Folder: _EC3 Bolted connections

Σχετικά έγγραφα
5.0 DESIGN CALCULATIONS

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

Chapter 7 Transformations of Stress and Strain

Analyse af skrå bjælke som UPE200

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΧΑΛΥΒΔΙΝΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ (EN & EN1998-1)

MasterSeries MasterPort Lite Sample Output

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part :

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

Design of Self supporting Steel Chimney for

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

MECHANICAL PROPERTIES OF MATERIALS

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Cross sectional area, square inches or square millimeters

MasterSeries MasterPort Plus Sample Output

D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL

Figure 1 - Plan of the Location of the Piles and in Situ Tests

STATIC ANALYSIS / STRUCTURAL DESIGN GLASSCON SHADOGLASS LOUVERS SYSTEM

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ

Το σχέδιο της μέσης τομής πλοίου

COMPOSITE SLABS DESIGN CONTENTS

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΔΙΠΛΟΥ ΤΑΥ ΕΓΚΙΒΩΤΙΣΜΕΝΗΣ ΣΕ ΣΚΥΡΟΔΕΜΑ

Grey Cast Irons. Technical Data

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators

Structural Design of Raft Foundation

ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ


ECOL Motors In Aluminum Housing

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ Αρ. HSL-3_B-1109-CPR-0002

PRB. Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

TUBO LED T8 LLUMOR PROLED 18W 120CM

TUBO LED T8 LLUMOR PROLED 25W 150CM

CONTENTS. Examples of Ultimate Limit states. 1. SECT.-001, ULTIMATE LIMIT STATE, Tension Structural design Structural Fire design

ΕΥΡΩΚΩ ΙΚΑΣ 9: Φέρουσες κατασκευές αλουµινίου

TUBO LED T8 LLUMOR PROLED ULTRA 25W 150CM

of concrete buildings Illustration of elements design

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram.

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Epoxy resin - High performance. Anchor mechanical properties

Multilayer Ceramic Chip Capacitors

Fixed spherical bearing KF 32 N/mm 2 Dimensions and weights acc. to German approval

CONSULTING Engineering Calculation Sheet

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Consolidated Drained

Multilayer Ceramic Chip Capacitors

Strain gauge and rosettes

HSS Hollow. Structural Sections LRFD COLUMN LOAD TABLES HSS: TECHNICAL BROCHURE

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

LUMINAIRE PHOTOMETRIC TEST REPORT

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Περιεχόμενα Table of Contents

Longitudinal strength standard

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Homework 8 Model Solution Section

Thin Film Chip Resistors

Σιδηρές Κατασκευές Ι Διάλεξη 8 Μέλη υπό σύνθετη εντατική κατάσταση. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Περιεχόμενα ή Εταιρικό προφιλ

(Mechanical Properties)

Lisun Electronics Inc. Tel:+86(21)

Luminaire Property. Photometric Results. Page 1 of 15 Pages. Report No.: 9 Test Time: 2017/5/18 09:59

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4.

Current Sense Metal Strip Resistors (CSMS Series)

Rod End > Ball Bearings Product Overview

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Rod End > Ball Bearings Product Overview

Προφίλ Profiles Overview R=1:4 A01

Ceramic PTC Thermistor Overload Protection

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Tabela 1. Table 1 working slat. Spare parts. Rear-attached disc mower Z108/8 2,5m with swath spreader

Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction

ΣΥΝΟΠΤΙΚΟΣ /SUMMARY... 3 ΠΡΟΦΙΛΜΕΡΟΣΑ/PROFILPARTA ΠΡΟΦΙΛΜΕΡΟΣ B/PROFILPARTB Κράμααλουμινίου:AlMgSi0.5F22, σύμφωνα

LUOYANG JINYUAN OUTSIZE BEARING CO.,LTD J Y C TAPER ROLLER BEARINGS

MINIATURE BALL BEARINGS 600 Series(Metric)

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

ROTARY TABLE SELECTION GUIDE

Precision Metal Film Fixed Resistor Axial Leaded

ΚΑΝΑΛΙ CHANNEL MTL. Κατάλογος - Catalogue. Eνδοδαπέδια Κανάλια & Κουτιά Παροχών - Διακλαδώσεων Underfloor Channels & Boxes and Juction Boxes

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

Answers to practice exercises

ΕΦΑΡΜΟΓΗ ΚΑΝΟΝΙΣΜΩΝ ΝΗΟΓΝΩΜΟΝΩΝ

Thick Film Chip Resistors

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Transcript:

Folder: _EC3 Bolted connections Euro-Code 3 Bolted connections Bolted angilar connection: Dimensions of connection: Plate thickness d = 15,00 mm Bolt spacing e = 35,00 mm Spacing of bolts e o = 30,00 mm Spacing of bolts b = 70,00 mm Spacing of bolts h = 220,00 mm Angle of tension force β = 45,00 Bolts: Plate: Bolt = SEL("steel/bolt"; BS; ) = M 20 SC = SEL("steel/bolt"; SC; ) = 8.8 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 800,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 20,00 mm Shaft diameter d ll = d l +2 = 22,00 mm Cross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 2,45 cm² steel = SEL("steel/EC"; Name; ) = Fe 510 f y = TAB("steel/EC"; fy; Name=steel) = 355,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 510,00 N/mm² γ M0 = 1,10 γ Mb = 1,25 Loads: S sd = 424,26 kn N sd = COS(β) * S sd = 300,00 kn V sd = SIN(β) * S sd = 300,00 kn Force per bolt: F t,sd = N sd / 4 = 75,00 kn F v,sd = V sd / 4 = 75,00 kn

Folder: _EC3 Bolted connections Limit tension force of bolts: F t,rd = 0,9 * f u,b * A s / γ Mb / 10 = 141,12 kn F t,sd / F t,rd = 0,53 < 1 Check limit shear force for bolts: F v,rd = 0,6 * f u,b * π * d l ² / 4000 / γ Mb = 120,64 kn F v,sd / F v,rd = 0,62 < 1 Check combined: F t,sd / (1,4 * F t,rd ) + F v,sd / F v,rd = 1,00 1 Analysis of bearing strength: as in 6.5.1.3: e o / d ll = 1,36 > 1 as in 6.5.1.3: e o / d ll = 1,36 < 1,5 as in 6.5.1.2(1): e / d ll = 1,59 > 1,2 as in 6.5.1.2(3): b / d ll = 3,18 > 3 α = MIN(e / (3 * d ll ); b / (3 * d ll ) - 0,25; f u,b / f u ; 1) = 0,53 Tab.6.5.3 F b1,rd = 2,5 * α * f u * d l * d / γ Mb / 10³ = 162,18 kn 6.5.5.(10) F b2,rd = 2/3 * F b1,rd = 108,12 kn F b,rd = F b2,rd + (F b1,rd - F b2,rd ) * (e o / d l - 1,2) / 0,3 = 162,18 kn F v,sd / F b,rd = 0,46 < 1

Folder: _EC3 Bolted connections Bolted connection subject to bending Dimensions of connection: a = 80,00 mm a 1 = 45,00 mm e = 80,00 mm e 1 = 45,00 mm e 2 = 50,00 mm e 3 = 90,00 mm d 1 = 20,00 mm d 2 = 8,00 mm b 1 = 160,00 mm h 2 = 2 * (e 2 + e 3 ) = 280,00 mm Flansch-Bolts: Bolt f = SEL("steel/bolt"; BS; ) = M 20 SC1 = SEL("steel/bolt"; SC; ) = 4.6 f u,bo = TAB("steel/bolt"; fubk; SC=SC1) = 400,00 N/mm² Hole diameter d lo = TAB("steel/bolt"; d; BS=Bolt f ) = 20,00 mm Shaft diameter d l1o = d lo + 2 = 22,00 mm Number of rows n o = 3 Steg-Bolts: Bolt S = SEL("steel/bolt"; BS; ) = M 16 SC2 = SEL("steel/bolt"; SC; ) = 4.6 f u,bs = TAB("steel/bolt"; fubk; SC=SC2) = 400,00 N/mm² Hole diameter d ls = TAB("steel/bolt"; d; BS=Bolt S ) = 16,00 mm Shaft diameter d l1s = d ls + 2 = 18,00 mm Number of rows n s = 3 Number of columns m s = 2 Profil: Profil Typ = SEL("steel/Profils"; Name; ) = IPE Selected Profil = SEL("steel/"Typ; Name; ) = IPE 240 Column height h = TAB("steel/"Typ; h; Name=Profil) = 240,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 6,20 mm Flange thickness t = TAB("steel/"Typ; t; Name=Profil) = 9,80 mm Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 39,10 cm² Moment of resistance W y = TAB("steel/"Typ; Wy; Name=Profil) = 324,00 cm² Moment of resistance W pl = 1,14 * W y = 369,36 cm³

