SmBaCo 2 O 5+δ (SBCO) Sm 0.2 Ce 0.8 O 1.9 (SDC) 3:2

Σχετικά έγγραφα
Zn BaZr 0.7 Pr 0.1 Y 0.2 O 3 δ

SOFC. (Solid Oxide Fuel Cell, SOFC) Co 0.2 Fe 0.8 O 3- (LSCF) Shao Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3- (BSCF). 8,9) . 1) SOFC

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

ZnO-Bi 2 O 3 Bi 2 O 3

Microwave Sintering of Electronic Ceramics

JOURNAL OF THE CHINESE CERAMIC SOCIETY. TiO 2 X

Protective Effect of Surface Coatings on Concrete

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

. O 2 + 2H 2 O + 4e 4OH -

ER-Tree (Extended R*-Tree)

ZnO SnO 2 Ta 2 O 5 ZnO JOURNAL OF THE CHINESE CERAMIC SOCIETY h α-fe/bafe 12 O 19

MgSn 0.05 Ti 0.95 O 3 SrTiO 3

16 1 Vol. 16 No ELECTROCHEMISTRY Feb MnO 6 Bir-Co5% Bir-Co10% Bir-Co15% Bir-Co20%. 3 3 Li mol L - 1 MgCl 2.

Electronic Supplementary Information (ESI)

16 2 Vol. 16 No ELECTROCHEMISTRY May CO DSC200PC NETZSCH. min min 2. 1

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

) ; GSP ) ;PXD g, 100 ml

Supporting Information

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

Νανοσύνθετα πολυαιθυλενίου υψηλής πυκνότητας (HDPE) / νανοϊνών χαλκού (Cu-nanofibers) με βελτιωμένη σταθερότητα στην υπεριώδη ακτινοβολία

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Approximation Expressions for the Temperature Integral

ΜΕΛΕΤΗ ΔΙΕΠΙΦΑΝΕΙΩΝ ΜΕΤΑΛΛΟΥ / ΑΝΘΡΑΚΟΠΥΡΙΤΙΟΥ ΜΕ ΕΠΙΦΑΝΕΙΑΚΑ ΕΥΑΙΣΘΗΤΕΣ ΤΕΧΝΙΚΕΣ

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

CorV CVAC. CorV TU317. 1

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

difluoroboranyls derived from amides carrying donor group Supporting Information

[1] P Q. Fig. 3.1

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Effect of Fluoroethylene Carbonate Additive on the Performance of Lithium Ion Battery

Quick algorithm f or computing core attribute

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

4, Cu( II), Zn( II)

Conductivity Logging for Thermal Spring Well

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Na/K (mole) A/CNK

Preparation and Application of Amorphous Alloy Catalyst

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

ACTA CHIMICA SINICA . :AAO. H 3 PO 4 AAO AAO. Unstable Growth of Anodic Aluminum Oxide Investigated by AFM

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΜΗΧΑΝΙΚΩΝ Ι ΙΟΤΗΤΩΝ ΕΠΙΦΑΝΕΙΩΝ ΜΕ ΣΥΓΧΡΟΝΕΣ ΝΑΝΟΤΕΧΝΟΛΟ- ΓΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Rapid determination of soluble reactive silicate in seawater by flow injection analysis with spectrophotometric detection and its application

(organic light emitting

Micro arc Oxidation Technique for Aluminum and its Alloys

Phase Segregation of ZnO / ZnMgO Superlattice Affected by Ⅱ-Ⅵ Ratio

. (SERS),,. ( 1.2~ 0.9 V),

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Σπανό Ιωάννη Α.Μ. 148

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Supplementary Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Electronic Supplementary Information

AC Impedance Characteristics of Ternary Cementitious Materials

Electronic Supplementary Information

; +302 ; +313; +320,.

