Nominal location of C-axis centerline. Z axis. Actual centerline. X axis. x CB. Y axis C C. B axis. C axis Z Y

Σχετικά έγγραφα
Homework 8 Model Solution Section

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Aluminum Electrolytic Capacitors (Large Can Type)

DATA SHEET Surface mount NTC thermistors. BCcomponents

RDN-250i Application / Benefits Model No. Servo Motor Maker SPECIFICATIONS Table Dia. Horizontal [kg] Center Height Resister Dia.

Aluminum Electrolytic Capacitors

Spindle Production Department

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

26/11/1434 (CNC)

Spherical Coordinates

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

XKT. Metal Oxide Varistor FEATURES

Multilayer Ceramic Chip Capacitors

ADVANCED STRUCTURAL MECHANICS


Multilayer Ceramic Chip Capacitors

EE 570: Location and Navigation

Development of a basic motion analysis system using a sensor KINECT

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

.Centrifugal Forces. ( ) Geometric Centerline. :Principal Inertia Axis. shaft material. Balancing

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Buried Markov Model Pairwise

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

FORM TOOLS APPLICATION FORM CUTTERS HSS-E & HSS SUPERIOR PERFORMANCE IDEAL FOR MATERIAL GROUPS

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

ST5224: Advanced Statistical Theory II

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

TR-120FF. 4th, 5th axis for Tilting NC Rotary Table

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Rectangular Polar Parametric

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

1.575 GHz GPS Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25 mm / 6.25 mm. Pulse Part Number: W3011 / W3011A

FEATURES APPLICATION PRODUCT T IDENTIFICATION PRODUCT T DIMENSION MAG.LAYERS

TSV. Suntan ZINC OXIDE VARISTOR. Operating Temperature Range: -40 ~+85 DIMENSION. T Thickness(max.) L:16mm min

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013

APPENDIX B NETWORK ADJUSTMENT REPORTS JEFFERSON COUNTY, KENTUCKY JEFFERSON COUNTY, KENTUCKY JUNE 2016

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

PRB. Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts

Thin Film Chip Resistors

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Matrices and Determinants

Dr. D. Dinev, Department of Structural Mechanics, UACEG

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Quartz Crystal Test Report

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS


4. Construction. 5. Dimensions Unit mm

Design Method of Ball Mill by Discrete Element Method

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

Data Sheet High Reliability Glass Epoxy Multi-layer Materials (High Tg & Low CTE type) Laminate R-1755V Prepreg R-1650V

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Ceramic PTC Thermistor Overload Protection

Supporting Information. Experimental section

Configurations: Dimension (mm) B (max) A (max) 0.20 IWCCG1005. Inductance Range IWCCG ~ IWCCG ~ 1000 IWCCG

Group 30. Contents.

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

IWCSeries FEATURES APPLICATION ORDERING CODE TRIGON COMPONENTS. Configurations: Dimension (mm) IWC C G 1608 K 22N T (1) (2) (3) (4) (5) (6) (7)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Thermistor (NTC /PTC)

MathCity.org Merging man and maths

Operating Instructions and Parts Manual 14-inch Woodworking Band Saw Models JWBS-14SF and JWBS-14SF-3

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

RSA3408A 23 W-CDMA

! " # $ &,-" " (.* & -" " ( /* 0 (1 1* 0 - (* 0 #! - (#* 2 3( 4* 2 (* 2 5!! 3 ( * (7 4* 2 #8 (# * 9 : (* 9

SAW FILTER - RF RF SAW FILTER

Heat exchanger. Type WT. For the reheating of airflows in rectangular ducting PD WT 1. 03/2017 DE/en

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Η ταχύτητα και τα ίχνη αυτοκινήτου κατά την οριακή πλαγιολίσθηση

Strain gauge and rosettes

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Biostatistics for Health Sciences Review Sheet

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

; +302 ; +313; +320,.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Operating Instructions and Parts Manual 14-inch Woodworking Band Saw Models JWBS-14SF and JWBS-14SF-3

Section 9.2 Polar Equations and Graphs

NMBTC.COM /

SMD - Resistors. TThin Film Precision Chip Resistor - SMDT Series. Product : Size: 0201/0402/0603/0805/1206/1210/2010/2512. official distributor of

Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series. official distributor of

A research on the influence of dummy activity on float in an AOA network and its amendments

4 Way Reversing Valve

Bluetooth / WLAN / WiFi Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25/6.25 mm. Pulse Part Number W3008, W3008C

Note: Please use the actual date you accessed this material in your citation.

