SOLVING CUBICS AND QUARTICS BY RADICALS

Σχετικά έγγραφα
2 Composition. Invertible Mappings

EE512: Error Control Coding

Homework 3 Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CRASH COURSE IN PRECALCULUS

Matrices and Determinants

derivation of the Laplacian from rectangular to spherical coordinates

Section 8.3 Trigonometric Equations

Srednicki Chapter 55

Finite Field Problems: Solutions

Areas and Lengths in Polar Coordinates

Lecture 13 - Root Space Decomposition II

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Approximation of distance between locations on earth given by latitude and longitude

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

EQUATIONS OF DEGREE 3 AND 4.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Quadratic Expressions

Example Sheet 3 Solutions

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

PARTIAL NOTES for 6.1 Trigonometric Identities

Trigonometric Formula Sheet

( y) Partial Differential Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Every set of first-order formulas is equivalent to an independent set

Second Order Partial Differential Equations

A Note on Intuitionistic Fuzzy. Equivalence Relation

Section 7.6 Double and Half Angle Formulas

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

On a four-dimensional hyperbolic manifold with finite volume

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Tridiagonal matrices. Gérard MEURANT. October, 2008

If we restrict the domain of y = sin x to [ π 2, π 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Solution Series 9. i=1 x i and i=1 x i.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ST5224: Advanced Statistical Theory II

Concrete Mathematics Exercises from 30 September 2016

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Math221: HW# 1 solutions

6.3 Forecasting ARMA processes

C.S. 430 Assignment 6, Sample Solutions

Problem Set 3: Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Other Test Constructions: Likelihood Ratio & Bayes Tests

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

The Simply Typed Lambda Calculus

( ) 2 and compare to M.

w o = R 1 p. (1) R = p =. = 1

Lecture 15 - Root System Axiomatics

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Statistical Inference I Locally most powerful tests

Reminders: linear functions

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Second Order RLC Filters

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Math 6 SL Probability Distributions Practice Test Mark Scheme

Numerical Analysis FMN011

Ιστορία νεότερων Μαθηματικών

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

F19MC2 Solutions 9 Complex Analysis

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Homework 8 Model Solution Section

Notes on the Open Economy

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 2. Soundness and completeness of propositional logic

Differentiation exercise show differential equation

Chapter 3: Ordinal Numbers

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Fractional Colorings and Zykov Products of graphs

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Parametrized Surfaces

COMPLEX NUMBERS. 1. A number of the form.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Forced Pendulum Numerical approach

TMA4115 Matematikk 3

1 String with massive end-points

Transcript:

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with some general comments. Let F be a field and f(x) a polynomial with coefficients in F. We will assume throughout that F contains the rational numbers. In searching for the roots of f(x), it is convenient to simplify f(x) by eliminating some of its terms. This can often be done by making a substitution of the form X = Y + λ, for some λ F. If we set g(y ) := f(y + λ), then clearly α is a root of f(x) if and only if α λ is a root of g(y ). Thus, any procedure leading to the roots of g(y ) leads to the roots of f(x) and conversely. We will employ this technique in each of the cases below. Cardano s formulas for the roots of a cubic polynomial. We begin with a cubic polynomial having coefficients in F, say f(x) = X +ax +bx +c. If we set X := Y a/, then for g(y ) := f(y a/), we obtain g(y ) = Y + py + q, where p = 1 (b a ) and q = 1 7 (a 9ab + 7c). Thus, by our comments above, we may start over assuming f(x) = X + px + q. We now consider the discriminant of f(x), D := 4p 7q and set 7 A := q + 7 D and B := q D, where the cube roots are chosen so that A B = p. To elaborate, if we take µ 1 := 7 q+ D, then µ1 has three cube roots : α 1, α, α, where α = α 1 ω, α = α 1 ω and ω is a primitive cube root of 1, in other words, ω + ω + 1 = 0. Similarly, if we also set µ := 7 q D, then µ has three cube roots, β 1, β, β with β = β 1 ω and β = β 1 ω. Now (α 1 β 1 ) = 7p = ( p). 1

SOLVING CUBICS AND QUARTICS BY RADICALS Therefore α 1 β 1 = p, pω or pω. If α 1 β 1 = p, we take A = α 1 and B = β 1. If α 1 β 1 = pω, then α β = p, so we take A = α and B = β. If α 1 β 1 = pω, then α β 1 = p and we set A = α, B = β 1. In other words, we can choose cube roots A and B of µ 1 and µ, so that A B = p. We now show that the roots of f(x) are : α = A + B To do this, we calculate. β = ω A + ωb γ = ωa + ω B. (α + β + γ) = (1 + ω + ω )A + (1 + ω + ω )B = 0, so (α + β + γ) = 0. Similarly, 9(αβ + αγ + βγ) = (1 + ω + ω )A + (ω + ω )AB + (1 + ω + ω )B, so, 9(αβ + αγ + βγ) = AB = 9p. Therefore αβ + αγ + βγ = p. Finally, 7αβγ = ω A + (ω + ω + ω 4 )A B + (ω + ω + ω 4 )AB + ω B, so, 7αβγ = A + B = 7q. Therefore, αβγ = q. It now follows that we may factor f(x) = (X α)(x β)(x γ), which is what we want. Suppose F = Q, the rational numbers. Then either f(x) has one real root and two imaginary roots or f(x) has three real roots. We can use the discriminant D to tell us which case occurs. Write f(x) = (X α)(x β)(x γ). Taking the derivative gives f (α) = (α β)(α γ), f (β) = (β α)(β γ) and f (γ) = (γ α)(γ β). Therefore, f (α)f (β)f (γ) = [(α β)(α γ)(β γ)]. Temporarily call this number D. We will show D = D. Since f (X) = X + p, we have D =(α + p)(β + p)(γ + p) =7α β γ + 9p(α β + α γ + β γ ) + p (α + β + γ ) + p.