Folder: _EC3 Bolted connections Material and Partial safety factors: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² γ M0 = 1,10 γ M2 = 1,25 Loads: M sd = 157,95 knm V sd = 60,75 kn Check beam-web strength without holes: M c,rd = W pl * f y / γ M0 / 10 ³ = 78,91 knm M sd / M c,rd = 2,00 < 1 A v = 1,04 * h * s / 100 = 15,48 cm² V pl,rd = A v * f y / 10 / (3) / γ M0 = 190,93 kn V sd / V pl,rd = 0,32 < 1 Check beam-web strength with holes: A z = 0,5 * A = 19,55 cm² A z,net = A z - (2 * d l1o * t + ((n s - 1) / 2) * d l1s * s) / 100 = 14,12 cm² (f y / f u * γ M2 / γ M0 ) / (0,9 * A z,net / A z ) = 1,14 1 W pl,net = W pl - 2 * d l1o * t * (h - t) / 2000 = 319,73 cm³ M c,rd,c =W pl,net * f y / (γ M0 * 10³) = 68,31 knm M sd / M c,rd,c = 2,31 < 1 A v,net = A v - n s * d l1s * s / 100 = 12,13 cm² f y / f u * A v / A v,net = 0,83 < 1 Area of holes will be neglected. Analysis of bolts in flange: I w = 2 / 12 * d 2 * h 2 ³ / 10 4 = 2926,93 cm 4 I f = 2 * b 1 * d 1 * ((h + d 1 ) / 2)² / 10 4 = 10816,00 cm 4 M w = M sd * I w / (I w + I f ) = 33,64 knm M f = M sd * I f / (I w + I f ) = 124,31 knm Effective tension force in flange: N sd = M f / (h + d 1 ) * 10³ = 478,12 kn Limit shear force F v,rd =n o * 2 * 0,6 * f u,bo * π/4 * d lo ² / γ M2 / 10³ = 361,91 kn Limit bearing force: α = MIN(a 1 / (3 * d l1o ); a / (3 * d l1o ) - 0,25; f u,bo / f u ; 1) = 0,682 F b,rd =2 * n o * 2,5 * α * f u * d lo * t / γ M2 / 10³ = 577,46 kn N sd / MIN(F v,rd ; F b,rd ) = 1,32 < 1

Folder: _EC3 Bolted connections Analysis of bolts in web: n s1 = (n s - 1) / 2 + 0,49 = 1 n s2 = n s1 * 2 = 2 m s1 = (m s - 1) / 2 + 0,49 = 1 m s2 = m s1 * 2 = 2 I p = (n s * m s2 * ((m s -1) / 2*e)² + n s2 * m s * ((n s -1) / 2*e 3 )²)/10² = 420,00 cm² M sw = M w + V sd * e 3 / 10³ = 39,11 knm R sd = ((10*M sw *e 3 /I p )² + ((V sd /(m s *n s )) + 10*M sw *(m s -1)/2*e/I p )²) = 96,27 kn F v,rd = m s * 0,6 * f u,bs * π/4 * d ls ² / 10³ / γ M2 = 77,21 kn α = MIN(e 1 / (3 * d l1s ); e / (3 * d l1s ) - 0,25; f u,bo / f u ; 1) = 0,833 F b,rd = 2,5 * α * f u * d ls * s / γ M2 / 10³ = 59,50 kn R sd / MIN(F v,rd ; F b,rd ) = 1,62 < 1 Analysis of cover plates: A = d 1 * b 1 / 100 = 32,00 cm² A net = A - (2 * d l1o * d 1 ) / 100 = 23,20 cm² Limit tension force: N t,rd = MIN(A * f y / γ M0 ; 0,9 * A net * f u / γ M2 )/ 10 = 601,34 kn N sd / N t,rd = 0,80 < 1

Folder: _EC3 Bolted connections Connection subject to moment load: e e e e 2 3 3 2 1 2 3 4 5 6 7 8 e e e e 1 1 Dimensions of connection: Bolt spacing e = 50,00 mm Edge distance e1 = 35,00 mm Bolt spacing e3 = 70,00 mm Plate thickness t = 6,00 mm Number of bolts n = 8 Bolts: Bolt1 = SEL("steel/bolt"; BS; ) = M 30 SC1 = SEL("steel/bolt"; SC; ) = 5.6 f u,b1 = TAB("steel/bolt"; fubk; SC=SC1) = 500,00 N/mm² Hole diameter d l1 = TAB("steel/bolt"; d; BS=Bolt1) = 30,00 mm Bolt2 = SEL("steel/bolt"; BS; ) = M 12 SC2 = SEL("steel/bolt"; SC; ) = 5.6 f u,b2 = TAB("steel/bolt"; fubk; SC=SC2) = 500,00 N/mm² Hole diameter d s2 = TAB("steel/bolt"; d; BS=Bolt2) = 12,00 mm Shaft diameter d l2 = d s2 +1 = 13,00 mm IPE330 aus steel = SEL("steel/EC"; Name; ) = Fe 360 f u2 = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² γ Mb = 1,25 γ Mo = 1,25 Loads: V sd = 58,70 kn M sd = 910,00 kncm Analysis of the right bolt: Check limit shear force F v,rd = 0,6 * π / 4 * (d l1 / 10)² * f u,b1 / γ Mo / 10 = 169,65 kn V sd / F v,rd = 0,35 < 1 Limit bearing strength F b,rd = 1,5 * d l1 * t * f u2 / γ Mb / 10³ = 77,76 kn V sd / F b,rd = 0,75 < 1

Folder: _EC3 Bolted connections Check bolts on left: I p = (6 * e² + 6 * e 3 ²) / 100 = 444,00 cm² Maximum horizontal force in bolt due to moment: F h = M sd * e 3 / 10 / I p = 14,35 kn Maximum vertical force: F v = M sd * e / 10 / I p + V sd / n = 17,59 kn Resulting force R r = (F h ² + F v ²) = 22,70 kn F v,rd = 0,6 * f u,b2 * d l2 ² * π / 4 / γ Mb / 10³ = 31,86 kn R r / F v,rd = 0,71 < 1 Analysis of bearing strength α = MIN(e 1 / (3 * d l2 ); 2 * e / (3 * d l2 ) - 0,25; f u,b2 / f u2 ; 1) = 0,90 F b,rd = 2,5 * α * f u2 * d l2 * t / γ Mb / 10³ = 50,54 kn F h / F b,rd = 0,28 < 1

Folder: _EC3 Bolted connections Bolted shear joint: Dimensions of connection: Spacing of bolts a = 45,00 mm Spacing of bolts a 0 = 35,00 mm Spacing of bolts a 1 = 30,00 mm Spacing of bolts a 2 = 50,00 mm Spacing of bolts a 3 = 90,00 mm Depth of cope a 4 = 30,00 mm Plate projection a s = 20,00 mm Lever-arm x = 45,00 mm Number of bolts n = 3 Bolts: M16 4.6 Bolt = SEL("steel/bolt"; BS; ) = M 16 SC = SEL("steel/bolt"; SC; ) = 4.6 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 400,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 16,00 mm Shaft diameter d 0 = d l +2 = 18,00 mm Angle section P = SEL("steel/WG"; Name; ) = L 80x8 Angle thickness t = TAB("steel/WG"; s; Name=P) = 8,00 mm Factor for group bolts as in 6.5.2..2(3): k = 0,5 for 1 group bolts; =2,5 for 2 rows steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² Profil Typ = SEL("steel/Profils"; Name; ) = IPE Selected Profil = SEL("steel/"Typ; Name; ) = IPE 270 Column height h = TAB("steel/"Typ; h; Name=Profil) = 270,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 6,60 mm γ Mb = 1,25 γ M2 = 1,25 γ M0 = 1,10 Loads: V sd = 60,00 kn

Folder: _EC3 Bolted connections Check bolt spacing as in 6.5.1: 1,2 * d 0 / a 1 = 0,72 < 1 a 1 / MAX(12 * t; 150) = 0,20 < 1 1,5 * d 0 / a 0 = 0,77 < 1 a 0 / MAX(12 * t; 150) = 0,23 < 1 2,2 * d 0 / a 2 = 0,79 < 1 a 2 / MIN(12 * s; 200) = 0,63 < 1 Check bolts strength: Bolts in web of main beam F v,sd = V sd / (2 * n) = 10,00 kn Bolts in web of connecting beam M sd = x / 10 * V sd = 270,00 kncm Horizontal force due to M sd F h,sd = M sd / ((n - 1) * a 2 / 10) = 27,00 kn Distributed shearing force on bolts F v,sd = V sd / n = 20,00 kn Maximum bolt strength F sd = (F h,sd ² + F v,sd ²) = 33,60 kn Limit strength and analysis of bolts: Bolts in web of main beam: Plain...in the shear plane F v,rd = 0,6 * f u,b * π * d l ² / 4 / γ Mb / 10³ = 38,60 kn Limit bearing strength α = MIN(a 1 / (3 * d 0 ); a 2 / (3 * d 0 ) - 0,25; f u,b / f u ; 1) = 0,556 F b,rd = 2,5 * α * f u * d l * t / γ Mb / 10³ = 51,24 kn Analysis: F sd / F b,rd = 0,66 < 1 Bolts in web of connecting beam: F v,rd = 2 * 0,6 * f u,b * π * d l ² / 4 / γ Mb / 10³ = 77,21 kn Limit bearing strength α = MIN(a 1 / (3 * d 0 ); a 2 / (3 * d 0 ) - 0,25; f u,b / f u ; 1) = 0,556 F b,rd = 2,5 * α * f u * d l * s / γ Mb / 10³ = 42,27 kn Analysis: F sd / F b,rd = 0,79 < 1 Check angle section strength Design loads: V sdw = V sd / 2 = 30,00 kn M sdw = M sd / 2 = 135,00 knm A = (2 * a 2 + 2 * a 1 ) * t / 200 = 6,40 cm² A net = (2 * a 2 + 2 * a 1 - n * d 0 ) * t / 200 = 4,24 cm² (f y / f u * γ M2 / γ M0 ) / (0,9 * A net / A) = 1,24 > 1 Subtract bottom bolt holes. A = A * 2 = 12,80 cm² A net = A net * 2 = 8,48 cm² f y / f u * A / A net = 0,99 < 1 Bolt holes should not be subtracted W pl = (t * (2 * a 2 + 2 * a 1 )² / 4 - d 0 * t * a 2 ) / 1000 = 44,00 cm³ M pl,rd = W pl * f y / 10 / γ M0 = 940,00 kncm M sd / M pl,rd = 0,29 < 1 V pl,rd = A * f y / 10 / ( (3) * γ M0 ) = 157,88 kn V sd / V pl,rd = 0,38 < 1 Also: V sd / (V pl,rd / 2) = 0,76 < 1 No interaction.

