A Method for Detection of Occlusal Position Using a Robust Estimator

Σχετικά έγγραφα
Detection and Recognition of Traffic Signal Using Machine Learning

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Simplex Crossover for Real-coded Genetic Algolithms

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

The challenges of non-stable predicates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Quick algorithm f or computing core attribute

The Simply Typed Lambda Calculus

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Approximation of distance between locations on earth given by latitude and longitude

Buried Markov Model Pairwise

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΑΠΟΓΡΑΦΙΚΟ ΔΕΛΤΙΟ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ ΤΙΤΛΟΣ

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Section 8.3 Trigonometric Equations

EE512: Error Control Coding

Homomorphism in Intuitionistic Fuzzy Automata

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

ΑΠΟΓΡΑΦΙΚΟ ΔΕΛΤΙΟ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ ΤΙΤΛΟΣ Συμπληρώστε τον πρωτότυπο τίτλο της Διδακτορικής διατριβής ΑΡ. ΣΕΛΙΔΩΝ ΕΙΚΟΝΟΓΡΑΦΗΜΕΝΗ

Development of a basic motion analysis system using a sensor KINECT

6.3 Forecasting ARMA processes

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

2 Composition. Invertible Mappings

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Numerical Analysis FMN011

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Homework 8 Model Solution Section

Test Data Management in Practice

High order interpolation function for surface contact problem

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Βιογραφικό Σημείωμα Γεώργιος Παπαϊωάννου

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Lecture 34 Bootstrap confidence intervals

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Math 6 SL Probability Distributions Practice Test Mark Scheme

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Inverse trigonometric functions & General Solution of Trigonometric Equations

Tridiagonal matrices. Gérard MEURANT. October, 2008

derivation of the Laplacian from rectangular to spherical coordinates

Mapping Textures on 3D Geometric Model Using Reflectance Image

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Durbin-Levinson recursive method

Instruction Execution Times

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

4.6 Autoregressive Moving Average Model ARMA(1,1)

Second Order RLC Filters

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

[1] P Q. Fig. 3.1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Zigbee. Zigbee. Zigbee Zigbee ZigBee. ZigBee. ZigBee

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Reading Order Detection for Text Layout Excluded by Image

Areas and Lengths in Polar Coordinates

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

Ποιος φοβάται το ψηφιακό περιεχόμενο στη Νεοελληνική Φιλολογία;

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

On a four-dimensional hyperbolic manifold with finite volume

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Section 9.2 Polar Equations and Graphs

Homomorphism of Intuitionistic Fuzzy Groups

Strain gauge and rosettes

Chilisin Electronics Singapore Pte Ltd

Journal of the Institute of Science and Engineering. Chuo University

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Transcript:

Vol. 45 No. 9 Sep. 2004 3,, 1 1 M A Method for Detection of Occlusal Position Using a Robust Estimator Masayoshi Kanoh,, Kyoji Hashimura,, Shohei Kato and Hidenori Itoh We have developed a system that enables dental prostheses to be designed on a computer. The occlusal position for the upper and lower jaw objects should be found when designing dental prostheses on our system. However, there is often great difficulty in manually finding this position. To reduce this difficulty, we considered finding it and occluding jaw objects automatically. In positioning upper and lower jaw objects, some regions, such as teethridges and sides of teeth, do not completely close on one another, even if these objects are occluded. The evaluation value for these regions is determined to be an error, and consequently finding the occlusal position requires robust assessment. In this paper, we propose a method of evaluation using a robust estimator, the M-estimator. We also propose an algorithm applied multi-resolution representation to improve runtime. 1. Graduate School of Engineering, Nagoya Institute of Technology Presently with School of Life System Science and Technology, Chukyo University Presently with Toyota Communication Systems Co., Ltd. 1 (A) (B) (C) 2 3 2207

2208 Sep. 2004 6) 7) 3 Character Surface Character Surface 1 Fig. 1 System overview. 2 3 1) 3) 3 1 2 3 4) 5) 1(B) Character Surface Character Surface 8) 10) 2 2 2 CAD/CAM F.G.P 11) 14) 15) 1 M 16) 2 3 M 4 5 2. Roland DG Modela MDX- 15 x y