Polymer-Based Composites with High Dielectric Constant and Low Dielectric Loss

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Studies on Synthesis and Biological Activities of 2( 1 H21,2,42 Triazol212yl)2 2Arylthioethyl Substituted Phenyl Ketones

[11].,, , 316 6, ,., 15.5%, 9.8%, 2006., IDF,, ,500, 2,830.,, ,200.,,, β, [12]. 90% 2,,,,, [13-15].,, [13,

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

ΠΑΡΑΣΚΕΥΗ ΝΑΝΟΣΥΝΘΕΤΩΝ ΒΙΟΔΡΑΣΤΙΚΟΥ ΓΥΑΛΙΟΥ/ΠΟΛΥ(D,L-ΓΑΛΑΚΤΙΚΟΥ ΟΞΕΟΣ) ΚΑΙ IN- VITRO ΜΕΛΕΤΗ ΤΗΣ ΒΙΟΣΥΜΒΑΤΟΤΗΤΑΣ

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Accumulation of Soil Arsenic by Panax notoginseng and Its Associated Health Risk

Supporting Information

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Electronic Supplementary Information (ESI)

Development of Accurate Quantitative Analytical Methods to Determine Trace Amounts of Carbon, Sulfur, and Oxygen in Steel

PACS: Jt, Sz, a, Jc RF-PECVD. , ULVAC MHz [10]., Rollto-Roll RF-PECVD

Experimental Study of Dielectric Properties on Human Lung Tissue

Transcript:

1524 40 10 2012 10 JOURNAL OF THE CHINESE CERAMIC SOCIETY 2012 Vol. 40 No. 10 October 2012 SmBaCo 2 O 5+δ Sm 0.2 Ce 0.8 O 1.9 1,2 2 2 2 2 (1. 232001 2. 232001) SmBaCo 2 O 5+δ (SBCO) Sm 0.2 Ce 0.8 O 1.9 (SDC) 3:2 X (Ni-SDC SDC SBCO-SDC) SBCO SDC 1 000 450 800 369 234 S/cm SDC 650 0.031 Ω cm 2 H 2 ( 3% ) 650 0.77 V 640 mw/cm 2 SBCO-SDC TM911.4 A 0454 5648(2012)10 1524 06 2012 09 27 9:48:31 http://www.cnki.net/kcms/detail/11.2310.tq.20120927.0948.201210.1524_023.html Electrochemical Performance of SmBaCo 2 O 5+δ Sm 0.2 Ce 0.8 O 1.9 as Composite-Cathode for Intermediate Temperature Solid Oxide Fuel Cells WANG Xiaolian 1,2 DING Yanzhi 2 LIN Bin 2 LU Xiaoyong 2 CHEN Yonghong 2 (1. School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China; 2. Anhui Key Laboratory of Low Temperature Co-fired Materials; Department of Chemistry and Engineering, Huainan Normal University, Huainan 232001, Anhui, China) Abstract: The cathode powder of double perovskites-type SmBaCo 2 O 5+δ (SBCO) and electrolyte powder of fluorite-structure Sm 0.2 Ce 0.8 O 1.9 (SDC) were synthesized by a citric acid-nitrates self-propagating combustion method. The composite-cathode was obtained by mixing and grinding the SBCO and SDC powders at a mass ratio of 3:2. The chemical compatibility, electrical conductivity and thermal expansion coefficient (TEC) of the composite-cathode (SBCO-SDC) were characterized by X-ray diffraction, direct current four-terminal method and thermal dilatometry, respectively. An anode-supporting fuel cell of Ni-SDC SDC SBCO-SDC was fabricated and the performance of the cell was analyzed. The cross-section microstructure and polarization of the cell were investigated using a scanning electron microscope (SEM) and AC impedance spectroscopy. The results indicate that there are no interactions between SBCO and SDC at 1 000. The electrical conductivity of the SBCO-SDC composite-cathode reached to 369 234 S/cm at 450 800. The addition of SDC decreased the TEC of the composite-cathode. The single cell has an ideal microstructure and a good interface among anode, electrolyte and cathode. The polarization resistance of the electrodes was 0.031 Ω cm 2 at 650. The cell with an open-circuit potential of 0.77 V and a maximum output power density of 640 mw/cm 2 was obtained when the humidified (about 3% H 2 O) hydrogen as a fuel and air as oxidant were used at 650. It was demonstrated that the SBCO-SDC composite-cathode could be used as a potential candidate cathode for intermediate temperature solid oxide fuel cell. Key works: composite-cathode; intermediate temperature solid oxide fuel cell; electrochemical performance; polarization 2012 02 11 2012 05 01 (51102107) (KJ2008A150) (2010A03203) (1986 ) (1962 ) Received date: 2012 02 11. Revised date: 2012 05 01. First author: WANG Xiaolian (1986 ), female, Master candidate. Correspondent author: CHEN Yonghong (1962 ), male, Professor. E-mail: chenyh@hnnu.edu.cn