Folder: _EC3 Bolted connections Check shear failure: L v = (n - 1) * a 2 = 100,00 mm L 1 = a 2 = 50,00 mm L 1 / (5 * d 0 ) = 0,56 < 1 L 2 = (a - k * d 0 ) * f u / f y = 55,15 mm L 3 = L v + a 2 + a 3 = 240,00 mm L v,eff = L v + L 1 + L 2 = 205,15 mm L v,eff / L 3 = 0,85 < 1 L 3 / ((L v + a 2 + a 3 - n * d 0 ) * f u / f y ) = 0,84 < 1 Effective shear area: A v,eff = L v,eff * t / 100 = 16,41 cm² V eff,rd = A v,eff * f y / 10 / (3) / γ M0 = 202,41 kn V sd / V eff,rd = 0,30 < 1

Folder: _EC3 Bolted connections Double shear joint with bolts: Dimensions of connection: Plate thickness d 1 = 6,00 mm Number of plates n 1 = 2 Plate thickness d 2 = 7,10 mm Number of plates n 2 = 1 Plate width b = 210,00 mm Bolt spacing e = 40,00 mm Edge distance e1 = 60,00 mm Edge distance e2 = 40,00 mm Bolt spacing e3 = 65,00 mm Bolts: Plate : Loads: Bolt = SEL("steel/bolt"; BS; ) = M 20 SC = SEL("steel/bolt"; SC; ) = 10.9 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 1000,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 20,00 mm Cross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 2,45 cm² Number of bolts n= 5 steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² γ M0 = 1,10 γ M2 = 1,25 N sd = 100,00 kn Joint with tension and shear: Limit tension force of plate links A = b * d 1 * n 1 / 100 = 25,20 cm² d = d l + 2 = 22,00 mm Cross-section area 1: A net,1 = A - 2 * d * d 1 * n 1 / 100 = 19,92 cm²

Folder: _EC3 Bolted connections Cross-section area 2: A net,2 = A-3 *d *d 1 *n 1 /10² + 2 * e² / (4*e 3 ) * d 1 * n 1 / 10² = 18,76 cm² A net = MIN(A net,1 ; A net,2 ) = 18,76 cm² N t,rd1 =MIN(A * f y / γ M0 ; 0,9 * A net * f u / γ M2 )/10 = 486,26 kn Limit tension force of plate rechts A = b * d 2 * n 2 / 100 = 14,91 cm² d = d l + 2 = 22,00 mm A net,1 = A - 2 * d * d 2 * n 2 / 100 = 11,79 cm² A net,2 = A - 3 * d * d 2 * n 2 / 10² + 2 * e² / (4*e 3 ) * d 2 * n 2 / 10² = 11,10 cm² A net = MIN(A net,1 ; A net,2 ) = 11,10 cm² N t,rd2 =MIN(A * f y / γ M0 ; 0,9 * A net * f u / γ M2 )/10 = 287,71 kn N t,rd = MIN(N t,rd2 ; N t,rd1 ) = 287,71 kn Limit tension force of boltsn: A s = π * (d l /10)² / 4 = 3,14 cm² Thread in the shearing plane: F v,rd = 0,6 * n * (n 1 + n 2-1) * f u,b / 10* A s / γ M2 = 1507,20 kn Limit bearing strength α = MIN(e 1 / (3 * d); 2 * e / (3 * d) - 0,25; f u,b / f u ; 1) = 0,91 F b,rd1 =n 1 * n * 2,5 * α * f u * d l * d 1 / γ M2 / 10³ = 786,24 kn α = MIN(e 1 / (3 * d); 2 * e / (3 * d) - 0,25; f u,b / f u ; 1) = 0,91 F b,rd2 =n 2 * n * 2,5 * α * f u * d l * d 2 / γ M2 / 10³ = 465,19 kn F b,rd = MIN(F b,rd1 ; F b,rd2 ) = 465,19 kn Maximum allowed force: N l,rd = MIN(N t,rd ; F v,rd ; F b,rd ) = 287,71 kn Analysis: N sd / N l,rd = 0,35 < 1

Folder: _EC3 Bolted connections High strength friction-grip bolt connection: Dimensions of connection: Plate thickness 1 d 1 = 10,00 mm Plate thickness 2 d 2 = 8,00 mm Bolt spacing e = 65,00 mm Edge distance e1 = 55,00 mm Edge distance e2 = 50,00 mm Bolt spacing e3 = 70,00 mm Plate width b= 240,00 mm Bolts: Bolt = SEL("steel/bolt"; BS; ) = M 22 SC = SEL("steel/bolt"; SC; ) = 10.9 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 1000,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 22,00 mm Cross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 3,03 cm² Number of bolts n= 5 Löcher mit normalem Lochspiel as in 6.5.8.1 (2) K s = 1,00 Anzahl der Gleitfugen as in 6.5.8.1 (1) η = 1,00 Reibungszahl as in 6.5.8.3 µ = 0,40 as in 6.5.8.1 (3) γ Ms = 1,25 Plate: Loads: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² γ M0 = 1,10 γ M2 = 1,25 Tension force N sd = 100,00 kn Limit tension force of plate: A = b * MIN(d 1 ; d 2 ) / 100 = 19,20 cm² as in 7.5.2 d = d l + 2 = 24,00 mm Cross-section area 1: A net,1 = A - 2 * d * MIN(d 1 ; d 2 ) / 10² = 15,36 cm² Cross-section area 2: A net,2 = A - 3 * d * MIN(d 1 ; d 2 )/10² + 2 * e² / (4*e 3 ) * MIN(d 1 ; d 2 )/10² = 15,85 cm² A net = MIN(A net,1 ; A net,2 ) = 15,36 cm²

Folder: _EC3 Bolted connections Friction-grip connection: Plate N net,rd = A net * f y / 10 / γ M0 = 328,15 kn Limit tension force of bolts Limit shank tension F p,cd = 0,7 * f u,b / 10 * A s = 212,10 kn Limit slip resistance force F s,rd = n * K s * η * µ * F p,cd / γ Ms =339,36 kn Limit bearing force: α = MIN(e 1 / (3 * d); 2 * e /(3 * d) - 0,25; f u,b / f u ; 1) = 0,76 F b,rd = n * 2,5 * α * f u / 10 * d l *MIN(d 1 ; d 2 ) / γ M2 / 100 = 481,54 kn Maximum allowed force: N g,rd = MIN(N net,rd ; F b,rd ; F s,rd ) = 328,15 kn Analysis: N sd / N g,rd = 0,30 < 1

Folder: _EC3 Bolted connections Joint with tension and shear: Dimensions of connection: Plate thickness d 1 = 10,00 mm Plate thickness d 2 = 8,00 mm Bolt spacing e = 65,00 mm Edge distance e1 = 55,00 mm Edge distance e2 = 50,00 mm Bolt spacing e3 = 70,00 mm Plate width b = 240,00 mm Bolts: Plate: Loads: Bolt = SEL("steel/bolt"; BS; ) = M 22 SC = SEL("steel/bolt"; SC; ) = 4.6 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 400,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 22,00 mm Cross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 3,03 cm² Number of bolts n = 5 steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² γ M0 = 1,10 γ M2 = 1,25 N sd = 100,00 kn Joint with tension and shear: Limit tension force of plate: A = b * MIN(d 1 ; d 2 ) / 100 = 19,20 cm² d = d l + 2 = 24,00 mm Cross-section area 1: A net,1 = A - 2 * d * MIN(d 1 ; d 2 ) / 100 = 15,36 cm² Cross-section area 2: A net,2 = A-3*d*MIN(d 1 ;d 2 )/10² + 2*e²/(4*e 3 )*MIN(d 1 ;d 2 )/10² = 15,85 cm² A net = MIN(A net,1 ; A net,2 ) = 15,36 cm² N t,rd = MIN(A * f y / γ M0 ; 0,9 * A net * f u / γ M2 )/ 10 = 398,13 kn