Vol. 45 No. 9 3 2209 2 Fig. 2 Range image. Fig. 3 3 Process to estimate occlusal position. 0.05 5.00 mm 0.05 mm z 0.025 mm x y z 2.5 x y 0.25 mm 2 34,051 4 Fig. 4 Initial state. 3. 2 3.1 3 2 2 3.2 z z 4 3.3 2 2.5 z 2 xy 2 5 2 2 3.1 xy γ γ 1 γ 3.2 A (x, y, z) T A A γ A γ (i, j) a γ i,j = min (x,y,z) T A z,

2210 Sep. 2004 Fig. 6 6 2 Evaluation of occlusion with 2D image. Fig. 5 5 Flow for creating 2D image (lower jaw). (γi x<γ(i +1), γj y<γ(j +1)). (1) xy a γ i,j = 3.3 R B R B R (x, y, z) T B R B R γ B R,γ (i, j) b R,γ i,j = max (x,y,z) T BR z, (γi x<γ(i +1), γj y<γ(j +1)). (2) xy b R,γ i,j = z z z z z 0 3.4 M 2 M M 3.4 γ (A γ, B R,γ ) B R,γ t =(u, v) 6 A γ (i, j) ε R,γ,t i,j =a γ i,j br,γ i+u,j+v. (3) ε A γ t B R,γ M M(A γ, B R,γ, t) = ρ(ε R,γ,t i,j i j min ε R,γ,t k,l,σ). (4) k,l σ ρ M M Geman McClure ρ 17) ρ(x, σ) = x2 σ + x. (5) 2 σ =1.0 7 x 1 1 6

Vol. 45 No. 9 3 2211 7 Geman McClure ρ σ =1.0 Fig. 7 ρ function of Geman and McClure (σ =1.0). M ρ (5) 1 M 4. 2 3 {R,t} 8 N γ k (k = 1,,N) 0 <γ k 1 <γ k correct() γ k γ k 1 t : A B : (R, t) 1 begin 2 k := N; % N 3 R := I; % I 4 t A, B γ k ; 5 repeat 6 error := ; 7 R := R 8 t := t 9 A γ k S R,γ k ; 10 for each R S R,γ k 11 begin 12 B R,γ k S t ; 13 for each t S t ; 14 begin 15 e := M(A γ k, B R,γ k, t ); 16 if (e < error) then 17 begin 18 error := e; 19 (R, t ):=(R, t ); 20 end 21 end 22 end 23 (R, t) :=(R, t ); 24 if (γ k = γ 1 ) % γ 1 25 then escape := true; 26 else 27 begin 28 t := correct(γ k,γ k 1, t); 29 k := k 1; 30 end 31 until (escape) 32 end. 8 Fig. 8 Detection algorithm for estimating occlusal posision with multi-resolution representation. correct(γ k,γ k 1, t) = γ k t. (6) γ k 1 S R,γ 4.1 x y z θ X(θ) Y (θ) Z(θ) R γ S R,γ S R,γ = {RX(δ x γθ x )Y (δ y γθ y )Z(δ z γθ z ) n δ x n, n δ y n, n δ z n}. (7) δ x δ y δ z n θ x θ y θ z

2212 Sep. 2004 1 Table 1 Parameters. M σ N γ 1 γ 2 γ 3 1.0 3 0.3 0.6 0.9 9 z Fig. 9 Rotational angle according to different of pixelization scale (z axis). x y z 9 z S t 4.2 t S t S t = {t +(δ i,δ j ) m δ i m, m δ j m}. (8) δ i δ j m γxy γ γ 1 xy γ 1 3 γ N γ 1 A γ k S R,γ k 8 9 B R,γ k S t 8 12 (R, t ) 8 10 22 γ 1 (R, t) γ 1 t k 1 n m θ x θ y θ z 2 2 π/30 π/30 π/30 8 24 30 5. 1 x y 0.25 mm xy 3.2 3.3 γ 1 x y γ 1 x y 0.3 1 Pentium III 500 MHz PC Windows2000 C++ 4 36,765 25,493 10 30 10 11 z z z (a) z 0 1.0 mm (a1)(a2)(a3) (a) z 0 0.3 mm 0.3 0.6 mm 0.6 1.0 mm 6 2

