019 2513 116 4416 118 1810 017 418 017 1411 112 3217 119 1817 019 512 016 a The results are expressed as percentage based on dry weight of raw material. Data are mean values of triplicate analysis standard deviation 20 70 (DOE) (NREL) [60 ] [61 ] (SSF) [62,63 ] [64 68 ] 2000, National Renewable Energy Laboratory ( NREL ), Auburn University, Dartmouth College, Michigan State University, Purdue University, Texas,, A&M University [69 71 ] 6, NREL,,,

7Π8 1113 [72,73 ] [74,75 ] 78 ] ph 81 ], [76 [79 [82,83 ], [84 ] ;, Mamma [85 ] ;,, ( 2), Manzanares 3 2 5 2 3 [57 ] 3 smashed stalk Table 3 Composition of fibrous residue a of different raw materials after steam explosion pretreatment at selected conditions [57 ] substrate solids recovery P. nigra 6214 012 316 117 (212) E. globules 6219 116 416 210 (219) wheat straw sweet sorghum bagasse B. carinata residue 5010 012 617 110 (313) 6215 114 119 013 (112) 5318 018 418 119 (215) xylose b glucose b acid insoluble lignin b 5210 019 (3214) 5313 117 (3315) 5613 015 (2811) 5219 111 (3310) 5417 017 (2914) 4115 15 (2519) 4415 210 (2810) 3512 014 (1716) 3614 111 (2217) 3611 118 (1914) a The results are expressed as percentage based on dry weight of raw material. Data are mean values of triplicate analysis standard deviation b Data are expressed in brackets as a percentage based on dry weight of raw material sweet sorghum stalk inorganic salts, (xylose + glucose) 70 % 5, 6215 %,,,, 60 % 70 % 6019 % 5,, smash juice fermentation distillation rectification ethanol squeeze C5,6 sugars stalk bagasse pretreatment, hydrolysis residue chemical production, burning 2 Fig. 2 Process flow diagram of conversion of sweet sorghum into fuel ethanol 5,

1114 19 [ 1 ] Yang B, Lu Y P. J. Chem. Technol. Biot., 2007, 82 : 6 10 [ 2 ] Helena L C, Ralph P O. Fuel Proc. Technol., 2001, 71 : 187 195 [ 3 ] Ghasem N, Habibollah Y, Ku S, et al. Bioresource Technol., 2004, 92 : 251 260 [ 4 ] Kim S, Dale B E. Biomass Bioenerg., 2004, 26 : 361 375 [ 5 ] Wyman C E. Trends Biotechnol., 2007, 25 (4) : 153 157 [ 6 ] Wyman C E. Annu. Rev. Energy Environ., 1999, 24 : 189 226 [ 7 ] Martin C, Galbe M, Wahlbom C, et al. Enzyme Microb. Tech., 2002, 31 : 274 282 [ 8 ] Kalogeris E, Iniotaki F, Topakas E, et al. Bioresource Technol., 2003, 86 : 207 213 [ 9 ] Maman D, Koullks D. Biomass Bioenerg., 1995, 8 : 99 103 [10] Smith G A, Bagby M O, Lewellam R T, et al. Crop Sci., 1987, 27 : 788 793 [11] Jasberg B K, Montgomery R R, Anderson R A. Biotechnol. Bioeng. Syrup., 1983, 13 : 113 120 [12] (Liu Z Q), (Li D). ( Farm Products Processing), 2005, (6) : 34 35 [13] (Li D J ). ( Transactions of the Chinese Society of Agricultural Engineering), 2003, 19 ( supplement ) : 168 171 [14] (Ning X B), (Ma Z H), (Li D). (Journal of Shenyang Agricultural University), 1995, 26 (1) : 46 47 [15] Billa E, Koullas D P, Monties B, et al. Ind. Crop. Prod., 1997, 6 : 297 302 [16] Gosse G. Biomass for Energy, Environment, Agriculture and Industry ( eds. Chartier P, Beenackers A, Grossi A). Oxford, UK: Pergamon Press, 1995. 