Folder: _EC3 Bolted connections Limit tension force of boltsn: A s = π * (d / 10)² / 4 = 4,52 cm² Thread in the shearing plane: F v,rd = 0,6 * n * f u,b / 10 * A s / γ M2 = 433,92 kn/cm² Limit bearing strength α = MIN(e 1 / (3 * d); 2 * e / (3 * d) - 0,25;f u,b / f u ; 1) = 0,76 F b,rd = n * 2,5 * α * f u * d * MIN(d 1 ; d 2 ) / γ M2 / 10³ = 525,31 kn Maximum allowed force: N l,rd = MIN(N t,rd ; F v,rd ; F b,rd ) = 398,13 kn Analysis: N sd / N l,rd = 0,25 < 1

Folder: _EC3 Bolted connections Check shear failure: Dimensions of connection: Spacing of bolts a = 50,00 mm Spacing of bolts a 1 = 43,00 mm Spacing of bolts a 2 = 70,00 mm Spacing of bolts a 3 = 75,00 mm Number of bolts n = 4 Bolts: Bolt = SEL("steel/bolt"; BS; ) = M 20 SC = SEL("steel/bolt"; SC; ) = 5.6 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 500,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 20,00 mm Shaft diameter d l2 = d l +2 = 22,00 mm k = 0,5 for 1 group bolts; =2,5 for 2 rows steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² Profil Typ = SEL("steel/Profils"; Name; ) = IPE Selected Profil = SEL("steel/"Typ; Name; ) = IPE 360 Column height h = TAB("steel/"Typ; h; Name=Profil) = 360,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 8,00 mm γ Mb = 1,25 γ M0 = 1,10 Loads: V sd = 58,70 kn Limit shear force of section: A v = 1,04 * h * s / 100 = 29,95 cm² V pl,rdp = A v * f y / 10 / (3) / γ M0 = 369,41 kn A v,net = A v - (n * s * d l2 ) / 100 = 22,91 f y / f u * A v / A v,net = 0,85 < 1 Holes can be neglected.

Folder: _EC3 Bolted connections Joint with shear failure as in Bild 6.5.5: L v = (n - 1) * a 2 = 210,00 mm L 1 = a 1 = 43,00 mm L 1 / (5 * d l2 ) = 0,39 < 1 L 2 = (a - k * d l2 ) * f u / f y = 59,74 mm L 3 = L v + a 1 + a 3 = 328,00 mm L v,eff = L v + L 1 + L 2 = 312,74 mm L v,eff / L 3 = 0,95 < 1 L 3 / (L v + a 1 + a 3 - n + d l2 ) = 0,95 < 1 Effective shear area: A v,eff = L v,eff * s / 100 = 25,02 cm² V pl,rd = A v,eff * f y / 10 / (3) / γ M0 = 308,60 kn Maximum design force for shear: V Rd = MIN(V pl,rdp ; V pl,rd ) = 308,60 kn

Folder: _EC3 Columns Columns Column of section class 4: F h A t1 b t 2 B h F C D Load diagram: Column height H = 6,50 m Beam width b = 50,00 cm Column height h = 100,00 cm Web thickness t 1 = 1,00 cm Flange thickness t 2 = 1,00 cm Loads: N d = 3500,00 kn Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm² ε = (235 / f y ) = 1,00 Partial safety factors: γ M = 1,10 γ g = 1,35 Section classification: As in Table 5.3.1 b' = b - 2 * t 1 = 48,00 cm b' / t 2 / (42 * ε) = 1,14 > 1 Section class 4 h' = h - 2 * t 2 = 98,00 cm h' / t 1 / (42 * ε) = 2,33 > 1 Section class 4

Folder: _EC3 Columns Effective web area: Part A-B; C-D As in Table 5.3.2: ψ = 1,00 k σ = 4,00 as in 5.3.5(3) λ trans,p =b' / t 2 / (28,4 * ε * (k σ )) = 0,85 >0,673 ρ = (λ trans,p - 0,22) / λ trans,p ² = 0,872 b eff = ρ * b' = 41,86 cm Part A-C; B-D As in Table 5.3.2: ψ = 1,00 cm k σ = 4,00 as in 5.3.5(3) λ trans,p =h' / t 1 / (28,4 * ε * (k σ )) = 1,73 >0,673 ρ = (λ trans,p - 0,22) / λ trans,p ² = 0,505 h eff = ρ * h' = 49,49 cm Check buckling: A eff = 2 * (h eff * t 1 + b eff * t 2 ) + 4 * t 1 * t 2 = 186,70 cm² A = b * h - (b - 2 * t 1 ) * (h - 2 * t 2 ) = 296,00 cm² β A = A eff / A = 0,631 I b = (b * h³ - (b - 2 * t 1 ) * (h - 2 * t 2 )³) / 12 = 401898,67 cm 4 I h = (b³ * h - (b - 2 * t 1 )³ * (h - 2 * t 2 )) / 12 = 138498,67 cm 4 I = MIN(I b ; I h ) = 138498,67 cm 4 N cr = π² * E/10 * I / (H * 100)² = 67941,82 kn λ trans = (β A * A * f y /10 / N cr ) = 0,25 Apply strut curve b α = 0,34 ϕ = 0,5 * (1 + α * (λ trans - 0,2) + λ trans ²) = 0,540 χ = 1 / (ϕ + (ϕ² - λ trans ²) 0,5 ) = 0,9817 N b,rd = χ * β A * A * f y / 10 / γ M = 3917,19 kn N d / N b,rd = 0,893 < 1

Folder: _EC3 Columns Column subject to compression force: Nd H Column heigth H = 7,50 m l y = H/2 = 3,75 m l z = H/3 = 2,50 m Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 430 f y = TAB("steel/EC"; fy; Name=steel) = 275,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm² ε = (235 / f y ) = 0,92 Profil: Profil Typ = SEL("steel/Profils"; Name; ) = IPE Selected Profil = SEL("steel/"Typ; Name; ) = IPE 300 Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 53,80 cm² Column height h = TAB("steel/"Typ; h; Name=Profil) = 300,00 mm Depth of web h 1 = TAB("steel/"Typ; h1; Name=Profil) = 248,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 7,10 mm Flange width b = TAB("steel/"Typ; b; Name=Profil) = 150,00 mm Flange thickness t = TAB("steel/"Typ; t; Name=Profil) = 10,70 mm Radius of gyration i y = TAB("steel/"Typ; iy; Name=Profil) = 12,50 cm Radius of gyration i z = TAB("steel/"Typ; iz; Name=Profil) = 3,35 cm Section classification As in Table 5.3.1: Web: ( h 1 / s ) / ( 33 * ε ) = 1,15 < 1 ( h 1 / s ) / ( 38 * ε ) = 1,00 < 1 Section class 2. Flange: ( b / 2 / t ) / ( 10 * ε ) = 0,76 < 1 Section class 1. Section will be classified as class 2.

Folder: _EC3 Columns Analysis: nach 5.5.1.1 (1) β A = 1,00 Cross-section class 2 nach 5.1.1 (2) γ M1 = 1,10 Cross-section class 2 Check buckling In Y-Y Axis: h / b = 2,00 > 1,2 t /10 = 1,07 cm < 4 cm as in Tab 5.5.3 : λ y = l y * 100 / i y = 30,00 λ 1 = 93,9 * ε = 86,39 λ trans,y = λ y / λ 1 * (β A ) = 0,347 Apply strut curve a As in Table 5.5.1 α = 0,21 ϕ = 0,5 * (1 + α * (λ trans,y - 0,2) + λ trans,y ²) = 0,576 χ = 1 / (ϕ + (ϕ² - λ trans,y ²) 0,5 ) = 0,9655 N b,y,rd = χ * β A * A * f y /10/ γ M1 = 1298,60 kn Check buckling In Z-Z Axis: h / b = 2,00 > 1,2 t / 10 = 1,07 cm < 4cm as in Tab 5.5.3 : λ z = l z * 100 / i z = 74,63 λ trans,z = λ z / λ 1 * (β A ) = 0,864 Apply strut curve b As in Table 5.5.1 α = 0,34 ϕ = 0,5 * (1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 0,986 χ = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,6844 N b,z,rd = χ * β A * A * f y /10/ γ M1 = 920,52 kn max_n d = MIN(N b,y,rd ; N b,z,rd ) = 920,52 kn

Folder: _EC3 Columns Column of section class 4: b F t 2 h y h t 1 F Load diagram: Column heigth H = 4,00 kn Flange width b = 20,00 cm Depth of web h = 30,00 cm Web thickness t 1 = 1,20 cm Flange thickness t 2 = 1,20 cm z Loads: N d = 700,00 kn Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm² ε = (235 / f y ) = 1,00 λ 1 = 93,90 * ε = 93,90 Partial safety factors: γ M = 1,10 Section classification As in Table 5.3.1: b / t 2 / (14 * ε) = 1,19 > 1 Section class 4 h / t 1 / (33 * ε) = 0,76 > 1 Section class 1