Vol. 45 No. 9 3 2213 2 10 Fig. 10 Estimated state. 12 2 13 (e) x 10 6. 1 M 2 11 Fig. 11 Occlusal state. M 2 2 M ρ { x 2 x<50 ρ(x) = (9) 2500 otherwise. 6 2,500 (9) 2,500 = 50 2 z 50 mm 12 13 (a) (b)(c)(d) (e)(f)(g) 2 (d)(g) 11 (a) (1) x y 0.25 mm z 0.025 mm 0.01 mm (2) (3) (1)

2214 Sep. 2004 12 2 (1) (a) (b)(c)(d) (e)(f)(g) 2 Fig. 12 Comparison of our algorithm and least squares method (1): (a) is initial state; (b), (c) and (d) are estimated states with our algorithm; (e), (f) and (g) are estimated state with least squares method. 13 2 (2) (a) (b)(c)(d) (e)(f)(g) 2 Fig. 13 Comparison of our algorithm and least squares method (2): (a) is initial state; (b), (c) and (d) are estimated states with our algorithm; (e), (f) and (g) are estimated state with least squares method. (2) 1 2 (3)

Vol. 45 No. 9 3 2215 KD 2),18) 1) Besl,P.andMcKay,N.:AMethodforRegistration of 3-D Shapes, IEEE Trans. PAMI, Vol.14, No.2, pp.239 256 (1992). 2) Vol.J85- D-II, No.9, pp.1413 1424 (2002). 3) Lucchese, L., Doretto, G. and Cortelazzo, G.M.: A Frequency Domain Technique for Range Data Registration, IEEE Trans. PAMI, Vol.24, No.11, pp.1468 1484 (2002). 4) Ucoluk, G. and Toroslu, I.H.: Reconstruction of 3-D Surface Object from its Pieces, 9th Canadian Conference on Computational Geometry, pp.187 192 (1997). 5) Ucoluk, G. and Toroslu, I.H.: Automatic reconstruction of broken 3-D surface objects, Computers & Graphics, Vol.23, No.4, pp.573 582 (1999). 6) Hashimura, K., Kato, S. and Itoh, H.: Finding a Quasi-Optimal Joining Position of Potsherds in 3D Multi-resolution Mesh Representation, 2nd International Conference on Software Engineering, Artificial Intelligence, Networking & Parallel/Distributed Computing, pp.677 684 (2001). 7) Hashimura, K., Kato, S. and Itoh, H.: A Parametric Search Strategy for a Quasi-Optimal Joining Position of 3D Potsherds, International Journal of Computer & Information Science, Vol.3, No.2, pp.94 104 (2002). 8) Papaioannou, G., Karabassi, E.-A. and Theoharis, T.: Automatic Reconstruction of Archaeological Finds A Graphics Approach, International Conference Computer Graphics and Artificial Intelligence, pp.117 125 (2000). 9) Papaioannou, G., Karabassi, E.-A. and Theoharis, T.: Reconstruction of Three-Dimensional Objects Through Matching of Their Parts, IEEE Trans. PAMI, Vol.24, No.1, pp.114 124 (2002). 10) Papaioannou, G., Karabassi, E.-A. and Theoharis, T.: Virtual Archaeologist: Assembling the Past, IEEE Computer Graphics and Applications, Vol.21, No.2, pp.53 59 (2001). 11) 6 F.G.P Vol.28, pp.463 473 (1994). 12) CAD/CAM F.G.P Vol.13, pp.1363 1367 (1994). 13) CAD/CAM Vol.27, pp.431 446 (1993). 14) FGP CAD/CAM Vol.8, pp.1537 1543 (1991). 15) Vol.44, No.6, pp.739 745 (2000). 16) Kanoh,M.,Hashimura,K.,Kato,S.andItoh, H.: A Robust Method for Detection of Occlusal Position, Asian Conference on Computer Vision, pp.474 479 (2004). 17) Black, M.J. and Anandan, P.: The Robust Estimation of Multiple Motions Parametric and Piecewise-Smooth Flow Fields, Computer Vision and Image Understanding, Vol.63, No.1, pp.75 104 (1996). 18) Friedman, J., Bentley, J. and Finkel, R.: An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM Trans. Mathematical Software, Vol.3, No.3, pp.209 226 (1977). ( 15 9 8 ) ( 16 7 1 )

2216 Sep. 2004 2004 2001 2004 1998 1999 2002 2003 1974 1974 1985 1989 OS