1524 40 10 2012 10 JOURNAL OF THE CHINESE CERAMIC SOCIETY 2012 Vol. 40 No. 10 October 2012 SmBaCo 2 O 5+δ Sm 0.2 Ce 0.8 O 1.9 1,2 2 2 2 2 (1. 232001 2. 232001) SmBaCo 2 O 5+δ (SBCO) Sm 0.2 Ce 0.8 O 1.9 (SDC) 3:2 X (Ni-SDC SDC SBCO-SDC) SBCO SDC 1 000 450 800 369 234 S/cm SDC 650 0.031 Ω cm 2 H 2 ( 3% ) 650 0.77 V 640 mw/cm 2 SBCO-SDC TM911.4 A 0454 5648(2012)10 1524 06 2012 09 27 9:48:31 http://www.cnki.net/kcms/detail/11.2310.tq.20120927.0948.201210.1524_023.html Electrochemical Performance of SmBaCo 2 O 5+δ Sm 0.2 Ce 0.8 O 1.9 as Composite-Cathode for Intermediate Temperature Solid Oxide Fuel Cells WANG Xiaolian 1,2 DING Yanzhi 2 LIN Bin 2 LU Xiaoyong 2 CHEN Yonghong 2 (1. School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China; 2. Anhui Key Laboratory of Low Temperature Co-fired Materials; Department of Chemistry and Engineering, Huainan Normal University, Huainan 232001, Anhui, China) Abstract: The cathode powder of double perovskites-type SmBaCo 2 O 5+δ (SBCO) and electrolyte powder of fluorite-structure Sm 0.2 Ce 0.8 O 1.9 (SDC) were synthesized by a citric acid-nitrates self-propagating combustion method. The composite-cathode was obtained by mixing and grinding the SBCO and SDC powders at a mass ratio of 3:2. The chemical compatibility, electrical conductivity and thermal expansion coefficient (TEC) of the composite-cathode (SBCO-SDC) were characterized by X-ray diffraction, direct current four-terminal method and thermal dilatometry, respectively. An anode-supporting fuel cell of Ni-SDC SDC SBCO-SDC was fabricated and the performance of the cell was analyzed. The cross-section microstructure and polarization of the cell were investigated using a scanning electron microscope (SEM) and AC impedance spectroscopy. The results indicate that there are no interactions between SBCO and SDC at 1 000. The electrical conductivity of the SBCO-SDC composite-cathode reached to 369 234 S/cm at 450 800. The addition of SDC decreased the TEC of the composite-cathode. The single cell has an ideal microstructure and a good interface among anode, electrolyte and cathode. The polarization resistance of the electrodes was 0.031 Ω cm 2 at 650. The cell with an open-circuit potential of 0.77 V and a maximum output power density of 640 mw/cm 2 was obtained when the humidified (about 3% H 2 O) hydrogen as a fuel and air as oxidant were used at 650. It was demonstrated that the SBCO-SDC composite-cathode could be used as a potential candidate cathode for intermediate temperature solid oxide fuel cell. Key works: composite-cathode; intermediate temperature solid oxide fuel cell; electrochemical performance; polarization 2012 02 11 2012 05 01 (51102107) (KJ2008A150) (2010A03203) (1986 ) (1962 ) Received date: 2012 02 11. Revised date: 2012 05 01. First author: WANG Xiaolian (1986 ), female, Master candidate. Correspondent author: CHEN Yonghong (1962 ), male, Professor. E-mail: chenyh@hnnu.edu.cn