RoHS ASPI. Test Condition. DCR IDC Marking

Section 8.2 Graphs of Polar Equations

AXDR Double-Row Angular Contact Roller Bearings

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Reminders: linear functions

CRASH COURSE IN PRECALCULUS

Transcript:

5 Λ (D5) ΛΛ ΛΛΛ y y ΛΛ yy Identi cation of Motion Error Sources on Five-axis Machine Tools by all-bar Measurements (1st Report) lassi cation of Motion Error omponents and Development of the Modi ed all ar Device (D5) Soichi IARAKI, Yoshiaki KAKINO, Takayuki AKAI, Naoshi TAKAYAMA, Iwao YAMAJI and Keiji OGAWA The inclusion of the application of the double ball bar (D) measurement to the accuracy calibration of ve-axis machine tools into the revision of ISO standards is currently under the discussion. This paper presents the modi ed D measurement device, referred to as D5 in our study, where master balls are supported from the 45 ffi direction to the spindle axis. It can perform all the circular tests on XY, YZ, and ZX planes without changing the setup. This paper rst presents the classi cation of motion error components of a ve-aixs machine tool into location and component errors. Experimental application examples of the D5 to the calibration of location and component errors assciated with rotary axes on a ve-axis machine tool are then presented. Key words: ve-axis machine tool, measurement, ball bar, component error, location error 1. 3 2 5 5 3 5 5 5 ISO 1) ISO 1791-1ο3 2) 5. 2 5 3 Double all ar (D) 3, 4) 5, 6, 7, 8) ISO T39/S2 ISO 1791-6 9) 5 ΛΛ ΛΛΛ 316-2 y 2-35-16 yy 2 1) 11) 12) 13) 14) R-test 5 15) ISO 1791-6 9) 5 5 5 NAS979 16) 18) 5 5 D5 D5 5 2. 5 5 1) 2) 3)

Z axis Nominal location of -axis centerline Actual centerline x ( ) cos( ) y ( ) sin( ) Y axis X axis x axis axis (a) Shift of -axis center to X direction, ffix Y. Fig. 2 (b) Run-out of -axis, ffix Y () and ffiy Y () (ffi, ffi: constant) Example of a location error anda component error Fig. 1 on guration of the experimental ve-axis machining center 21) 4) 3) 1)2) 1 5 1 11 2) 2(a) ffix 1 2(b) ffix, ffiy Z ffiz Y ffiz Y () 22) ff (), fi () 5 2 ISO 23-7 22) component errors location errors 2 Table 1 Location errors for the machine con guration shown in Fig. 1. Symbol 2) Symbol 19) Description Location errors associatedwith rotary axes ff Y E A Squareness error of - to Z-axis fi Y E Orientation of -axis aroundy-axis fl Y E Squareness error of - to X-axis ff E A E A Squareness error of - to -axis ffix Y E X Linear shift of -axis in x direction ffiy Y E Y Linear shift of -axis in y direction ffiz Y E Z Linear shift of -axis in z direction ffix E Y E Y Linear shift of -axis from -axis in X Location errors associatedwith linear axes fl YX E Y Squareness error of Y- to X-axis ff ZY E AZ Squareness error of Z- to Y-axis fi ZX E Z Squareness error of Z- to X-axis Z Y X Fig. 3 on guration of the conventional D device 3) Fig. 4 on guration of the modi ed D device, D5 3. (D5) 3 3) 2 3 XY 36 ffi YZ, ZX 18 ffi YZ, ZX 36 ffi 4) 4 (D5) 45 ffi XY YZ ZX D5 5 component errors

