37 10 2013 10 JOURNAL OF FISHERIES OF CHINA Vol. 37 No. 10 Oct. 2013 1000-0615 2013 10-1551 - 07 DOI 10. 3724 /SP. J. 1231. 2013. 38712 1 2 3 3 1 3 1 1 1* 1. 215500 2. 210046 3. 226007 10 3 16 0 13 0 16 0 18 0 20% EPA 18 1 n-9 18 2 n-6 18 3 n-3 20 1 n-9 20 2 n-7 20 3 n-7 20 4 n-6 AA 20 5 n- 3 EPA 70% 2 EPA EPA EPA n-6 /n-3 4. 9 ~ 7. 7 WHO /FAO EPA TS 254. 5 + A Pyropia yezoensis 5 1 ~ 10 1 10 Rhodophyta Rhodophyceae 11 Bangiophycidae Bangiales Bangiaceae Pyropia 1 10 2-5 6 fatty acid SFAs 1 UFAs MUFAs 1. 1 PUFAs 7 2012 1 2 n-3 n-6 n-9 3 8 n-3 n-6 1 9 n-6 /n-3 100 WHO /FAO - 20 2013-05-06 2013-07-17 2012AA10A406-6 2011BAD13B0902 201105023 200903030 BE2011376 BE2011375 E-mail xupu666@ 163. com
1552 37 Tab. 1 1 The survey of the analysed material no. name backgrounds of material the breeding organization 1 2 Y-008 3 Y-H001 4 Y-H002 5 Y-L0601-a 6 Y-L0601 7 Y-L0602-a 8 Y-L0602 9 Y-2011 10 Y-06D0 1. 2 12 1. 3 GC-MS QP2010 - AOC- 20i SHIMADZU 30 m SUPELCO GC 220 250 99. 999% 1. 0 ml /min 1 min 3 min 60 2 min 15 /min 120 2. 5 /min 15 min 1 μl MS EI 70 ev 230 220 Scan 45 ~ 450 m /z 1. 4 19 0 0. 25 mm 0. 25 μm RTX-Wax mg /g Origin 8. 0 2 2. 1 GC-MS 220 NISTO5 NIST05s 50 1 2 2 Tab. 2 The fatty acid composition and content of samples harvested in different time mg / g 1 fatty acid 2 no. 3 4 5 13 0 0. 03 0. 09 0. 02 0. 03 0. 06 0. 05 0. 03 0. 02 0. 03 0. 03 0. 03 0. 02 0. 02 0. 05 0. 03 16 0 5. 30 8. 63 5. 54 4. 24 5. 86 5. 53 4. 78 5. 84 5. 97 4. 49 6. 95 5. 91 4. 52 8. 45 5. 29 18 0 0. 12 0. 09 0. 15 0. 10 0. 09 0. 16 0. 11 0. 06 0. 22 0. 10 0. 14 0. 17 0. 09 0. 11 0. 16 18 1 n-9 0. 71 0. 71 0. 62 0. 46 0. 60 0. 56 0. 67 0. 46 0. 82 0. 49 0. 53 0. 63 0. 57 0. 59 0. 49 20 1 n-9 1. 19 1. 26 0. 86 0. 93 0. 97 0. 96 1. 04 1. 07 1. 19 0. 98 1. 06 1. 07 0. 94 1. 31 0. 92 20 2 n-7 0. 50 0. 68 0. 39 0. 44 0. 57 0. 36 0. 44 0. 49 0. 41 0. 38 0. 58 0. 40 0. 39 0. 66 0. 33 20 3 n-7 0. 54 0. 61 0. 42 0. 39 0. 50 0. 47 0. 47 0. 46 0. 58 0. 41 0. 52 0. 48 0. 43 0. 67 0. 40 16 1 n-6 0. 65 0. 78 0. 52 0. 50 0. 62 0. 44 0. 60 0. 61 0. 62 0. 54 0. 71 0. 53 0. 52 0. 85 0. 41 18 2 n-6 0. 47 0. 61 0. 44 0. 36 0. 41 0. 38 0. 42 0. 37 0. 58 0. 39 0. 43 0. 46 0. 37 0. 54 0. 36 20 4 n-6 0. 89 0. 80 0. 97 0. 75 0. 53 0. 66 0. 83 0. 64 0. 86 0. 95 0. 52 0. 81 0. 78 0. 96 0. 58 18 3 n-3 0. 17 0. 17 0. 09 0. 08 0. 05 0. 19 0. 09 0. 10 0. 13 0. 06 0. 21 0. 09 0. 09 0. 13 0. 22 20 5 n-3 11. 92 19. 88 11. 30 9. 84 13. 86 12. 07 10. 67 12. 94 11. 86 9. 44 15. 93 11. 90 10. 67 19. 43 9. 85