40 10 SmBaCo 2 O 5+δ Sm 0.2 Ce 0.8 O 1.9 1525 (solid oxide fuel cell SOFC) [1] ( 1 000 ) SOFC SOFC (600 800 ) SOFC (Intermediate temperature IT-SOFC) [2] (La 1 x Sr x MnO 3 δ LSM) [3] SOFC [4 6] (thermal expansion coefficient TEC) TEC 112 LnBaCo 2 O 5+δ (Ln = Pr, Gd, Sm, Y, Nd LBCO) IT-SOFC [7 11] TEC IT-SOFC Kim [12] Ln 3+ LnBaCo 2 O 5+δ (Ln +3 ) Ln 3+ TEC Sm 3+ LnBaCo 2 O 5+δ IT-SOFC (SmBaCo 2 O 5+δ SBCO) Sm 0.2 Ce 0.8 O 1.9 (SDC) SBCO-SDC SDC SBCO-SDC SDC NiO-SDC 1 1.1 [Sm(NO 3 ) 3 6H 2 O](AR ) Ba(NO 3 ) 2 [Co(NO 3 ) 2 6H 2 O] [Ce(NO 3 ) 2 6H 2 O] AR ( ) 1 mol/dm 3 (EDTA) 1.2 SBCO n(sm): n(ba):n(co) = 1:1:2 Sm(NO 3 ) 3 Ba(NO 3 ) 2 Co(NO 3 ) (Σn Z+ M ) (n CA ) 1:1.5 900 3 h SBCO SDC 700 2 h SBCO SDC 3:2 SBCO (200 MPa) (40 mm 5 mm 2 mm) 1 100 5 h 1.3 NiO ( ) SDC 3:2:1 5 h 200 MPa SDC 13 mm 1 400 5 h 3:2 SBCO SDC (SBCO- SDC) 5% 1 000 2 h

1526 2012 1.4 DX-2000 X ( ) SBCO SDC Cu K α λ = 0.154 18 nm 40.0 kv 30 ma 0.03 2θ 20 70 800 450 50 DIL 402C ( Netzsch ) ( ) 50 ml/min 5 /min Al 2 O 3 ( 3% ) (Ni-SDC SDC SBCO-SDC) 650 600 550 500 CHI 604B ( ) KYKY EM-3200 ( ) 2 2.1 [13 14] SBCO SDC 1:1 SBCO SDC X (XRD) 1 SBCO 900 3 h ( 1 2 JCPDS 053 0133) [7] SBCO 100 SDC 700 2 h ( 1 1 JCPDS 075 0158) 1 000 2 h XRD SBCO SDC ( 1 3) SBCO SDC SOFC 2.2 SBCO SBCO-SDC 1 100 5 h Archimedes 87.6% 95.5% 2 1 SBCO SDC SBCO-SDC XRD Fig. 1 XRD patterns of SBCO, SDC and SBCO-SDC 450 800 2 SBCO [7] Co 4+ Co 3+ [15] SBCO SBCO SDC ( 40%) SDC SBCO SDC SDC SBCO SDC 234 S/cm SOFC 100 S/cm [16] SBCO SDC 2.3 3 1 100 5 h SBCO-SDC