Table 2 omponent errors andtheir possible causes (those associatedwith -axis) for the machine con guration in Fig. 1 Symbol Symbol 17) Description omponent errors of rotary axis Y() E A Orientation changes of -axis with rotation Y() E Angular error of -axis rotation Y() E Orientation changes of -axis with rotation (, ) E A-E A Orientation changes of -axis with, rotation (, ) E -E Orientation changes of -axis with, rotation (, ) E -E Angular error of -axis rotation x Y() E X Location changes of -axis center with rotation y Y() E Y Location changes of -axis center with rotation z Y() E Z Location changes of -axis center with rotation x (, ) E X-E X Location changes of -axis center with, rotation y (, ) E Y-E Y Location changes of -axis center with, rotation z (, ) E Z-E Z Location changes of -axis center with, rotation omponent errors of linear axis YX(Y) E Y Yaw changes of Y-axis with Y motion YX(Y) E AY Pitch changes of Y-axis with Y motion YX(Y) E Y Roll changes of Y-axis with Y motion x YX(Y) E XY Straightness of Y-axis y YX(Y) E YY Linear positioning error of Y-axis z YX(Y) E ZY Straightness of Y-axis Possible major error causes Errors in positioning mechanism Errors in rotary encoder Pitch error in transmission mechanism (e.g. worm gear) Inaccurate pitch error compensation Errors associated with bearings Run-out Angular motion of rotation centerline Profile error caused by geometric error of rings Profile error caused by variation in roller size Gravity influence Deformation of rotating unit Angular positioning error caused by gravity influence 4. D5 (D5) 5 NMVDG 21) 1 DD Y Z 2 X 1 D5 D11 168 mm 4.1 XY, YZ, ZX XY, YZ, ZX 36 5 6 mm/min. Z-Y Z-X ff ZY =1:2μm=168mm fi ZX = 3:μm=168mm 3) 4.2 4.2.1 Location Errors 36 6(a)ο(d) 6(a-1)( -X (-Z) ) 36 ffi X 6(b-1)( -Y (-Z)) Y 6(c-1)(d-1)( -X (+Z), -Y (+Z)) +Z Z d z =mm 72 ffi /min 6 4 3 -X (-Z), -Y (-Z), -X (+Z), -Y (+Z) r x1, r y1, r x2, r y2 Z Y X fi Z, ff Z 2 W 2 1 1 2 2 2 2 Fig. 5 2 2 1 1 2 2 2 2 (a)xyplane. 2 2 1 W 1 2 2 2 2 (b) YZ plane. (c) XZ plane. Error pro les of circular test on XY, YZ, andxz planes. fi Z = (r x2 r x1) =d z = 4:2μm=mm (1) ff Z = (r y2 r y1) =d z =+5:5μm=mm (2) XY X, Y ffi x;y, ffi y;y ffi x;y = r x1 fi Z Z 1; ffi y;y = r y1 + ff Z Z 1 (3) Z 1 -X (-Z) Z Z = 4.2.2 omponent Errors -X -Y 36 ffi X, Y 22) ffix A() ffiy A() 7 -Z 22) (ffiz A())

Table 3 ircularity error andmean radial error of Measurements -X (low), -Y (High), -X (Low), and-y(high). -X (-Z) -Y (-Z) -X (+Z) -Y (+Z) ircularity error μm 3. 2.2 7.3 6.8 Mean radial rx1 = ry1 = rx2 = ry2 = error μm +3.2 -.6-1. +4.9 Table 4 ircularity error andmean radial error of Measurements -X (-Y), -Z (-Y), -X (+Y), and-z (+Y). -X (-Y) -Z (-Y) -X (+Y) -Z (+Y) ircularity error μm 1.9 2.7 1.3 2.2 Mean radial rx1 = rz1 = rx2 = rz2 = error μm -7.3 +18.6-4.6 +17.2 6(c-2)(d-2) -Λ(+Z) 6(a-2)(b-2) -Λ(-Z) 22) ff Z(), fi Z() 4.2.3 ISO 1791-6 ISO 1791-6 9) ff Z, fi Z 8(f-1) Annex,K2 XY 8(f-2) W ( x; y)=( :4; +:7) μm X Y 5, 8) fi Y = x=r = :3μm=mm (4) ff Y = y=r = :5μm=mm (5) R =135mm -X, -Y (1)(2) mm μm X Y Z -XY 8 XY Z -XY 6 XY location errors 4 8(f-2) 7(e-2) -Z 7 -XY 8 XY ISO 1791-6 9) 8(f-1) 4.3 9(g)ο(j) X Z 4 4 -X (-Y), -Z (-Y), -X (+Y), -Z (+Y) r x1, r z1, r x2, r z2 X Z ff Y, fl Y fl Y = (r x2 r x1) =d y =+2:7μm=271mm (6) ff Y = (r z2 r z1) =d y =+1:4μm=271mm (7) 3μm -Y +Y (g)(i) 145 ffi, (h)(j) 19 ffi 36 ffi (a)ο(f) 1 -Y 2μm 4.4 NAS979 16) 5 ISO/DIS 1791-7:212 17) 14) ISO/DIS 1791-6:212 9) 11(l- 1) 11(l-2) +X 1μm 5. (1) 5 (2) 45 ffi D (D5) 3 36 ffi (3) 5 D5 (4) 4 D D5 3 1) 78, 7 (212) 563. 2) ISO 1791-1:1998, Test conditions for machining centres Part 1: Geometric tests for machines with horizontal spindle and with accessory heads (horizontal Z-axis). 3) D N,199.