10 1553 1 fatty acid 2 no. 3 4 2 5 13 0 0. 03 0. 03 0. 04 0. 02 0. 04 0. 04 0. 05 0. 04 0. 06 0. 03 0. 04 0. 03 0. 04 0. 02 0. 02 16 0 4. 24 8. 92 5. 94 4. 03 5. 80 4. 06 5. 72 4. 21 4. 96 5. 40 6. 02 6. 80 5. 25 6. 59 4. 34 18 0 0. 12 0. 14 0. 15 0. 06 0. 06 0. 15 0. 12 0. 09 0. 13 0. 12 0. 09 0. 14 0. 09 0. 09 0. 09 18 1 n-9 0. 61 1. 21 0. 55 0. 35 0. 49 0. 71 0. 57 0. 62 0. 54 0. 65 0. 60 0. 49 0. 53 0. 55 0. 42 20 1 n-9 0. 91 1. 30 1. 06 0. 82 0. 98 0. 85 1. 24 0. 85 0. 84 1. 13 1. 02 1. 01 1. 03 1. 07 0. 79 20 2 n-7 0. 39 0. 64 0. 40 0. 33 0. 52 0. 35 0. 52 0. 46 0. 33 0. 45 0. 55 0. 35 0. 41 0. 53 0. 27 20 3 n-7 0. 37 0. 59 0. 49 0. 33 0. 51 0. 45 0. 55 0. 47 0. 39 0. 49 0. 54 0. 44 0. 44 0. 52 0. 38 16 1 n-6 0. 51 0. 69 0. 50 0. 39 0. 57 0. 46 0. 60 0. 58 0. 41 0. 61 0. 63 0. 56 0. 58 0. 70 0. 41 18 2 n-6 0. 37 0. 47 0. 42 0. 26 0. 36 0. 37 0. 44 0. 38 0. 35 0. 42 0. 44 0. 40 0. 40 0. 44 0. 33 20 4 n-6 0. 71 0. 54 0. 83 0. 59 0. 76 1. 15 0. 77 0. 88 0. 80 0. 78 0. 80 0. 85 0. 69 0. 71 0. 73 18 3 n-3 0. 08 0. 25 0. 08 0. 07 0. 04 0. 03 0. 06 0. 01 0. 18 0. 06 0. 12 0. 10 0. 08 0. 06 0. 04 20 5 n-3 8. 66 20. 21 12. 05 10. 19 14. 97 8. 13 12. 97 9. 02 10. 04 11. 15 13. 66 12. 72 12. 01 14. 15 8. 79 2. 2 1 73. 96% ~ 76. 44% EPA 1 17. 01 ~ 50. 95% ~ 58. 47% 2 5 7 8 10 23. 61 mg /g 19. 93 mg /g SFA /UFA 1 3 EPA /AA 9 ~ 17 1 3 8 9 10 2 2 4. 34 ~ 9. 10 17. 61 ~ 35 mg /g mg /g 23. 52% ~ 26. 36% 27. 04 mg /g 1 4 5 13. 26 ~ 25. 90 mg /g 6 3 16. 61 ~ 73. 64% ~ 76. 48% EPA 23. 89 mg /g 20. 67 mg /g 1 2 3 4 6 9 12. 61 ~ 17. 72 mg /g 51. 22% ~ 59. 63% 1 2 4 5 6 7 SFA /UFA 1 3 EPA /AA 10 ~ 37 1 1 3 Fig. 1 The total fatty acid content of samples 2. 3 13 0 16 0 18 0 16 0 18 1 n-9 18 2 n-6 18 3 n-3 20 1 n-9 20 2 n-7 20 3 n-7 20 4 n-6 AA 20 5 n-3 EPA EPA 1 4. 11 ~ 5. 54 48. 56% ~ 55. 29% 1 2 6 9 mg /g 23. 56% ~ 26. 04% 2 Fig. 2 1 3 The SFAs relative content of samples 3 4. 25 ~ 6. 97 mg /g 25. 36% ~ 29. 17% 12. 16 ~ 17. 05 mg /g 70. 82% ~ 74. 63% EPA SFA /UFA 1 2. 67 EPA /AA 11 ~ 16