1 : 322 330 [17] Gnansounou E, Dauriat A, Wyman C E. Bioresource Technol., 2005, 96 : 985 1002 [18] Mamma D, Koullas D, Fountoukidis G, et al. Proc. Biochem., 1996, 31 : 377 381 [19] Reddy B V S, Ramesh S, Reddy P S, et al. International Sorghum and Millets Newsletter, 2005, 46 : 79 86 [20] Zhan X, Wang D, Tuinstra M R, et al. Ind. Crop. Prod., 2003, 18 : 245 255 [21] (Shen F), (Liu R H). (Journal of Agricultural Mechanization Research), 2007, (2) : 149 152 [22] (Zhang Z P), ( Yang Z), ( Zhu K). (Rain Fed Crops), 2005, 25 (5) : 334 335 [23] Billa E, Koullas D P, Monties B, et al. Ind. Crop. Prod., 1997, (6) : 297 302 [24] Edkhoff S R, Bender D A. Transactions of The ASAE, 1985, 28 (2) : 606 609 [25] (Zhang G S). (China Foreign Energy), 2006, 11 (4) : 104 107 [26] ( Cao W B). ( China Seed Industry), 2005, (4) : 43 [27] Eiland B R, Clayton J E, Bryan W L. Trans. Am. Soc. Agric. Engng., 1983, 26 : 1596 1600 [28] (Mao L C), (Liu W X). (Scientia Agricultura Sinica), 2000, 33 (5) : 1 7 [29] (Ma H T), ( Huang R D). ( World Agriculture), 1994, 8 : 13 16 [30] Eckhoff S R, Bender D A, Okos M R, et al. T. ASAE, 1985, 28(2) : 606 609 [31] Schmidt J, Sipocz J, Kaszfis I, et al. Bioresource Technol., 1997, 60 : 9 13 [32] Linden J C, Henk L L, Murphy V G. Biotechnol. Bioengng., 1987, 30 : 860 867 [33] Schmidt J, Tengerdy R P, Sipocz J, et al. Acta Agronomica Ovariensis, 1995, 37 : 121 130 [34] Tengerdy R P, Schmidt J, Nyeste L, et al. Biomass for Energy, Environment, Agriculture and Industry ( eds. Chartier P, Beenackers A, Grassi G). Oxford, UK: Pergamon Press, 1995. 2 : 1455 1459 [35] Tengerdy R P, Sipoez J. Appl. Biochem. Biotechnol., 1996, 57Π58 : 563 569 [36] Lindgren S, Lingvall P, Kaspersson A, et al. Swed. J. Agric. Res., 1983, 13 : 91 100 [37] Narasimhalu P, Halliday L J, Sanderson J B, et al. Can. J. Animal Sci., 1992, 72 : 431 434 [38] (Wang T T), (Liu R H), (Shen F). (Jiangsu Agricultural Sciences), 2006, (3) : 159 161 [39] Mohite U, SivaRaman H. Biotechnol. Bioeng., 1984, 26 (9) : 1126 1127 [40] Bulawayo B, Bvochora J M, Muzondo M I. World J. Microb. Biot., 1996, 12 (4) : 357 360 [41] (Zhang E M), (Liu R H), (Sun Q). (Journal of Agricultural Mechanization Research), 2005, (6) : 175 180 [42] Thomas K C, Hynes S H, Jones A M. Appl. Biochem. Biotechnol., 1993, 43 : 211 226 [43] Thomas K C, Hynes S H, Ingledew W M. Appl. Environ. Microbiol., 1994, 60 : 1519 1524 [44] Thomas K C, Hynes S H, Ingledew W M. Process Biochem., 1995, 321 331 [45] Jones A M, Thomas K C, Ingledew W M. J. Agric. Food Chem., 1994, 42 : 1242 1246 [46] Bvochora J M, Read J S, Zvauya R. Ind. Crop Prod., 2000, 11 (1) : 11 17 [47] ( Xiao M S), ( Feng J ). (Transactions of the Chinese Society of Agricultural Engineering), 2006, (22) : 217 220 [48] (Wu Z H), (Li Z J), (Luo X J). ( Liquor2Making Science & Technology ), 2000, ( 1 ) : 44 45