Folder: _EC3 Columns Effective web area: Flangee: As in Table 5.3.3: ψ = 1,00 k σ = 0,43 as in 5.3.5(3) λ trans,p = b / t 2 / (28,4 * ε * (k σ )) = 0,89 >0,673 ρ = (λ trans,p - 0,22) / λ trans,p ² = 0,846 b eff = ρ * b = 16,92 cm A eff = 2 * (b eff * t 2 ) + (h + 2 * t 2 ) * t 1 = 79,49 cm² Location of shear centre: y s,eff = (b eff * (2 * t 2 ) * (b eff + t 2 ) / 2) / A eff = 4,628 cm b eff ³ / 12 * (2 * t 2 ) + b eff * (2 * t 2 ) * ((b eff + t 1 ) / 2 - y s,eff )² = 1766,44 cm 4 (h + 2 * t 2 ) * t 1 ³ / 12 + (h + 2 * t 2 ) * t 1 * y s,eff ² = 837,41 cm 4 Iz,eff= 2603,85 cm 4 W z,eff = I z,eff / ((b eff + t 1 ) - y s,eff - (t 1 / 2)) = 201,97 cm³ Gross area: A = b * 2 * t 2 + (h + 2 * t 2 ) * t 1 = 86,88 cm² Location of center of gravity: y s = (b * 2 * t 2 * (b + t 1 ) / 2) / A = 5,856 cm I z = b³/12*2*t 2 +b*2*t 2 *((b+t 1 )/2-y s )²+(h+2*t 2 )*t 1 ³/12+(h+2*t 2 )*t 1 *y s ² = 4018,23 cm 4 e Nz = y s - y s,eff = 1,228 cm Check buckling: N cr = π² * E/10 * I z / (H * 100)² = 5205,15 kn β A = A eff / A = 0,915 λ trans,z = (β A * A * f y /10 / N cr ) = 0,60 Apply strut curve c As in Table 5.5.3 α = 0,49 ϕ = 0,5 * (1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 0,778 χ = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,7854 M z = N d * e Nz / 100 = 8,60 knm ψ = 1,00 β Mψ = 1,8-0,7 * ψ = 1,10 µ z = λ trans,z * (2 * β Mψ - 4) = -1,080 < 0,9 k z1 = 1 - (µ z * N d ) / (χ * A eff * f y /10) = 1,515 ~ 1,5 k z2 = 1,500 k z = MIN(k z1 ; k z2 ) = 1,500 N d / (χ * A eff * f y /10 / γ M ) + 100 * k z *M z / (W z,eff * f y /10 / γ M ) = 0,824 < 1

Folder: _EC3 Columns Column with compression and moment: Nsd Msd H Load diagram: Column heigth H = 5,00 m Loads: N sd = 200,00 kn M y,sd = 10,00 kn Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm² G = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mm² ε = (235 / f y ) = 1,00 Partial safety factors: γ M = 1,10 γ g = 1,35 platischer Formbeiwert α ply = 1,14 platischer Formbeiwert α plz = 1,25 Profil: Profil Typ = SEL("steel/Profils"; Name; ) = HEA Selected Profil = SEL("steel/"Typ; Name; ) = HEA 160 Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 38,80 cm² Column height h = TAB("steel/"Typ; h; Name=Profil) = 152,00 mm Depth of web h 1 = TAB("steel/"Typ; h1; Name=Profil) = 104,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 6,00 mm Flange width b = TAB("steel/"Typ; b; Name=Profil) = 160,00 mm Flange thickness t = TAB("steel/"Typ; t; Name=Profil) = 9,00 mm Radius of gyration i y = TAB("steel/"Typ; iy; Name=Profil) = 6,57 cm Radius of gyration i z = TAB("steel/"Typ; iz; Name=Profil) = 3,98 cm W ely = TAB("steel/"Typ; Wy; Name=Profil) = 220,00 cm³ W ply = α ply * W ely = 250,80 cm³ W elz = TAB("steel/"Typ; Wz; Name=Profil) = 76,90 cm³ W plz = α plz * W elz = 96,13 cm³ Section classification As in Table5.3.1: Web will be assumed as pressed in ( h 1 / s ) / ( 33 * ε ) = 0,53 < 1 Section class 1. Flange: ( b / 2 / t ) / ( 10 * ε ) = 0,89 < 1 Section class 1.

Folder: _EC3 Columns Check bending and buckling: as in 5.5.1.1 (1) β A = 1,00 Cross-section class 1 as in 5.1.1 (2) γ M1 = 1,10 Cross-section class 1 λ y = H * 100 / i y = 76,10 λ 1 = 93,9 * ε = 93,90 λ trans,y = λ y / λ 1 * (β A ) = 0,810 λ z = 100 * H / i z = 125,63 λ trans,z = λ z / (π * (E / f y )) = 1,34 As in Table 5.5.3 h / b = 0,95 < 1,2 t / 10 = 0,90 cm < 10cm As in Table:5.5.1 Strut curve b for Y-Y axis α = 0,34 ϕ = 0,5 * (1 + α * (λ trans,y - 0,2) + λ trans,y ²) = 0,932 χ y = 1 / (ϕ + (ϕ² - λ trans,y ²) 0,5 ) = 0,7179 Apply strut curve c for z-achse α = 0,49 ϕ = 0,5 * (1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 1,677 χ z = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,3724 ψ = 0,00 β My = 1,8-0,7 * ψ = 1,80 µ y = λ trans,y * (2 * β My - 4) + (W ply - W ely ) / W ely = -0,184 < 0,9 k y = 1 - (µ y * N sd ) / (χ y * A * f y ) = 1,006 < 1,5 χ = MIN(χ y ; χ z ) = 0,372 N sd / (χ * A * f y / 10 / γ M ) + 100 * k y * M y,sd / (W ply * f y / 10 / γ M ) = 0,836 < 1 Check torsional-flexural buckling: β w = 1,00 Cross-section class 1 As in Table: F.1.1 ψ = 0,00 k = 1,00 C 1 = 1,879 λ LT = 90 * H / i z / ((C 1 ) 0,5 * (1 + 1 / 20 * ((100 * H / i z ) / (h / t))²) 0,25 ) = 59,208 λ trans,lt = λ LT / λ 1 * (β w ) = 0,631 For rolled sections strut curve a α = 0,21 ϕ = 0,5 * (1 + α * (λ trans,lt - 0,2) + λ trans,lt ²) = 0,74 χ LT = 1 / (ϕ + (ϕ² - λ trans,lt ²) 0,5 ) = 0,89 β M,LT = 1,8-0,7 * ψ = 1,80 λ trans,z = λ z / λ 1 * (β A ) = 1,338 µ LT = 0,15 * λ trans,z * β M,LT - 0,15 = 0,211 < 0,9 h / b = 0,95 < 1,2 t / 10 = 0,90 cm < 10cm Z-Z axis Strut curve c α = 0,49 ϕ = 0,5 * (1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 1,674 χ z = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,3731 k LT = 1 - (µ LT * N sd ) / (χ z * A * f y ) = 0,988 < 1,0 N sd / (χ z * A * f y / 10 / γ M ) + 100 * k LT * M y,sd / (χ LT *W ply * f y / 10 / γ M )= 0,854 < 1

Folder: _EC3 Columns Column subject to compression force: Nd H Column base is pinned. For buckling, column head is pinned about the Y-Y axis, and fixed about the Z-Z axis. Load diagram: Column heigth H = 8,00 m Loads: N d = 2000,00 kn Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm² ε = (235 / f y ) = 1,00 Effective length factor: k y = 1,00 For simply supported ends k z = 0,70 fixed ends Profil: Profil Typ = SEL("steel/Profils"; Name; ) = HEB Selected Profil = SEL("steel/"Typ; Name; ) = HEB 300 Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 149,00 cm² Column height h = TAB("steel/"Typ; h; Name=Profil) = 300,00 mm Depth of web h 1 = TAB("steel/"Typ; h1; Name=Profil) = 208,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 11,00 mm Flange width b = TAB("steel/"Typ; b; Name=Profil) = 300,00 mm Flange thickness t = TAB("steel/"Typ; t; Name=Profil) = 19,00 mm Moment of inertia I = TAB("steel/"Typ; Iy; Name=Profil) = 25170,00 cm 4 Radius of gyration i y = TAB("steel/"Typ; iy; Name=Profil) = 13,00 cm Radius of gyration i z = TAB("steel/"Typ; iz; Name=Profil) = 7,58 cm Section classification: Web: ( h 1 / s ) / ( 33 * ε ) = 0,57 < 1 Flange: ( b / 2 / t ) / ( 10 * ε ) = 0,79 < 1 Section class 1.

