( ) 6 1 010 1 J OU RNAL O F NANJ IN G UN IV ERSIT Y (NA TU RAL SCIENCES) Vol. 6, No. 1 J an. ω 010 3 1, 33, 1, 1 (1.,,100 ;.,,1117) : (DSC) T GDDM/ M T HPA. ( PTFE) MoS DSC, Kissinger Crane, Tp Te, Tcure Ttreat. (DMBA), 0190 ;DMBA,110 %; Tcure Ttreat130 1531. ( TRUM - 60), 000 h. :,,, : TQ 301, TQ 3315 Studies on cure kinetics of epoxy friction material f or ultrasonic motor Chen ZhengN i an 1,, Di ng Qi ngj un 1, Zhao ChunS heng 1 (1. Precision Driving Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing, 100, China ;. School of Materials and Engineering, Nanjing Institute of Technology, Nanjing, 117, China) Abstract : Epoxy resin matrix composite for friction material of ultrasonic motor driving was prepared by tetraglycidyl, diaminodiphenylmethane ( T GDDM) / methyl tetrahydrophthalic anhydride ( M T HPA) filled with polytetrafluoroethylene ( P TFE), carbon fibre, graphite, MoS powder et al. The nonisothermal cure kinetic of this composite was studied by means of differential scanning calorimetry (DSC). The apparent activation energy and kinetic order of curing reaction were evaluated by Kissinger equation and Crane equation, and theoretic gelling temperature, curing temperature and heattreating temperature were obtained by linearly extrapolating the curves of peak temperature and end temperature of cure reaction vs. heating rate ( Tp and Te ). The reaction order n was calculated to be about 01 90 independent of dimethyl benzyl amine (DMBA) dosage, and the apparent activation energy decreased firstly and then increased with the increase of the accelerant DMBA percentage and it showed a minimum in one percent DMBA dosage. The extrapolated curing temperature ( Tcure ) and heat treating temperature ( Ttreat ) are 130 and 1531, respectively. The Mechanical properties of ultrasonic motor, TRUM 60, 3 33 : (507513), ( KXJ0055) :009-1 - 05,Email :chenzn @njit. edu. cn
( ) 6 equipped with this epoxy composite friction material performed very well with lifetime longer than 000 h. Key words : f riction material, epoxy resin, cure kinetics, thermal analysis, [1 ]. [ ].,, ( T GDDM) (M T HPA),,,,,,, [ 5 ]. DSC T GD DM/ M T H PA, (DMBA),. 1 111 T GDDM ( 1191,50 10 000 mpa s, ) ; (, ) ; ( F00 #,115m, ) ;(,015m, ) ; P TFE (015m, ) ;(, ), M T H PA ( 3615 mg ( KO H ) / g, ) ; ( KH570,, ), DMBA (,). 11 5 g 615 g 60 3 min,, P TFE10 g 110 g 110 g 015 g115 g KH570 010 g, DMBA 0 015 % 110 % 115 % 10 %, 10 min. 1010 mg DSC, - 10. 113 DSC 00 F3 Maia DSC,. (0 ml/ min), K/ min 50 300. 11 DSC 1,1a T GDDM/ M T H PA, b c d e 015 % 110 % 115 % 10 %, H T p Ti Te 1. DSC 1 1, DMBA,, Ti T p Te ; 150 J / g, 00 J / g,. 1 DSC [611 ],.,d / dt f ( ), d / dt = k ( T) f ( ) (1) k ( T) T,. f ( ), k ( T)
1 : 3 1 0( a) 015 %( b) 110 %( c) 115 %( d) 1 0 %( e) DMBA TGDDM/ MTHPA DSC Fig. 1 DSC curves of TGDDM/ MTHPA curing at various heating rate, added the accelerant DMBA percentages by ( a) no DMBA, ( b) 015 %, ( c) 110 %, ( d) 115 %and ( e) 1 0 % k ( T) = Aexp ( - Ea/ R T) () Ea, R, A. Kissinger [1 ] DSC,DSC,T p, : ln T = ln A R p E a - Ea R 1 T p (3) ( K/ min), T p ( K), A, Ea, R. (3), ( K/ min) ln ( / T p ) 1/ T p (), ln ( / T p ) - 1/ T p. ln ( / T p ) - 1/ T p E a,