7Π8 1115 [49] (Liu R H), (Li J X), (Shen F). ( Transactions of the Chinese Society of Agricultural Engineering), 2005, 21 (9) : 137 140 [50] (Song J P), (Chen H Z), (Ma R Y). (Liquor Making), 2007, 34 (1) : 81 83 [51] Lezinou V, Christakopoulos P, Kekos D, et al. Biotechnol. Lett., 1994, 16 : 983 988 [52] Bryan W L. Enzyme Microb. Tech., 1990, 12 (6) : 437 442 [53] Christakopoulos P, Li L W, Kekos D. Bioresource Technol., 1993, 45 (2) : 89 92 [54] Kargi E, Curme J A, Sheehan J J. Biotechnol. Bioeng., 1985, 27 : 34 40 [55] Kargi E, Curme J A. Biotechnol. Bioeng., 1985, 27 ( 8 ) : 1122 1125 [56] Bryan W L, Monroe G E, Caussanel P M. Transactions of the ASAE, 1985, 28 (1) : 268 274 [57] Ballesteros M, Oliva J M, Negro M J, et al. Process Biochemistry, 2004, 39 : 1843 1849 [58] Mosier N, Wyman C E, Dale B, et al. Bioresource Technol., 2005, 96 : 673 686 [59] Zeng M J, Mosier N S, Huang C P, et al. Biotechnol. Bioeng., 2007, 97(2) : 265 278 [60] Mosier N, Wyman C, Dale B, et al. Bioresoure Technol., 2005, 96 : 673 686 [61] Gan Q, Allen S J, Taylor G. Proc. Biochem., 2003, 38 : 1003 1018 [62] Stenberg K, Boll k M, R czey K, et al. Biotechnol. Bioeng., 2000, 68 : 204 210 [63] Varga E, Klinke H B, R czey K, et al. Biotechnol. Bioeng., 2004, 88 : 567 574 [64] Aristidou A, PenttilgM. Current Opinion Biotechnol., 2000, 11 : 187 198 [65] Ho N W Y, Chen Z, Brainard A P, et al. ACS Symposium (eds. Anastas P T, Heine G H, Williamson T C). Washington DC: American Chemical Society, 20001 142 159 [66] Sedlak M, Ho N W Y. Appl. Biochem. Biotechnol., 2004, 113Π116 : 403 416 [67] Lima K G C, Takahashi C M. J. Ind. Microbial. Biotechnol., 2002, 29 : 124 128 [68] Dien B S, Nichols N N, Bothast R J. J. Ind. Microbial. Biotechnol., 2001, 27 : 259 264 [69] Mosier N, Wyman C E, Dale B, et al. Bioresource Technol., 2005, 96 : 673 686 [70] Wyman C E, Dale B E, Elander R T, et al. Bioresource Technol., 2005, 96 : 1959 1966 [71] Yang B, Wyman C E. Biotechnol. Bioeng., 2006, 94 ( 4) : 611 617 [72] Lloyd T A, Wyman C E. Bioresource Technol., 2005, 96 : 1967 1977 [73] Liu C G, Wyman C E. Carbohydr. Res., 2006, 341 : 2550 2556 [74] Kim T H, Lee Y Y. Bioresource Technol., 2005, 96 : 2007 2013 [75] Kim T H, Lee Y Y. Bioresource Technol., 2006, 97 : 224 232 [76] Teymouri F, Perez L L, Alizadeh H, et al. Bioresource Technol., 2005, 96 : 2014 2018 [77] Chundawat S P S, Venkatesh B, Dale B E. Biotechnol. Bioeng., 2007, 96 (2) : 219 231 [78] Lu Y P, Yang B, Gregg D, et al. Appl. Biochem. Biotech., 2002, 98Π100 : 641 654 [79] Liu C G, Wyman C E. Bioresource Technol., 2005, 96 : 1978 1985 [80] Mosier N, Hendrickson R, Ho N, et al. Bioresource Technol., 2005, 96 : 1986 1993 [81] Allen S G, Kam L C, Zemann A J, et al. Ind. Eng. Chem. Res., 1996, 35 : 2709 2715 [82] Kim S, Holtzapple M T. Bioresource Technol., 2005, 96 : 1994 2006 [83] Kim S, Holtzapple M T. Bioresource Technol., 2006, 97 : 778 785 [84] Chang V S, Nagwani M, Kim C H, et al. Appl. Biochem. Biotech., 2001, 94 : 1 28 [85] Mamma D, Christakopoulos P, Koullas D, et al. Biomass Bioenerg., 1995, 8 (2) : 99 103