A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Σχετικά έγγραφα
Graded Refractive-Index

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Second Order Partial Differential Equations

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

4.6 Autoregressive Moving Average Model ARMA(1,1)

Prey-Taxis Holling-Tanner

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Lifting Entry (continued)

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Areas and Lengths in Polar Coordinates

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Differential equations

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

D Alembert s Solution to the Wave Equation

Chapter 6 BLM Answers

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

An Inventory of Continuous Distributions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Applying Markov Decision Processes to Role-playing Game

Durbin-Levinson recursive method

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Areas and Lengths in Polar Coordinates

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Uniform Convergence of Fourier Series Michael Taylor

SPECIAL FUNCTIONS and POLYNOMIALS

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Other Test Constructions: Likelihood Ratio & Bayes Tests


«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

ITU-R P ITU-R P (ITU-R 204/3 ( )

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Approximation of distance between locations on earth given by latitude and longitude

Example Sheet 3 Solutions

CRASH COURSE IN PRECALCULUS

Strain gauge and rosettes

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ITU-R P (2012/02) &' (

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

High order interpolation function for surface contact problem

1 String with massive end-points

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Οικονοµετρική ιερεύνηση των Ελλειµµάτων της Ελληνικής Οικονοµίας

Μη επεμβατική μέτρηση των μακροσκοπικών μηχανικών ιδιοτήτων του οφθαλμικού τοιχώματος.

Inverse trigonometric functions & General Solution of Trigonometric Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Second Order RLC Filters

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Section 8.3 Trigonometric Equations

Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΒΑΘΜΙΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΣΣΗΝΗΣ, Ν.ΜΕΣΣΗΝΙΑΣ

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

for fracture orientation and fracture density on physical model data

Matrices and Determinants

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Arbitrage Analysis of Futures Market with Frictions

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Σχέση µεταξύ της Μεθόδου των ερµατοπτυχών και της Βιοηλεκτρικής Αντίστασης στον Υπολογισµό του Ποσοστού Σωµατικού Λίπους

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Conductivity Logging for Thermal Spring Well

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

MathCity.org Merging man and maths

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

Refractive index and extinction coefficient of materials

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Πλασμονικές Οργανικές Δίοδοι Εκπομπής Φωτός Υψηλής Απόδοσης


3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Παραγωγή ήχου από ψάρια που υέρουν νηκτική κύστη: Παραμετρική ανάλυση του μοντέλου

Calculating the propagation delay of coaxial cable

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Concrete Mathematics Exercises from 30 September 2016

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Differentiation exercise show differential equation

MEASUREMENT OF SURFACE TENSION IN BASE METAL SULFIDE MATTES BY AN IMPROVED SESSILE DROP METHOD

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

IV. ANHANG 179. Anhang 178

Tridiagonal matrices. Gérard MEURANT. October, 2008

ΧΡΗΣΗ ΤΟΥ ΠΡΟΪΟΝΤΟΣ ΤΗΣ ΗΛΕΚΤΡΟΛΥΣΗΣ ΝΕΡΟΥ ΩΣ ΠΡΟΣΘΕΤΟ ΚΑΥΣΙΜΟΥ ΣΕ ΜΗΧΑΝΗ ΕΣΩΤΕΡΙΚΗΣ ΚΑΥΣΗΣ

Transcript:

大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi KISHIOKA Abstract This paper describes a conventional determining method of optical parameter values in the optical waveguides fabricated in glass substrate by using the thermal ionexchange technique. An useful relationship between the effective indices of the guided mode and waveguide parameters is presented in a simple form, and applying it to measured values of the effective indices, the values of the substrate surface index n 0, substrate index n b and diffusion depth of the doped ion are gotten. Applied the proposed method to the Ag + -ion diffused waveguides fabricated in the soda-lime glass using AgNO 3 salt diluted with NaNO 3 as the ion source, dependences of the optical parameter values on the dilution of the ion source are performed. Values of the diffusion coefficient D of the dopant Ag + -ion are also estimated based on the guess index-profiles in the ion-diffused layer. 1. K + Ag + 400 o C NO 3 Soda-lime Pyrex [1-3] IWKB Inverse WKB Method [4] 1 016 年 5 月 9 日受理 37