40 10 SmBaCo 2 O 5+δ Sm 0.2 Ce 0.8 O 1.9 1527 TEC TEC SBCO 2.4 4 Ni-SDC SDC SBCO-SDC 500 550 600 650 [ (I V) (I P) ] 1 (OCV) 2 SBCO SBCO-SDC (σ) Fig. 2 Temperature dependence of conductivity (σ) for SBCO and SBCO-SDC in air 4 Ni-SDC SDC SBCO-SDC Fig. 4 Performance of the cell fabrication with Ni-SDC SDC SBCO-SDC 1 Ni-SDC SDC SBCO-SDC Table 1 Performance of the cell fabrication with Ni-SDC SDC SBCO-SDC Temperature/ OCV/V P/(mW cm 2 ) 650 0.77 640 600 0.80 531 550 0.83 375 3 SBCO-SDC SBCO SDC NiO-SDC Fig. 3 Thermal expansion curves of SBCO-SDC, SBCO, SDC and NiO-SDC ΔL/L 0 Change in lengh of the samples. (30 1 000 ) SBCO 1 400 5 h SDC NiO-SDC 3 4 SBCO 20.1 10 6 /K SBCO-SDC 18.0 10 6 /K SDC 13.1 10 6 /K NiO-SDC 13.7 10 6 /K SBCO SBCO-SDC TEC TEC SBCO TEC 10% 500 0.86 220 OCV Open circult voltage; P Power density. 4 4 I V [17] 500 550 600 650 (open circult voltage OCV) 0.86 0.83 0.80 V 0.77 V OCV 1.0 V SDC Ce 4+ 650 640 mw/cm 2 [18] LnBaCo 2 O 5+x SDC (650 200 mw/cm 2 )

1528 2012 2.5 SEM 5 Ni-SDC SDC SBCO-SDC SEM 5 3 25 μm 30 40 μm NiO Ni 5 Ni-SDC SDC SBCO-SDC SEM Fig. 5 SEM photographs of cross-sections for Ni-SDC SDC SBCO-SDC single cell after characterization 2.6 ( ) IT-SOFC SBCO-SDC Ni-SDC SDC SBCO-SDC 6 500 3 500 550 600 650 4 0.42 0.16 0.062 Ω cm 2 0.031 Ω cm 2 6 Ni-SDC SDC SBCO-SDC Fig. 6 Impedance spectra of the cell for Ni-SDC SDC SBCO- SDC ( ) 5 SDC Suzuki [19] ( ) Ni 7 (R t ) (R p ) (R o ) (R p /R t ) 550 550 R p 0.16 Ω cm 2 R o 0.39 Ω cm 2 500 R p R o 0.42 Ω cm 2 0.53 Ω cm 2 7 650 11.6% 500 43.9% IT-SOFC