40 10 SmBaCo 2 O 5+δ Sm 0.2 Ce 0.8 O 1.9 1525 (solid oxide fuel cell SOFC) [1] ( 1 000 ) SOFC SOFC (600 800 ) SOFC (Intermediate temperature IT-SOFC) [2] (La 1 x Sr x MnO 3 δ LSM) [3] SOFC [4 6] (thermal expansion coefficient TEC) TEC 112 LnBaCo 2 O 5+δ (Ln = Pr, Gd, Sm, Y, Nd LBCO) IT-SOFC [7 11] TEC IT-SOFC Kim [12] Ln 3+ LnBaCo 2 O 5+δ (Ln +3 ) Ln 3+ TEC Sm 3+ LnBaCo 2 O 5+δ IT-SOFC (SmBaCo 2 O 5+δ SBCO) Sm 0.2 Ce 0.8 O 1.9 (SDC) SBCO-SDC SDC SBCO-SDC SDC NiO-SDC 1 1.1 [Sm(NO 3 ) 3 6H 2 O](AR ) Ba(NO 3 ) 2 [Co(NO 3 ) 2 6H 2 O] [Ce(NO 3 ) 2 6H 2 O] AR ( ) 1 mol/dm 3 (EDTA) 1.2 SBCO n(sm): n(ba):n(co) = 1:1:2 Sm(NO 3 ) 3 Ba(NO 3 ) 2 Co(NO 3 ) (Σn Z+ M ) (n CA ) 1:1.5 900 3 h SBCO SDC 700 2 h SBCO SDC 3:2 SBCO (200 MPa) (40 mm 5 mm 2 mm) 1 100 5 h 1.3 NiO ( ) SDC 3:2:1 5 h 200 MPa SDC 13 mm 1 400 5 h 3:2 SBCO SDC (SBCO- SDC) 5% 1 000 2 h
1526 2012 1.4 DX-2000 X ( ) SBCO SDC Cu K α λ = 0.154 18 nm 40.0 kv 30 ma 0.03 2θ 20 70 800 450 50 DIL 402C ( Netzsch ) ( ) 50 ml/min 5 /min Al 2 O 3 ( 3% ) (Ni-SDC SDC SBCO-SDC) 650 600 550 500 CHI 604B ( ) KYKY EM-3200 ( ) 2 2.1 [13 14] SBCO SDC 1:1 SBCO SDC X (XRD) 1 SBCO 900 3 h ( 1 2 JCPDS 053 0133) [7] SBCO 100 SDC 700 2 h ( 1 1 JCPDS 075 0158) 1 000 2 h XRD SBCO SDC ( 1 3) SBCO SDC SOFC 2.2 SBCO SBCO-SDC 1 100 5 h Archimedes 87.6% 95.5% 2 1 SBCO SDC SBCO-SDC XRD Fig. 1 XRD patterns of SBCO, SDC and SBCO-SDC 450 800 2 SBCO [7] Co 4+ Co 3+ [15] SBCO SBCO SDC ( 40%) SDC SBCO SDC SDC SBCO SDC 234 S/cm SOFC 100 S/cm [16] SBCO SDC 2.3 3 1 100 5 h SBCO-SDC
40 10 SmBaCo 2 O 5+δ Sm 0.2 Ce 0.8 O 1.9 1527 TEC TEC SBCO 2.4 4 Ni-SDC SDC SBCO-SDC 500 550 600 650 [ (I V) (I P) ] 1 (OCV) 2 SBCO SBCO-SDC (σ) Fig. 2 Temperature dependence of conductivity (σ) for SBCO and SBCO-SDC in air 4 Ni-SDC SDC SBCO-SDC Fig. 4 Performance of the cell fabrication with Ni-SDC SDC SBCO-SDC 1 Ni-SDC SDC SBCO-SDC Table 1 Performance of the cell fabrication with Ni-SDC SDC SBCO-SDC Temperature/ OCV/V P/(mW cm 2 ) 650 0.77 640 600 0.80 531 550 0.83 375 3 SBCO-SDC SBCO SDC NiO-SDC Fig. 3 Thermal expansion curves of SBCO-SDC, SBCO, SDC and NiO-SDC ΔL/L 0 Change in lengh of the samples. (30 1 000 ) SBCO 1 400 5 h SDC NiO-SDC 3 4 SBCO 20.1 10 6 /K SBCO-SDC 18.0 10 6 /K SDC 13.1 10 6 /K NiO-SDC 13.7 10 6 /K SBCO SBCO-SDC TEC TEC SBCO TEC 10% 500 0.86 220 OCV Open circult voltage; P Power density. 4 4 I V [17] 500 550 600 650 (open circult voltage OCV) 0.86 0.83 0.80 V 0.77 V OCV 1.0 V SDC Ce 4+ 650 640 mw/cm 2 [18] LnBaCo 2 O 5+x SDC (650 200 mw/cm 2 )
1528 2012 2.5 SEM 5 Ni-SDC SDC SBCO-SDC SEM 5 3 25 μm 30 40 μm NiO Ni 5 Ni-SDC SDC SBCO-SDC SEM Fig. 5 SEM photographs of cross-sections for Ni-SDC SDC SBCO-SDC single cell after characterization 2.6 ( ) IT-SOFC SBCO-SDC Ni-SDC SDC SBCO-SDC 6 500 3 500 550 600 650 4 0.42 0.16 0.062 Ω cm 2 0.031 Ω cm 2 6 Ni-SDC SDC SBCO-SDC Fig. 6 Impedance spectra of the cell for Ni-SDC SDC SBCO- SDC ( ) 5 SDC Suzuki [19] ( ) Ni 7 (R t ) (R p ) (R o ) (R p /R t ) 550 550 R p 0.16 Ω cm 2 R o 0.39 Ω cm 2 500 R p R o 0.42 Ω cm 2 0.53 Ω cm 2 7 650 11.6% 500 43.9% IT-SOFC
40 10 SmBaCo 2 O 5+δ Sm 0.2 Ce 0.8 O 1.9 1529 [3] BRANDON N P, SKINNER S, STEELE B H. Recent advances in materials for fuel cells [J]. Annu Rev Mater Res, 2003, 33: 183 213. [4] ZHANG X, ROBERTSON M, YICK S, et al. Sm 0.5 Sr 0.5 CoO 3 +Sm 0.2 7 (R t ) (R p ) (R o ) (R p /R t ) Fig. 7 Total resistances(r t ), interfacial polarization resistances (R p ), electrolyte ohmic resistances(r o ) and ratio of the R p /R t obtained from the impedance spectra at different temperatures 3 SmBaCo 