AgNO 3 NaNO 3 Ag + AgNO 3 Ag + AgNO 3. Na n C(x, t) C x = 1 D C t D D K + (1) [1] Ag + Soda-lime D t x =0 (1) ( ) x C(x, t) = erfc () Dt [1] erfc(=1-erf) n(x) n 0 ( ) x n(x) = n 0 erfc (3) Dt (1) : n 0 = n 0 n b 38

n 0 n b 1 D t C(x, t)) n 0 e ( x a) (4) a 1 n 0 a D 3. [5] 3.1 β x n(x) 3 39

β x =0 x = x t zigzag-path β x =0 θ(0) Mode-line β n(x)k 0 x Q(x) x θ(x) x [ ( β k 0 = n p sin A + sin 1 sin θi n p )] Mode-line 3. β xt Q(x)dx ϕ c ϕ t =Mπ, M =0, 1,,... (5) 0 Q(x) =n(x)k 0 cos θ(x) = k 0n (x) β, k 0 = π λ 4 40

k 0 λ ϕ c ϕ t x = x t x t Q(x t )=0 n =1 ϕ c ϕ c = tan 1 β k 0 n 0k 0 β (n 0k0 β ) << (β k0) ϕ c π ϕ t π [6] (5) xt Q(x)dx = π(m + 3 ), M =0, 1,,... (6) 0 3. n 0 n b a n(x) =(n 0 n b )e ( x a) + nb (7) (6) n (x) n (x) n b + (n 0 n b)e ( x a) (8) (n 0 n b ) << n b (n 0 n b ) n b (n 0 + n b ) n b = n 0 (n 0 n b) (8) n (x) n 0 [ 1 ( 1 e x a )], = n 0 n b n 0 (9) (6) Q(x) n (x) (9) xt ( ) 1 [v e ] ( x a w 1 dx = M + 3 ) π, (M =0, 1,,...) (10) 0 a v =k 0a n 0, w = a (β k 0n b) x t v e x/a w =0 x t =a ln(v/w) (10) u = e x a u (10) ( 1 I = 4v 1 b ) 1 w du, b = b u v 5 = β k 0n b k 0(n 0 n b ) (11) 41

cos η = b/u u η I =4v ηt b tan ηdη =4v b(tan η t η t ) =4v [ (1 b) 1 b cos 1 b ] (1) 0 η t cos 1 b (1) (6) 1 b b cos 1 b = π ( M + 3 ), M =0, 1,,... (13) 4v 0 <b<1 φ = cos 1 b 1 b = sin φ (13) sin φ φ cos φ = π 4v ( M + 3 ), M =0, 1,,... (14) 3.3 b φ b = w v = (β k 0n b) k 0(n 0 n b ), φ = cos 1 b (15) β β b φ β k 0 n b k 0 n 0 b 0 1 π φ 0 (Mode cut-off) ( θ = 0) b Case(a):1 Case(b):0 (14) β Case(a) b 1 φ 0 sin φ φ, cos φ 1 1 φ 6 4

(14) (16) 1 φ3 π ( M + 3 ), M =0, 1,,... (16) 4v φ = cos 1 b π ( ) 1 1 1 b ( ) 1 π 3 (1 ) 3 1 b = π ( M + 3 ), M =0, 1,,... (17) 4v (1 b 1 ) b = 1 1 b 1 1 (1 b) (17) ( 1 )5 ( ) ( π 3 n 0 n eff n 0 n b ) 3 = ( π M + 3 ), M =0, 1,,... (18) 4k 0 a(n 0 n b) 1 β/k 0 = n eff n eff n eff = n 0 4 ( ) 1 1 3 π 4 3 ( n 0 n b k 0 a ) 3 ( M + 3 ) 3, M =0, 1,,... (19) n eff Case(b) b 0 φ π sin φ cos φ φ π sin φ 1 1 (14) ( φ ı ) π, cos φ φ ( π ) = 1 1 4 φ φ = cos 1 b π ( ) 1 1 b (14) 1 1 ( 8 π b 1 π = M + 3 ) 4v 7 43