( ) 6 1 TGDDM/ MTHPA Ti, Tp, Te H Table 1 Ti, Tp, Te andh value of TGDDM/ MTHPA cured at various heating rate DMBA dosage/ % 0 015 110 115 10 Heating rate ( K/ min) Ti/ T p/ Te/ - H/ J g 11 1513 115 1561 319 11311 11 1313 15317 13 961 1031 1131 131 15311 931 6 1011 11313 113 13115 931 1001 10311 11019 113 319 111 0010 313 3517 151 15913 17319 19011 0015 1515 119 117 1791 19110 1510 13615 191 711 1710 11 171 137 1511 011 191 11 3119 517 71 15913 17510 1911 101 191 6 11 0010 1117 111 1019 001 1117 13 1915 113 1791 1911 1571 131 6 101 5 1151 3 111 6 131 5 191 0 191 0 11 11 5 001 361 7 61 111 7 11 3 151 7 11 1 131 7 051 7 151 7 571 5 1 6 1 0 511 61 9. Crane [13 ] : Ea nr µ T p dln d (1/ T p) = - dln d (1/ T p) - Ea nr + T p () Ea nr (5) ln- 1/ T p ( 3), n,. :n 0190, DMBA ;,DMBA 110 %Ea 511 kj / mol,,, DMBA 110 %. TGDDM/ MTHPA Ea n Table Apparent kinetic parameters evaluated by kis singer equation and Crane equation DMBA Dosage / % Activation energy / Ea/ (kj mol) Kinetic order of reaction/ n 0 671 60 0190 01 5 551 93 0190 11 0 511 01 11 5 61 9 0190 1 0 71 35 019
1 : 5 Kissinger Fig. Plot of regression of reaction activation en ergy through Kissinger equation 3 Crane Fig. 3 Plot of regression of the order of reaction through Crane equation 13, T -,T, : T = A + B. 110 % T p Ti Te (1), Tgel Tcure Ttreat (). Tgel 9615 Tcure 130 Ttreat 1531. 1 5 g 615 g P TFE 10 g 110 g 110 g 015 g 115 g KH570 010 g 110 % DMBA, 130 h, 155 1 htrum 60 5. 150 N 111 N m,0 r/ min, 33 %, 0100 g/ 100 h,,01 mm, 000 h,, T GDDM/ M T HPA [5 ]. Tp Ti Te Fig. Curves of Ti, Tp and Te 5 60 Fig. 5 Mechanical characteristics of TRUM 60 equiped with the epoxy friction material
6 ( ) 6 3 DSC,. DSC, Kissinger Crane. : n 0190 ; DMBA 110 % 511 kj / mol,dmba,110 % ; 130, 1531. 110 % DMBA 130 h, 155 1 h, TRUM 60 111 N m, 0 r/ min, 33 %, 0100 g/ 100 h, 000 h,. References [ 1 ] Zhao C S. Ultrasonic Motors Technologies and Applications. Beijing : Science Press, 007, 9717. (.. :, 007, 9717). [ ] Dong S X, Wang S, Sheng W J, et al. Friction and noise in piezoelectric ultrasonic motor. Acta Acustica, 1999, (3) : 3136. (,,.., 1999, (3) : 3136). [ 3 ] Tokushima A. Ultrasonic motor. National Technical Report, 197, 33 (5) : 5550. [ ] Kentaro N, Minoru K, Hisayuki K, et al. An estimation of load characteristics of an ultrasonic motor by measuring transient responses. IEEE Transactions on Ultrasonics. Ferroelectrics and Frequency Control, 1991, 3 (5) : 15. [ 5 ] Ding Q J, Yao Z Y, Zeng W, et al. Experi mental study of f riction material adhere to the stator of the traveling wave type rotary ultra sonic motor. Tribology, 007, 7 (6) : 57 5. (,,.., 007, 7 (6) : 575). [ 6 ] Hu R Z, Shi Q Z. Kinetics of thermal analysis. Beijing : Science Press, 001, 10111. (,.. :, 001, 10111). [ 7 ] Chang J N, Zhang J F, Yu X H, et al. Prepa ration of characterization of polyurethane poly ether imide alloy. Journal of Nanjing University (Natural Sciences), 001, 37 (1) : 131 13. (,,.. ( ), 001, 37 (1) : 13113). [ ] Xie H F, Liu C G, Yuan Z R, et al. Thermo analytical studies of high performance epoxy/ carbon nanotube composites. Acta Polymerica Sinica, 00, : 33336. (,,. /., 00, : 33 336). [ 9 ] Geng H B, Tang J J, Wang Z Y, et al. Synthe sis and characterization of thermoplastic poly ether imide elastormer. Journal of Nanjing Uni versity (Natural Sciences), 006, (5) : 1 9. (,,.. ( ), 006, (5) : 19). [10 ] Sergey V, Nicolas S. Kinetic methods to study isothermal and nonisothermal epoxy anhydride cure. Macromolecular Chemistry and Physics, 1999, 00 : 9303. [11 ] Rocks J, Halter M, Georgel G, et al. Calorim etric and rheological characterization of a high performance epoxy curable at low temperatures. Polymer International, 003, 5 : 1791757. [1 ] Kissinger H E. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957, 9 (11) : 1701706. [13 ] Crane L W, Dynes P J, Kaelble D H. Analysis of curing kinetics in polymer composites. Jour nal of Polymer Science : Polymer Letters, l973 (11) : 53350.