1554 37 3 1 3 Fig. 5 The n-6 PUFAs relative content of samples Fig. 3 The UFAs relative content of samples 3 2. 4 n-3 n-6 n-3 n-6 PUFA 3. 1 4 5 n-3 PUFA EPA n-6 PUFA AA 1 n-3 PUFA 8. 74 ~ 13. 04 mg /g 1 8 9 10 n-6 PUFA 1. 23 ~ 2. 01 mg /g n-6 /n-3 2. 74 ~ 7. 53 5. 1 2 n-3 PUFA 9. 03 ~ 20. 47 mg /g 1 4 5 6 n-6 PUFA 1. 55 ~ 2. 35 mg /g n-6 /n-3 1. 84 ~ 7. 95 4. 9 3 n-3 PUFA 8. 16 ~ 12. 82 mg /g 1 2 3 4 6 9 n-6 PUFA 1. 35 ~ 2. 06 mg /g 1. 61 ~ 13. 68 7. 7 Fig. 4 4 1 3 n-3 The n-3 PUFAs relative content of samples 5 1 3 n-6 13-14 SFA / UFA 1 /3 16 0 20% EPA 50% 4 P. haitanensis 16 0 33% EPA 22% Johns 11 Pyropia sp. 16 0 32. 67% EPA 41. 8% Blouin 15 P. umbilicalis P. amplissima n-6 /n-3 16 0 20% EPA 39% 16 0 EPA 3. 2 n-3 PUFA EPA n-6 PUFA AA 18 2 n-6 EPA 2 9. 02 ~ 20. 21 mg /g 56% 1 3 EPA 8. 66 ~ 12. 97 mg /g 8. 13 ~ 12. 72 mg /g 53% ~ 51% EPA 1 2 5 6 7
10 1555 n-3 n-6 PUFA 26. 3 mg /g EPA 56% 16 17 Bangia 7 ~ 17 3 Ⅰ EPA PUFA n-6 /n-3 20 21 Gracilaria lemaneiformis Bangia sp. 26 Khotimchenko 19 Ptilota sp. EPA 50% Fleurence 18 EPA P. umbilicalis EPA AA /EPA 50% EPA AA /EPA 28 Khotimchenko 19 EPA /AA Cohen 29 Porphyridium cruentum 3 Ⅰ. EPA 2 30 AA /EPA 0. 78 Ⅱ. 1 Ⅲ. AA 25 AA /EPA 0. 44 1 /2 28 1 AA /EPA 0. 05 ~ 0. 1 2 Ⅰ EPA /AA 0. 02 ~ 0. 09 3 1 9 ~ 17 2 10 ~ 37 3 0. 05 ~ 0. 14 1 Sutherland J E Lindstrom S C Nelson W A et al. A new look at an ancient order generic revision of the n-3 n-6 PUFA Bangiales Rhodophyta J. Journal of Phycology n-6 /n-3 2 3 n- 2011 47 5 1131-1151. 6 /n-3 4. 9 ~ 7. 7 n-3 PUFA 2 Fleurence J. Seaweed proteins biochemical n-6 /n-3 nutritional aspects and potential uses J. Trends in Food Technology 1999 10 1 25-28. 3. 3. 3 J. 2011 33 1 4-9. 22 Nelson 23 Chondracanthus 4. J. 2001 2 51-54. canaliculatus 5 Noda H. Health benefits and nutritional properties of nori J. Journal of Applied Phycology 1993 5 2 255-258. 6. I. J. 1954 3 3 287-302. 24-25 EPA 7. M. 3. AA 2002 82. 8. n-3 DHA EPA filicina 22 EPA J. 2007 31 11 78-85. 36. 5% 10 EPA 49. 5% 9 Smit L A Mozaffarian D Willett W. Review of fat Mishra 27 Palmaria palmata and fatty acid requirements and criteria for EPA 2012 developing dietary guidelines J. Annals of Nutirtion 1 Metabolism 2009 55 1-3 44-55. 5 ~ 9 2 4 ~ 5 3 5 ~ 6 10 WHO & FAO. Fats and oils in human nutrition J. 2 Nutrition reviews 1995 53 7 202-205.