2 O 5+δ (SBCO) SDC 3:2 SBCO SDC NiO-SDC SDC SBCO-SDC NiO-SDC SDC NiO-SDC SDC SBCO-SDC SBCO 900 3 h 100 SBCO SDC 1 000 SDC SBCO 500 650 Ni-SDC SDC SBCO-SDC 220 640 mw/cm 2 0.031 0.42 Ω cm 2 SBCO-SDC IT-SOFC [1],,,. SOFC [J]., 2010, 38(3): 542 548. PENG Zhenzhen, DU Hongbing, CHEN Guangle, et al. J Chin Ceram Soc, 2010, 38(3): 542 548. [2] MOLENDA J, SWIERCZEK K, ZAJAC W. Functional materials for the IT-SOFC [J]. J Power Sources, 2007, 173: 657 670. Ce 0.8 O 1.9 composite cathode for cermet supported thin Sm 0.2 Ce 0.8 O 1.9 electrolyte SOFC operating below 600 [J]. J Power Sources, 2006, 160: 1211 1216. [5] ZHEN Y D, TOK A I Y, JIANG S P, et al. Fabrication and performance of gadolinia-doped ceria-based intermediate-temperature solid oxide fuel cells [J]. J Power Sources, 2008, 178: 69 74. [6],,,. Pr 0.6 Sr 0.4 FeO 3 δ [J]., 2006, 34(6): 641 646. CHEN Yonghong, TONG Yue, WEI Yijun, et al. J Chin Ceram Soc, 2006, 34(6): 641 646. [7],,,. SmBaCo 2 O 5+δ [J]., 2010, 38(7): 1258 1262. GUO Youbin, YANG Yong, LU Lihua, et al. J Chin Ceram Soc, 2010, 38(7): 1258 1262. [8] CHANG A M, SKINNER S J, KILNER J A. Electrical properties of GdBaCo 2 O 5+δ for IT-SOFC applications [J]. Solid State Ionics, 2006, 177(19/25): 2009 2011. [9] KIM G, WANG S, JACOBSON A J, et al. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo 2 O 5+δ with a perovskite related structure and ordered A cations [J]. J Mater Chem, 2007, 17: 2500 2505. [10] TASKIN A A, LAVROV A N, ANDO Y. Achieving fast oxygen diffusion in perovskites by cation ordering [J]. Appl Phys Lett, 2005, 86(9): 091910 (1 3). [11] ADLER S B, LANE J A, STEEL B C H. Electrode kinetics of porous mixed-conducting oxygen electrodes [J]. J Electrochem Soc, 1996, 143: 3554 3564. [12] KIM J H, MANTHIRAM A. LnBaCo 2 O 5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells [J]. J Electrochem Soc, 2008, 155(4): B385 390. [13] LING Y, YU J, LIN B, et al. A cobalt-free Sm 0.5 Sr 0.5 Fe 0.8 Cu 0.2 O 3 δ Ce 0.8 Sm 0.2 O 2 δ composite cathode for proton-conducting solid oxide fuel cells [J]. J Power Sources, 2011, 196: 2631 2634. [14] SUN W P, YAN L T, LIN B, et al. High performance proton-conducting solid oxide fuel cells with a stable Sm 0.5 Sr 0.5 Co 3 δ Ce 0.8 Sm 0.2 O 2 δ composite cathode [J]. J Power Sources, 2010, 195(10): 3155 3158. [15] TAKAHASHI H, MUNAKATA F, YAMANAKA M. Ab initio study ofthe electronic structures in LaCoO 3 SrCoO 3 systems [J]. Phys Rev B, 1998, 57: 15211 15218. [16] LING Y H, ZHAO L, LIN B, et al. Investigation of cobalt free cathode material Sm 0.5 Sr 0.5 Fe 0.8 Cu 0.2 O 3 δ for intermediate temperature solid oxide fuel cell [J]. Int J Hydrogen Energy, 2010, 35: 6905 6910. [17] XU J, LU X Y, DING Y Z, et al. Stable BaCe 0.5 Zr 0.3 Y 0.16 Zn 0.04 O 3 δ electrolyte-based proton-conducting solid oxide fuel cells with layered SmBa 0.5 Sr 0.5 Co 2 O 5+δ cathode [J]. J Alloy Compd, 2009, 488: 208 210. [18] ZHOU Q, WANG F, SHEN Y, et al. Performances of LnBaCo 2 O 5+x Ce 0.8 Sm 0.2 O 1.9 composite cathodes for intermediate-temperature solid oxide fuel cells [J]. J Power Sources, 2010, 195: 2174 2181. [19] SUZUKI T, HASAN Z, FUNAHASHI Y, et al. Impact of Anode Microstructure on Solid Oxide Fuel Cells [J]. Science, 2009, 325: 852 855.