SOLVING CUBICS AND QUARTICS BY RADICALS Of course, α β γ = ( q) = q. A straight forward calculation shows that α β + α γ + β γ = (αβ + αγ + βγ) (α + β + γ)(αβγ), so, α β + α γ + β γ = p. Similarly, α + β + γ = (α + β + γ) (αβ + αγ + βγ), so, α + β + γ = p. Therefore D = 4p + 7q, and D = D, as claimed. Now, suppose that α is real and β, γ are imaginary, say β = a + bi and γ = a bi, with a, b R and b 0. Then D = [(α (a + bi)(α (a bi)((a + bi) (a bi))] = bi[(α a) + b ], which is purely imaginary. Thus, D 0. Conversely, if D 0, in the formulas for A and B above, we may choose both to be real. It follows that α is real and β and γ are nonreal complex numbers. If all three roots are real, then taking D = [(α β)(α γ)(β γ)] shows that D 0. Note that if D = 0, then f(x) has repeated roots. Also note that if D > 0, then the formulas for the roots involve radicals of nonreal numbers. If f(x) is irreducible over Q, it can be shown that this is necessary. Examples. (i) Suppose f(x) = X X + 1. Then D = 4( 1) 7(1) =, so we expect one real root and two complex conjugate roots. Using the formulas above, we get 7 A = + 7 69 and B = 69, where we choose A to be the real cube root of 7 + 69. From A B = p =, it follows that B is also real. Thus, the root α is real and the roots β and γ are complex conjugates. (ii) Suppose f(x) = X 1X 7. Then D = 4( 1) 7( 7) = 6 7, so f(x) has three real roots. Using the formulas above, we obtain 7 A = + 1 7 and B = 1, so that the formulas express the roots of f(x) in terms of cube roots of complex numbers. At first blush, it may not seem that the roots α, β and γ are real, but direct calculation

4 SOLVING CUBICS AND QUARTICS BY RADICALS shows that they are. For example, if z = a + bi is a complex number, then we may write z = re iθ, where r = a + b and θ is the angle determined by z and the x-axis. Letting r denote the real cube root of r, we have that ( re i(θ/) ) = z. Set z := re i(θ/). Using the fact that e iθ = cos(θ) + isin(θ), it follows that z + z is real. Applying this to z = 7 + 1, shows that α = A+B is real. Similarly, one can show directly that β and γ are real as well. Note that f( 5) = 7, f( 1) = 1, f(0) = 7 and f(5) = 1, which gives an alternate way to see that f(x) has three real roots. (iii) The formulas above can also be deceiving. Let f(x) = x 7x+6 = (x 1)(x )(x+). Then from Cardano s formulas one obtains A + B 1 400 = ( 6 + 7 ) + which is either 1, or. Is it clear which one it is?! The quartic case. 1 ( 6 400 7 ), It turns out that extracting the roots from a degree 4 polynomial reduces to the degree three case. We start with an irreducible quartic polynomial f(x) = X 4 + ax + bx + cx + d having coefficients in the field F containing Q. before, we can simplify by setting X := Y a/4. Then for g(y ) := f(y a/4), we obtain g(y ) = Y 4 + py + qy + r, where p = 1 8 ( a + 8b), q = 1 8 (a 4ab + 8c), r = 1 56 ( a4 + 16a b 64ac + 56d). Thus, we may begin again assuming that f(x) = X 4 + px + qx + r, with p, q, r F. Then f(x) has distinct roots, say α 1, α, α, α 4. Set θ 1 :=(α 1 + α )(α + α 4 ) θ :=(α 1 + α )(α + α 4 ) θ :=(α 1 + α 4 )(α + α ) As and s 1 := θ 1 + θ + θ, s := θ 1 θ + θ 1 θ + θ θ and s := θ 1 θ θ. Using the factorization f(x) = (X α 1 )(X α )(X α )(X α 4 ), an easy calculation shows that s 1 = p, s = p 4r and s = q. It follows from this that θ 1, θ and θ are the roots of h(x) := X px + (p 4r)X + q, the so-called resolvent cubic associated to f(x).

SOLVING CUBICS AND QUARTICS BY RADICALS 5 Now, (α 1 + α )(α + α 4 ) = θ 1 and (α 1 + α ) + (α + α 4 ) = 0. Therefore, we may write α 1 +α = θ 1 and α +α 4 = θ 1. Similarly, α 1 +α = θ, α + α 4 = θ, α 1 + α 4 = θ and α + α = θ. (Since θ 1 θ θ = q, the choice of two square roots determines the third.) If we now add (α 1 + α ) + (α 1 + α ) + (α 1 + α 4 ), we get α 1 on the one hand and θ 1 + θ + θ on the other. Doing likewise for α, α, α 4, we find α 1 = 1 ( θ 1 + θ + θ ) α = 1 ( θ 1 θ θ ) α = 1 ( θ 1 + θ θ ) α 4 = 1 ( θ 1 θ + θ ), which reduces the solution of the quartic equation to the solution of the associated resolvent cubic. Department of mathematics, University of Kansas, Lawrence KS, 66045