Folder: _EC3 Columns Analysis: β A = 1,00 Cross-section class 1 γ M1 = 1,10 Cross-section class 1 Check buckling In Y-Y Axis: h / b = 1,00 < 1,2 t / 10 = 1,90 cm < 10cm λ y = k y * H * 100 / i y = 61,54 λ 1 = 93,9 * ε = 93,90 λ trans,y = λ y / λ 1 * (β A ) = 0,655 Apply strut curve b As in Table 5.5.1 α = 0,34 ϕ = 0,5 * (1 + α * (λ trans,y - 0,2) + λ trans,y ²) = 0,792 χ = 1 / (ϕ + (ϕ² - λ trans,y ²) 0,5 ) = 0,8083 N b,rd = χ * β A * A * f y / 10 / γ M1 = 2572,97 kn N d / N b,rd = 0,78 < 1 Check buckling In Z-Z Axis: h / b = 1,00 < 1,2 t / 10 = 1,90 cm < 10cm λ z = k z * H * 100 / i z = 73,88 m λ trans,z = λ z / λ 1 * (β A ) = 0,787 Apply strut curve c As in Table 5.5.1 α = 0,49 ϕ = 0,5 * (1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 0,953 χ = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,6709 N b,rd = χ * β A * A * f y / 10 / γ M1 = 2135,60 kn N d /N b,rd = 0,94 < 1

Folder: _EC3 Columns Column of channel section with compression and transverse loads: q d Pd b t 2 H t 1 y h z Load diagram: Column height H = 4,00 m Beam width b = 9,50 cm Depth of web h = 29,40 cm Web thickness t 1 = 1,00 cm Flange width t 2 = 0,60 cm Loads: q d = 15,00 kn/m N d = 90,00 kn Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm² ε = (235 / f y ) = 1,00 λ 1 = 93,90 * ε = 93,90 Partial safety factors: γ M = 1,10 Section classification: As in Table 5.3.1 b / t 2 / (14 * ε) = 1,13 > 1 Section class 4 As in Table 5.3.2 h / t 1 / (33 * ε) = 0,89 > 1 Section class 1 A = b * 2 * t 2 + (h + 2 * t 2 ) * t 1 = 42,00 cm² Location of center of gravity: y s = (b * 2 * t 2 * (b + t 1 ) / 2) / A = 1,425 cm b³ / 12 * 2 * t 2 + b * 2 * t 2 * ((b + t 1 ) / 2 - y s )² = 252,53 cm 4 (h + 2 * t 2 ) * t 1 ³ / 12 + (h + 2 * t 2 ) * t 1 * y s ² = 64,69 cm 4 Iz= 317,22 cm 4 I y = h³ / 12 * t 1 + 2 * (b * t 2 ³ / 12 + b * t 2 * ((h + t 2 ) / 2)²) = 4683,02 cm 4 W el,z = I z / (b + t 1 / 2 - y s ) = 36,99 cm³ W el,y = I y / ((h + t 1 ) / 2) = 308,09 cm³

Folder: _EC3 Columns Effective web area: Flangee: As in Table 5.3.3: ψ = 1,00 k σ = 0,43 as in 5.3.5(3) λ trans,p = b / t 2 / (28,4 * ε * (k σ )) = 0,85 >0,673 ρ = (λ trans,p - 0,22) / λ trans,p ² = 0,872 b eff = ρ * b = 8,28 cm A eff = 2 * (b eff * t 2 ) + (h + 2 * t 2 ) * t 1 = 40,54 cm² Location of shear centre: y s,eff = (b eff * (2 * t 2 ) * (b eff + t 2 ) / 2) / A eff = 1,088 cm e Nz = y s - y s,eff = 0,337 cm β A = A eff / A = 0,965 Slenderness and reductions: In Z-Z Axis: N cr,z = π² * E * I z / (H * 100)² = 4109,22 kn λ trans,z = (β A * A * f y / N cr,z ) = 1,52 Apply strut curve c α = 0,49 ϕ = 0,5 *(1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 1,979 χ z = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,3080 In Y-Y Axis: N cr,y = π² * E * I y / (H * 100)² = 60663,06 kn λ trans,y = (β A * A * f y / N cr,y ) = 0,40 Apply strut curve c α = 0,49 ϕ = 0,5 * (1 + α * (λ trans,y - 0,2) + λ trans,y ²) = 0,629 χ y = 1 / (ϕ + (ϕ² - λ trans,y ²) 0,5 ) = 0,8973 χ = MIN(χ z ; χ y ) = 0,3080 N b,rd = χ * A eff * f y / γ M = 2667,53 kn

Folder: _EC3 Columns Limit bending moment about the Y-Y axis: Cross-section class 4 z' s = (-b eff * t 2 * (h + t 2 ) / 2 + (b + (t 1 / 2)) * t 2 * (h + t 2 ) / 2) / A eff = 0,382 cm (h + t 2 )³ / 12 * t 1 + (h + t 2 ) * t 1 * z' s = 2261,46 cm 4 b eff * t 2 * ((h + t 2 ) / 2 + z' s )² + (b + (t 1 / 2)) * t 2 * ((h + t 2 ) / 2 - z' s )² = 2457,57 cm 4 Ieff,y= 4719,03 cm 4 W eff,y = I eff,y / ((h + t 2 ) / 2 + z' s ) = 306,79 cm³ M c,rd,y =W eff,y * f y / γ M = 65541,50 knm Limit bending moment about the Z-Z axis: Cross-section class 4 Tab 5.3.3 ψ = -ys / (b + (t 1 / 2) - y s ) = -0,17 k σ = 0,57-0,21 * ψ + 0,07 * ψ² = 0,61 (b + (t 1 / 2)) / t 2 / (21 * ε * (k σ )) = 1,02 > 1 As in Table:5.3.5 (3) λ trans,p = (b + (t 1 / 2)) / t 2 / (28,4 * ε * (k σ )) = 0,75 > 0,673 ρ = (λ trans,p - 0,22) / λ trans,p ² = 0,942 b eff = ρ * (b + (t 1 / 2)) / (1 - ψ) = 8,05 cm b t = -(b + (t 1 / 2)) * ψ / (1 - ψ) = 1,45 cm c eff = b eff + b t = 9,50 cm A eff = (h + t 2 ) * t 1 + 2 * c eff * t 2 = 41,40 cm² y' = 2 * c eff ² * t 2 / 2 / A eff = 1,31 cm I eff,z = (h + t 2 ) * t 1 * y'² + 2 * c eff ³ / 12 * t 2 + 2 * c eff * t 2 * (c eff / 2 - y')² = 272,12 cm 4 W eff,z = I eff,z / (c eff / 2 - y') = 79,10 cm³ M c,rd,z =W eff,z * f y / γ M = 16898,64 knm Check buckling: N sd = N d = 90,00 kn M y,sd = q d * H² / 8 = 30,00 knm M z,sd = N d * e Nz / 100 = 0,30 knm Hilfsbeiwerte: β My = 1,30 µ y = λ trans,y * (2 * β My - 4) = -0,560 < 0,9 k y = 1 - (µ y * N sd ) / (χ y * A eff * f y ) = 1,006 < 1,5 ψ = 1,000 β Mψ = 1,8-0,7 * ψ = 1,10 < 1,5 µ z = λ trans,z * (2 * β Mψ - 4) = -2,736 < 0,9 k z1 = 1 - (µ z * N sd ) / (χ * A eff * f y ) = 1,082 k z2 = 1,500 k z = MIN(k z1 ; k z2 ) = 1,082 N sd /(χ*a eff *f y /γ M )+k y *100*M y,sd /(W eff,y *f y /γ M )+k z *100*M z,sd /(W eff,z *f y /γ M ) = 0,081 < 1

l Euro-Code 3 Folder: _EC3 Columns Laced column made up of channel and angle sections: H sd N d b l y h Loads: N sd = 300,00 kn H sd = 45,00 kn Plan and elevation values: Span length l y = 69,20 cm Column height l = 10*l y /100 = 6,92 m Width b = 40,00 cm Winkel ϕ 1 = 45,00 U-Profil U = SEL("steel/U"; Name; ) = U 300 A f = TAB("steel/U"; A; Name=U) = 58,80 cm² e z = TAB("steel/U"; ez; Name=U) = 2,70 cm i z = TAB("steel/U"; iz; Name=U) = 2,90 cm Winkel W = SEL("steel/WG"; Name; ) = L 50x5 Angle thickness A D = TAB("steel/WG"; A; Name=W) = 4,80 cm² Angle thickness i ζ = TAB("steel/WG"; iζ; Name=W) = 0,98 cm steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm² ε = (235 / f y ) = 1,00 λ 1 = 93,90 * ε = 93,90 Partial safety factors: γ M = 1,10

Folder: _EC3 Columns Maximal tension force in chord: Effective length ratio k = 2,00 Imperfection: w o = 2 * l / 5 = 2,77 cm Effective moment of inertia: h o = b - 2 * e z = 34,60 cm I eff = 0,5 * h o ² * A f = 35196,50 cm 4 Shear strength: S v = 2 * E/10 * A D * l y * h o ² / (2 * (2 * h o ²)³) = 71276,36 kn N cr = 1 / ((4 * (100 * l)²/(π² * E/10 * I eff )) + (1 / S v )) = 3615,26 kn max_m s =H sd * l + N sd / (1 - N sd / N cr ) * w o / 100 = 320,46 knm N f,sd = 0,5 * N sd + 100 * max_m s / h o = 1076,18 kn Analysis of channels: λ = l y / i z = 23,86 λ trans = λ / (λ 1 * ε) = 0,254 Apply strut curve c α = 0,49 ϕ = 0,5 * (1 + α * (λ trans - 0,2) + λ trans ²) = 0,545 χ = 1 / (ϕ + (ϕ² - λ trans ²) 0,5 ) = 0,9735 N b,rd = χ * A f * f y / 10 / γ M = 1222,89 kn N f,sd / N b,rd = 0,88 < 1 Analysis of lacing angles: max_v s = H sd + N sd / (1 - N sd / N cr ) * w o * π / (200 * l) = 47,06 kn Design force for a diagonal: N ds = max_v s / (2 * COS(ϕ 1 )) = 33,28 kn λ = (2 * h o ²) / i ζ = 49,93 λ trans = λ / (λ 1 * ε) = 0,532 Apply strut curve c α = 0,49 ϕ = 0,5 * (1 + α * (λ trans - 0,2) + λ trans ²) = 0,723 χ = 1 / (ϕ + (ϕ² - λ trans ²) 0,5 ) = 0,8247 N b,rd = χ * A D * f y / 10 / γ M = 84,57 kn N ds /N b,rd = 0,39 < 1