4) ISO 23-4: Test code for machine tools Part 4: ircular tests for numerically controlledmachine tools, (25). 5) Kakino, Y., Ihara, T., Sato, H., Otsubo, H., A Study on the motion accuracy of N machine tools (7th report) Measurement of motion accuracy of 5-axis machine by D tests, Journal of Japan Society for Precision Engineering, 6, 5(1994), 718 (in Japanese). 6) 5 ( ), 63, 65 (1997) 262. 7) Abbaszaheh-Mir, Y., Mayer, J. R. R., lotier, G., Fortin,., Theory andsimulation for the identi cation of the link geometric errors for a ve-axis machine tool using a telescoping magnetic ball-bar, Int'l J. of Production Research, 4, 18 (22), 4781. 8) 5 2 3, 69, 2 (23) 268. 9) ISO/DIS 1791-6:212, Test conditions for machining centres Part 6: Accuracy of speeds and interpolations. 1) K. M. Muditha Dassanayake, Masaomi Tsutsumi, Akinori Saito: A strategy for identifying static deviations in universal spindle head type multi-axis machining centers, International Journal of Machine Tools andmanufacture, 46, 1 (25), 197. 11) K. M. Muditha Dassanayake:,75, 7 (29), 476. 12) 73, 5 (27), 583. 13) 5 72, 1 (26) 73. 14) ( 1 ) 5 M 71, 12 (25) 1553. 15) S. Ibaraki, W. Knapp, Indirect Measurement of Volumetric Accuracy for Three-Axis andfive-axis Machine Tools : A Review, Int l J. of Automation Technology, 6, 2 (212) 11. 16) NAS 979: Uniform cutting test metal cutting equipments, 1969. 17) ISO/DIS 171-7:212, Test conditions for machining centres Part 7: Accuracy of a nishedtest piece. 18). Hong, S. Ibaraki, anda. Matsubara, InΛuence of positiondependent geometric errors of rotary axes on a machining test of cone frustum by ve-axis machine tools, Precision Engineering, 35-1, pp. 1-11, 211. 19) ISO 23-1:212, Test code for machine tools Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions. 2) (1997). 21) NMV DG (28). 22) ISO 23-7:26, Test code for machine tools Part 7: Geometric accuracy of axes of rotation. (a-1) Meas. -X (-Z). (b-1) Meas. -Y (-Z). (c-1) Meas. -X (+Z). 2 2 W 1 1 2 2 2 2 (a-2) Error pro les (-X (-Z)). 2 2 1 W 1 2 2 2 2 (b-2) Error pro les (-Y (-Z)). 2 2 1 W 1 2 2 2 2 (c-2) Error pro les (-X (+Z)). 2 2 1 W 1 2 (d-1) Meas. -Y (+Z). Fig. 6 2 2 2 (d-2) Error pro les (-Y (+Z)). Measurement -X and-y. 2 2 1 W 1 2 1μm/div 2 (e-1) Meas. -Z 2 2 Fig. 7 (e-2) Error pro les (-Z). Measurement -Z.

2 1 W X, Y 1 2 (f-1) Meas. -XY 2 2 1 1 2 (f-2) Error pro les (-XY). 2 1 Fig. 8 Measurement -XY. Z Y X (g-1) Meas. -X (-Y). 2 2 1 1 2 W 2 2 2 (g-2) Error pro les (-X (-Y)). 2 2 1 2 (k-1) Meas. -Y 2 2 Fig. 1 1 2 W (k-2) Error pro les (-Y). Measurement -Y. 1 2 W 2 (h-1) Meas. -Z (-Y). 2 2 (h-2) Error pro les (-Z (-Y)). 2 2 1 1 2 2 (i-1) Meas. -X (+Y). 2 2 2 2 1 W (i-2) Error pro les (-X (+Y)). Z 123.9 mm Spindle-side ball X 45 Machine table Rotation center of -axis Table-side ball 6 168 mm (l-1) Measurement 2 schematics in the 2 2 2 workpiece cordinates. Fig. 11 2 2 1 1 W (l-2) Error pro les. Measurement correnspoinding to cone frustum machining test. 1 2 W (j-1) Meas. -Z (+Y). Fig. 9 2 2 2 (j-2) Error pro les (-Z (+Y)). Measurement -X and-z.