1556 37 11 Johns R B Nichols P D Perry G J. Fatty acid composition of ten marine algae from Australian waters J. Phytochemistry 1979 18 5 799-802. 12 Bling E G Dyer W J. A rapid method of total lipid extraction and purification J. Canadian Journal of Biochemistry Physiology 1959 37 8 911-917. 13 Herbreteau F Coiffard L J M Derrien A et al. The fatty acid composition of five species of macroalgae J. Botanica Marina 1997 40 1 25-27. 14 Liu X J Chen F Jiang Y. Differentiation of Nostoc flagelliforme and its neighboring species using fattyacid profiling as a chemotaxonomic tool J. Current Microbiology 2003 47 6 467-474. 15 Blouin N Calder B L Perkins B et al. Sensory and fatty acid analyses of two Atlantic species of porphyra Rhodophyta J. Journal of Applied Phycology 2006 18 1 79-85. 16. Seasonal changes in the content of lipids fatty acids J. 2003 28 2 55-59. 17. Russian Journal of Plant Physiology 2010 57 2 J. 2002 21 5 205-211. 40-43. 18 Fleurence J Gutbier G Mabeau S et al. Fatty acids from 11 marine macroalgae of the French Brittany coast J. Journal of Applied Phycology 1994 6 5-6 527-532. 19 Khotimchenko S V Vaskovsky V E. Distribution of C 20 polyenoic acids in red macrophytic algae J. Botanica Marina 1990 33 6 525-528. 20. J. the red alga Porphyridium cruentum correlation to 1998 25 6 359-363. growth rate J. Journal of Phycology 1988 24 3 21. 4 328-332. J. 2012 36 4 7-12. 22 Ivesa L Blazlina M Najdek M. Seasonal variations in fatty acid composition of Caulerpa taxifolia M. Vahl. C. Ag. in the northern Adriatic Sea Malinska Croatia J. Botanica Marina 2005 47 3 209-214. 23 Nelson M M Phleger C F Nichols P D. Seasonal lipid composition in macroalgae of the Northeastern Pacific Ocean J. Botanica Marina 2002 45 1 58-65. 24 Khotimchenko S V Yadovleva I M. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance J. Phytochemistry 2005 66 1 73-79. 25 Phleger C E. Biochemistry and Molecular Biology of Fisher M. Holland Elsevier Science 1991 209-247. 26 Gerasimenko N I Busarova N G Moiseenko O P. and pigments in brown alga Costaria costata J. 27 Mishra V K Temelli F Ooraikul B et al. Lipids of the red alga Palmaria palmata J. Botanica Marina 1993 36 2 169-174. 28 Kim M K Dubacq J P Thomas J C et al. Seasonal variations of triacylglycerols and fatty acids in Fucus serratus J. Phytochemistry 1996 43 1 49-55. 29 Cohen Z Vonshak A Richmond A. Effect of environmental conditions on fatty acid composition of
10 1557 The variation in fatty acids composition and content of ten Pyropia yezoensis cultivars during different harvest time periods MA Fei 1 2 LU Qinqin 3 HU Chuanming 3 ZHANG Tao 1 ZHOU Wei 3 LI Jiafu 1 DENG Yinyin 1 ZHU Jianyi 1* 1. Department of Biology and Food Engineering Changshu Institute of Technology Changshu 2. Collge of Life Science Nanjing Normal University Nanjing 3. Institute of Oceanology and Marine Fisheries of Jiangsu Nantong 210046 China 226007 China 215500 China Abstract Ten cultivated strains of Pyropia yezoensis were studied in this research in order to identify the effects of the strain difference and the harvesting time difference on the fatty acid composition and content of P. yezoensis. The results show ed that the fatty acid composition of these ten P. yezonsis samples w as not affected however the content of each fatty acid w as affected and the difference among ten samples w as significant. The saturated fatty acids SFAs were mainly composed of 13 0 16 0 18 0 with 16 0 as the highest component about 20%. The unsaturated fatty acids UFAs included 18 1 n-9 18 2 n-6 18 3 n-3 20 1 n-9 20 2 n-7 20 3 n-7 20 4 n-6 AA 20 5 n-3 EPA and the major componet was EPA about 50%. Samples harvested during the lowest water temperature period February contained the highest total fatty acids and EPA concentration the result indicates that the low water temperature has advantages in accumulating fatty acids especially UFAs of P. yezoenis. P. yezoensis is rich in UFAs especially EPA. The n-6 /n-3 ratios ranged from 4. 9 to 7. 7 during the whole study period and this range is consistent with the recommended diet ratio of WHO /FAO. Key words cultivated strain of Pyropia yezoensis fatty acids content fatty acids composition unsaturated fatty acids EPA Corresponding author ZHU Jianyi. E-mail xupu666@ 163. com