Folder: _EC3 Continuous Beam Continuous Beam Purlin / Strut with biaxial bending and torsional-flexural buckling: q sd q sd l l ϕ Plan and elevation values: Span length l= 720,00 cm Angle of slope ϕ= 10,00 Spacing of purlin l'= 4,00 m platischer Formbeiwert α ply = 1,14 platischer Formbeiwert α plz = 1,25 Loads: From dead load g= 0,20 kn/m² From snow load s= 0,40 kn/m² Section classification for: IPE 200 Profil Typ = SEL("steel/Profils"; Name; ) = IPE Selected Profil = SEL("steel/"Typ; Name; ) = IPE 200 Column height h = TAB("steel/"Typ; h; Name=Profil) = 200,00 mm Flange width b f = TAB("steel/"Typ; b; Name=Profil) = 100,00 mm Flange thickness t f = TAB("steel/"Typ; t; Name=Profil) = 8,50 mm Flange thickness t w = TAB("steel/"Typ; s; Name=Profil) = 5,60 mm Moment of inertia I y = TAB("steel/"Typ; Iy; Name=Profil) = 1940,00 cm 4 Moment of inertia I z = TAB("steel/"Typ; Iz; Name=Profil) = 142,00 cm 4 Moment of inertia I y = TAB("steel/"Typ; IT; Name=Profil) = 6,98 cm 4 I ω = t f * b f ³ * (h - t f )² / (24*106 ) = 12988,09 cm 6 i z = TAB("steel/"Typ; iz; Name=Profil) = 2,24 cm W ely = TAB("steel/"Typ; Wy; Name=Profil) = 194,00 cm³ W ply = α ply * W ely = 221,16 cm³ W elz = TAB("steel/"Typ; Wz; Name=Profil) = 28,50 cm³ Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 E s = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm² G = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mm² f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² ε = (235/f y ) = 1,00 Partial safety factors: γ M = 1,10 γ g = 1,35 γ p = 1,50

Folder: _EC3 Continuous Beam Design calculations: Factored load p d = γ g * g + γ p * s = 0,87 kn/m² Effective load q d = p d * 4 = 3,48 kn/m Vertical load component q zd = q d * COS(ϕ) = 3,43 kn/m Horizontal load component q yd = q d * SIN(ϕ) = 0,60 kn/m Forces at 2nd support: M bysd = 0,105 * q zd * (l / 100)² = 18,67 knm M bzsd = 0,105 * q yd * (l / 100)² = 3,27 knm V bzsd = 0,606 * q zd * l / 100 = 14,97 kn V bysd = 0,606 * q yd * l / 100 = 2,62 kn Check biaxial bending strength: About Y-Y axis A v = 1,04 * h * t w / 10² = 11,65 cm² V pl,z,rd = A v * fy / (γ M * (3) * 10) = 143,69 kn V bzsd / V pl,z,rd = 0,10 < 1 V bzsd / V pl,z,rd = 0,10 < 0,5 No reduction in moment strength necessary due to shear. M pl,y,rd = W ply * f y / γ M / 10 = 4724,78 kncm About Z-Z axis A v = 2 * b f * t f / 10² = 17,00 cm² V pl,y,rd = A v * fy / (γ M * (3) * 10) = 209,68 kn V bysd / V pl,y,rd = 0,01 < 1 V bysd / V pl,y,rd = 0,01 < 0,5 No reduction in moment strength necessary due to shear M pl,z,rd = 1,5 * W elz * f y / γ M / 10 = 913,30 kncm Analysis: as in 5.35: for I- and H- sections: α= 2,00 β= 1,00 Or else: 5.4.8.1 (11) ABS((M bysd /(M pl,y,rd /10²)) (α) +(M bzsd /(M pl,z,rd /10²)) (β) ) = 0,514 < 1 Check flexural-torsional buckling strength: i LT = (I z * I ω / W ply ²)0,25 = 2,48 cm Load is applied in top flange. z a = 10,00 cm z s = 0,00 cm z g = z a - z s = 10,00 cm As in Table F.1.2, Werte interpoliert. C 1 = 1,00 C 2 = 0,80 C 3 = 0,70 For simply supported ends fixed ends k = 0,70 No measures taken toward bending k w = 1,00

Folder: _EC3 Continuous Beam h s = (h - t f ) / 10 = 19,15 cm 5.5.2; Section class 1+2 β w = 1,00 λ 1 = π * (E s / f y ) = 93,91 Auxilliary value v =((k / k w )²+1/20*(k*l/i LT /(h/t f ))²+(2*C 2 *z g /h s )²) = 4,92 λ LT = k*l/i LT /((C 1 ) 0,5 *(v 0,5-2*C 2 *z g /h s ) 0,5 ) = 172,83 λ trans,lt = λ LT / λ 1 * (β w ) = 1,840 Apply strut curve a: As in Table 5.5.1 α = 0,21 ϕ = 0,5 * (1 + α * (λ trans,lt -0,2) + λ trans,lt ²) = 2,37 χ LT = 1 / (ϕ + (ϕ² - λ trans,lt ²) 0,5 ) = 0,26 No longitudinal forces k z = 1,00 No longitudinal forces k LT = 1,00 k LT * M bysd / (χ LT * M pl,y,rd / 10²) + k z * M bzsd / (M pl,z,rd / 10²) = 1,88 < 1 Section is not adequate: Restrain section in quarterly points: l = l / 4 = 180,00 cm Auxilliary value v =((k/k w )²+1/20*(k*l/i LT /(h/t f ))²+(2*C 2 *z g /h s )²) = 1,42 λ LT = k*l/i LT /((C 1 ) 0,5 *(v 0,5-2*C 2 *z g /h s ) 0,5 ) = 85,14 λ trans,lt = λ LT / λ 1 * (β w ) = 0,907 Apply strut curve a: ϕ = 0,5 * (1 + α * (λ trans,lt -0,2) + λ trans,lt ²) = 0,99 χ LT = 1 / (ϕ + (ϕ² -λ trans,lt ²) 0,5 ) = 0,72 k LT * M bysd / (χ LT * M pl,y,rd / 10²) + k z * M bzsd / (M pl,z,rd / 10²) = 0,91 < 1

Folder: _EC3 foot and support foot and support Concentrated point load of a beam in another beam: Design loads and properties P sd = 68,00 kn M sd1 = 70,00 knm M sd2 = -22,00 knm Top beam (IPE180) Profil TypO = SEL("steel/Profils"; Name; ) = IPE Selected ProfilO = SEL("steel/"TypO; Name; ) = IPE 180 Web thickness s o = TAB("steel/"TypO; s; Name=ProfilO) = 5,30 mm Flange thickness t o = TAB("steel/"TypO; t; Name=ProfilO) = 8,00 mm Radius r o = TAB("steel/"TypO; r; Name=ProfilO) = 9,00 mm Flange width b o = TAB("steel/"TypO; b; Name=ProfilO) = 91,00 mm Web depth h o = TAB("steel/"TypO; h; Name=ProfilO) = 180,00 mm Web depth h 1o = TAB("steel/"TypO; h1; Name=ProfilO) = 146,00 mm W elo = TAB("steel/"TypO; W y ; Name=ProfilO) = 146,00 cm³ W plo = 1,14 * W elo = 166,44 cm 3 I yo = TAB("steel/"TypO; Iy; Name=ProfilO) = 1320,00 cm 4 Bottom beam (HEA200) Profil TypO = SEL("steel/Profils"; Name; ) = HEA Selected ProfilO = SEL("steel/"TypO; Name; ) = HEA 200 Web thickness of beam s u = TAB("steel/"TypO; s; Name=ProfilO) = 6,50 mm Flange thickness t u = TAB("steel/"TypO; t; Name=ProfilO) = 10,00 mm Radius r u = TAB("steel/"TypO; r; Name=ProfilO) = 18,00 mm Flange width bu = TAB("steel/"TypO; b; Name=ProfilO) = 200,00 mm Web depth h u = TAB("steel/"TypO; h; Name=ProfilO) = 190,00 mm Web depth h 1u = TAB("steel/"TypO; h1; Name=ProfilO) = 134,00 mm W elu = TAB("steel/"TypO; W y ; Name=ProfilO) = 389,00 cm³ W plu = 1,14 * W elu = 443,46 cm 3 I yu = TAB("steel/"TypO; Iy; Name=ProfilO) = 3690,00 cm 4