40 10 SmBaCo 2 O 5+δ Sm 0.2 Ce 0.8 O 1.9 1529 [3] BRANDON N P, SKINNER S, STEELE B H. Recent advances in materials for fuel cells [J]. Annu Rev Mater Res, 2003, 33: 183 213. [4] ZHANG X, ROBERTSON M, YICK S, et al. Sm 0.5 Sr 0.5 CoO 3 +Sm 0.2 7 (R t ) (R p ) (R o ) (R p /R t ) Fig. 7 Total resistances(r t ), interfacial polarization resistances (R p ), electrolyte ohmic resistances(r o ) and ratio of the R p /R t obtained from the impedance spectra at different temperatures 3 SmBaCo 2 O 5+δ (SBCO) SDC 3:2 SBCO SDC NiO-SDC SDC SBCO-SDC NiO-SDC SDC NiO-SDC SDC SBCO-SDC SBCO 900 3 h 100 SBCO SDC 1 000 SDC SBCO 500 650 Ni-SDC SDC SBCO-SDC 220 640 mw/cm 2 0.031 0.42 Ω cm 2 SBCO-SDC IT-SOFC [1],,,. SOFC [J]., 2010, 38(3): 542 548. PENG Zhenzhen, DU Hongbing, CHEN Guangle, et al. J Chin Ceram Soc, 2010, 38(3): 542 548. [2] MOLENDA J, SWIERCZEK K, ZAJAC W. Functional materials for the IT-SOFC [J]. J Power Sources, 2007, 173: 657 670. Ce 0.8 O 1.9 composite cathode for cermet supported thin Sm 0.2 Ce 0.8 O 1.9 electrolyte SOFC operating below 600 [J]. J Power Sources, 2006, 160: 1211 1216. [5] ZHEN Y D, TOK A I Y, JIANG S P, et al. Fabrication and performance of gadolinia-doped ceria-based intermediate-temperature solid oxide fuel cells [J]. J Power Sources, 2008, 178: 69 74. [6],,,. Pr 0.6 Sr 0.4 FeO 3 δ [J]., 2006, 34(6): 641 646. CHEN Yonghong, TONG Yue, WEI Yijun, et al. J Chin Ceram Soc, 2006, 34(6): 641 646. [7],,,. SmBaCo 2 O 5+δ [J]., 2010, 38(7): 1258 1262. GUO Youbin, YANG Yong, LU Lihua, et al. J Chin Ceram Soc, 2010, 38(7): 1258 1262. [8] CHANG A M, SKINNER S J, KILNER J A. Electrical properties of GdBaCo 2 O 5+δ for IT-SOFC applications [J]. Solid State Ionics, 2006, 177(19/25): 2009 2011. [9] KIM G, WANG S, JACOBSON A J, et al. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo 2 O 5+δ with a perovskite related structure and ordered A cations [J]. J Mater Chem, 2007, 17: 2500 2505. [10] TASKIN A A, LAVROV A N, ANDO Y. Achieving fast oxygen diffusion in perovskites by cation ordering [J]. Appl Phys Lett, 2005, 86(9): 091910 (1 3). [11] ADLER S B, LANE J A, STEEL B C H. Electrode kinetics of porous mixed-conducting oxygen electrodes [J]. J Electrochem Soc, 1996, 143: 3554 3564. [12] KIM J H, MANTHIRAM A. LnBaCo 2 O 5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells [J]. J Electrochem Soc, 2008, 155(4): B385 390. [13] LING Y, YU J, LIN B, et al. A cobalt-free Sm 0.5 Sr 0.5 Fe 0.8 Cu 0.2 O 3 δ Ce 0.8 Sm 0.2 O 2 δ composite cathode for proton-conducting solid oxide fuel cells [J]. J Power Sources, 2011, 196: 2631 2634. [14] SUN W P, YAN L T, LIN B, et al. High performance proton-conducting solid oxide fuel cells with a stable Sm 0.5 Sr 0.5 Co 3 δ Ce 0.8 Sm 0.2 O 2 δ composite cathode [J]. J Power Sources, 2010, 195(10): 3155 3158. [15] TAKAHASHI H, MUNAKATA F, YAMANAKA M. Ab initio study ofthe electronic structures in LaCoO 3 SrCoO 3 systems [J]. Phys Rev B, 1998, 57: 15211 15218. [16] LING Y H, ZHAO L, LIN B, et al. Investigation of cobalt free cathode material Sm 0.5 Sr 0.5 Fe 0.8 Cu 0.2 O 3 δ for intermediate temperature solid oxide fuel cell [J]. Int J Hydrogen Energy, 2010, 35: 6905 6910. [17] XU J, LU X Y, DING Y Z, et al. Stable BaCe 0.5 Zr 0.3 Y 0.16 Zn 0.04 O 3 δ electrolyte-based proton-conducting solid oxide fuel cells with layered SmBa 0.5 Sr 0.5 Co 2 O 5+δ cathode [J]. J Alloy Compd, 2009, 488: 208 210. [18] ZHOU Q, WANG F, SHEN Y, et al. Performances of LnBaCo 2 O 5+x Ce 0.8 Sm 0.2 O 1.9 composite cathodes for intermediate-temperature solid oxide fuel cells [J]. J Power Sources, 2010, 195: 2174 2181. [19] SUZUKI T, HASAN Z, FUNAHASHI Y, et al. Impact of Anode Microstructure on Solid Oxide Fuel Cells [J]. Science, 2009, 325: 852 855.