Case(a) n eff n eff = n b + 4 ( ) [ ( 1 4k π 4 k0a 0 a n 0 n b π M + 3, M =0, 1,,... (0) )] n eff 4. n eff (= β/k 0 ) n eff n eff Case (a) (19) M (M + 3) 3 Case (b) (0) π(m + 3 ) 3 n eff (M + 3) 3 4 π(m + 3) n eff (M + 3) 3 π(m + 3 ) 3 n eff (M + 3) 3 ( 4 n eff π(m + 3) (a) n 0 n eff (19) n eff (M + 3) 3 1 (M + 3) 3 = 0 (19) n eff = n 0 3 n eff n 0 n eff 8 44

(b) n b n eff (0) π(m + 3) =4k 0a n 0 n b (= x min) n eff n b (0) n eff n b (c) a 3 γ = 4 ( ) 1 1 3 π 4 3 ( n 0 n b k 0 a γ (b) n b a ) 3 a = 8 (n 0 n b) k 0 γ 3 π (1) 4. Soda-lime Ag + NaNO 3 AgNO 3 Ag + 350 C 1 1 [mol %] 0.4 0 40 60 80 10 150 1.5 0 40 60 80 10 150.0 5 10 0 40 60 80 NaNO 3 AgNO 3 [NaNO 3 ] [AgNO 3 ] mol% = [AgNO 3 ] [AgNO 3 ] + [NaNO 3 ] 100 % 9 45

5. n 0 a n b β 0.638 µm He-Ne 5.1 n 0 n 0 n 0 [mol %] 0.4 1.5.0 n 0 1.566 1.579 1.588 5. a a 3 3 a [1/µ m] mol% 5 10 0 40 60 80 10 150 0.4 - - 5815 7.4 9.999 11.373 1.48 13.71 1.5 - - 6.617 8.157 11.630 1.37 13.061 15.85.0 3.730 5.775 6.685 9.86 11.807 13.333 - - 10 46

5.3 n b n b =1.517 5.4 5 7 5 0.4 mol % 6 1.5 mol % 7.0 mol % 11 47

6. D Ag + t n(x, t) =(n 0 n b )erfc ( x Dt ) + n b () D D erfc- exp- D 8 D D 8 erfc exp D D 4 D 4 D mol % 0.4 1.5.0 D [µm /min] 0.833 1.668 1.755 1 48

9 11 D 9 0.4 mol % 10 1.5 mol % 11.0 mol % 7. 1 13 49

( ) x + C = 1 y D C (3) t C(0,y)=1, ( y < W/) C(0,y)=0, ( y > W/) Ditechret x <0 C(x, y, t) = 1 e {erf ξ π x Dt [ ( ξ y + W x ) ] erf [ ( ξ y W x ) ]} dξ (4) [1] 13 D Ag + 1 (a) t=10 min. (b) t=40 min. (c) t=80 min. 13 mol %) 14 50

8. n eff (1) n 0 3 n eff n 0 n 0 4 ()n b 4 4 n b 14 n b ( 0.4 mol %) 3 n eff 14 n eff n b 14 n b 9. Soda-lime Ag + 15 51

Ag + [1] K.Kishioka, Determination of Diffusion-Parameter Values in K + -Ion Exchange Waveguides Made by Diluted KNO 3 in Soda-Lime Glass, IEICE Trans., Electron. Vol-E78-C, No.10, pp.1409-1418, 1995. [] G.L.Yip, P. C. Noutsios, and K.Kishioka, Characteristics of optical waveguides made by elctric-fieldn-assisted K + -ion exchange, Opt., Lett., Vol.15, no.14, pp.789-791, 1990. [3] BK-7 NO 3 C Vol.13, No., pp.381-38, 003. [4] J. M. White and P. F. Heidrich, Optical waveguide refractive index profiles determined from measurement of mode indices: A simple analysis, Appl. Opt., Vol.15, No.1, pp.151-155, Jan., 1976. [5],, RS15-14 (016 ). [6] C. Vassallo; Optical Waveguide Concepts, Elsevier, pp.115-116, 1991. 16 5