Folder: _EC3 foot and support Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 E s = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm² G = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mm² f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² ε = (235 / f y ) = 1,00 γ M = 1,10 λ 1 = 93,90 * ε = 93,90 f yd = f y /γ M = 213,64 kn/cm² Limit plastic bearing: Stiff bearing length of top, bottom beam: s s1 = s o + 2 * t o + 4 * r o * (1 - (2) / 2) = 31,84 mm σ f,ed1 = 100 * M sd1 / W elu = 17,99 kn/cm² b f1 = t u * 25 = 250,00 mm b f1 = MIN(b f1 ; b u ) = 200,00 mm s y1 = 2 * t u * (b u / s u ) 0,5 * (1 - (γ M * σ f,ed1 / f y * 10 )²) 0,5 = 59,83 mm R y,rd1 = (s s1 + s y1 ) * s u * f y / γ M / 10 ³ = 127,30 kn P sd / R y,rd1 = 0,53 < 1 Stiff bearing length of bottom beam: s s2 = s u + 2 * t u + 4 * r u * (1 - (2) / 2) = 47,59 mm σ f,ed2 = 100 * M sd2 / W elo = -15,07 kn/cm² b f = t o * 25 = 200,00 mm b f2 = MIN(b f ; b o ) = 91,00 mm s y2 = 2 * t o * (b o / s o ) 0,5 * ( 1 - (γ M * σ f,ed2 / f y * 10)²) 0,5 = 46,99 mm R y,rd2 = (s s2 + s y2 ) * s o * f y / γ M / 10³ = 107,09 kn P sd / R y,rd2 = 0,63 < 1 Check web crushing: Bottom beam: m 1 = s s1 / h 1u = 0,238 m 2 = 0,200 m u = MIN(m 1 ; m 2 ) = 0,200 R a,rd1 = 0,5 * s u ² * (E s * f y ) 0,5 * ((t u / s u ) 0,5 + 3 *(s u / t u ) * m u ) / γ M / 10³ = 219,95 kn P sd / R a,rd1 = 0,31 < 1 M c,rd1 = W plu * f y / γ M / 10³ = 94,74 knm M sd1 / M c,rd1 = 0,74 < 1 Top beam: m 1 = s s2 / h 1o = 0,326 m 2 = 0,200 m o = MIN(m 1 ; m 2 ) = 0,200 R a,rd2 = 0,5 * s o ² * (E s * f y ) 0,5 * ((t o / s o ) 0,5 + 3 * (s o / t o ) * m o ) / γ M / 10³ = 145,85 kn P sd / R a,rd2 = 0,47 < 1 M c,rd2 = W plo * f y / γ M / 10³ = 35,56 knm ABS(M sd2 ) / M c,rd2 = 0,62 < 1

Folder: _EC3 foot and support Check web buckling for whole web: Bottom beam: Effective web width b eff2 = (h u ² + s s1 ²) 0,5 = 192,65 mm Effective web area A 2 = b eff2 * s u / 100 = 12,52 cm² Moment of inertia I 2 = b eff2 / 10 * (s u / 10)³ / 12 = 0,441 cm 4 Radius of gyration i 2 = (I 2 / A 2 ) 0,5 = 0,188 cm Effective slenderness λ trans2 = h u / (i 2 * λ 1 * 10) = 1,076 Apply strut curve c: α = 0,49 ϕ = 0,5 * (1 + α * (λ trans2-0,2) + λ trans2 ²) = 1,294 χ 2 = 1 / (ϕ + (ϕ² - λ trans2 ²) 0,5 ) = 0,4968 R b,rd2 = χ 2 * A 2 * f y / 10 / γ M = 132,88 kn P sd / R b,rd2 = 0,51 < 1 Top beam: Effective web width b eff1 = (h o ² + s s1 ²) 0,5 = 182,79 mm Effective web area A 1 = b eff1 * s o / 100 = 9,69 cm² Moment of inertia I 1 = b eff1 / 10 * (s o / 10)³ / 12 = 0,227 cm 4 Radius of gyration i 1 = (I 1 / A 1 ) 0,5 = 0,153 cm Effective slenderness λ trans1 = h o / (i 1 * λ 1 * 10) = 1,253 Apply strut curve c: α = 0,49 ϕ = 0,5 * (1 + α * (λ trans1-0,2) + λ trans1 ²) = 1,543 χ 1 = 1 / (ϕ + (ϕ² - λ trans1 ²) 0,5 ) = 0,4093 R b,rd1 = χ 1 * A 1 * f y / 10 / γ M = 84,73 kn P sd / R b,rd1 = 0,80 < 1 Check web yield at load points: Bottom beam: σ x,ed2 = M sd1 * 10² * (h u / 2 - t u ) / I yu = 161,25 kn/cm² σ z,ed2 = 10³ * P sd / ((s s1 + 2 * t u ) * s u ) = 201,80 kn/cm² (σ x,ed2 / f yd )² + (σ z,ed2 / f yd )² - (σ x,ed2 / f yd )*(σ z,ed2 / f yd )= 0,75 < 1 Top beam: σ x,ed1 = -M sd2 * 10² * (h o / 2 - t o ) / I yo = 136,67 kn/cm² σ z,ed1 = 10³ * P sd / ((s s2 + 2 * t o ) * s o ) = 201,76 kn/cm² (σ x,ed1 / f yd )² + (σ z,ed1 / f yd )² - (σ x,ed1 / f yd ) * (σ z,ed1 / f yd ) = 0,70 < 1

Folder: _EC3 foot and support Column base subject to compression und bending: Msd Nsd l d e1 p e1 e a Plan and elevation values: Distance to edge of baseplate e = 45,00 mm Distance to edge of baseplate e 1 = 100,00 mm Spacing of bolts p = 300,00 mm Width of baseplate b = 500,00 mm Length of baseplate a = 500,00 mm Plate thickness d = 30,00 mm Projection of plate l = 100,00 mm Weld thickness a w = 10,00 mm Projection of pad footing a r = 1000,00 mm Depth of pad footing h = 1400,00 mm as in L.3 (idr) Bearing plane factor β j = 2/3 = 0,67 b Profil Typ = SEL("steel/Profils"; Name; ) = HEB Selected Profil = SEL("steel/"Typ; Name; ) = HEB 300 Moment of inertia I y1 = TAB("steel/"Typ; Iy; Name=Profil) = 25170,00 cm 4 Flange width b f = TAB("steel/"Typ; b; Name=Profil) = 300,00 mm Flange thickness t f = TAB("steel/"Typ; t; Name=Profil) = 19,00 mm Column height h t = TAB("steel/"Typ; h; Name=Profil) = 300,00 mm M pl,y,rd = TAB("steel/"Typ; Mplyd; Name=Profil) = 418,00 knm N pl,rd = TAB("steel/"Typ; Npld; Name=Profil) = 3250,00 kn Loads: N sd = 1000,00 kn M sd = 221,75 knm

Folder: _EC3 foot and support Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 430 E s = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm² f y = TAB("steel/EC"; fy; Name=steel) = 275,00 N/mm² Concrete = SEL("Concrete/EC"; Name; ) = C30/37 f ck = TAB("Concrete/EC"; f ck ; Name=Concrete) = 30,00 N/mm² SC = SEL("steel/bolt"; SC; ) = 4.6 Bolt = SEL("steel/bolt"; BS; ) = M 24 f u = TAB("steel/bolt"; fubk; SC=SC) = 400,00 N/mm² A s = TAB("steel/bolt"; Asp; BS=Bolt) = 3,53 cm² γ Mb = 1,25 γ c = 1,50 γ M0 = 1,10 Design: m = l - e - 0,8 * a w * (2) = 43,69 mm l eff1a = MIN(4 * m + 1,25 * e; 2 * m + 0,625 * e + e 1 ) = 215,51 mm l eff1b = MIN(2 * m + 0,625 * e + 0,5 * p; e 1 + 0,5 * p; b / 2) = 250,00 mm l eff1 = MIN(l eff1a ; l eff1b ) = 215,51 mm l eff2a = MIN(π * 2 * m; π * m + 2 * e 1 ) = 274,51 mm l eff2b = MIN(π * m + p; p + 2 * e 1 ) = 437,26 mm l eff = MIN(l eff2a ; l eff2b ; l eff1 ) = 215,51 mm Maximum stress of base plate at the centre of tension bolt: M pl,1,rd = 0,25 * l eff * (d / 10)² * f y / 10/ γ M0 = 12,12*10 3 knmm n = e = 45,00 mm n / (1,25 * m) = 0,82 < 1 B t,rd = 0,9 * f u * A s / 10 / γ Mb = 101,66 kn Full flange yield: F T,Rd1 = 4 * M pl,1,rd / m = 1109,64 kn Bolt failure with flange yielding: F T,Rd2 = (2 * M pl,1,rd + n * 2 * B t,rd ) / ( m + n ) = 376,47 kn Bolt failure without flange yielding: F T,Rd3 = 2 * B t,rd = 203,32 kn F T,Rd = MIN(F T,Rd1 ; F T,Rd2 ; F T,Rd3 ) = 203,32 kn Effective compression area: Limit pressure in the base plate: a 1 = MIN(a + 2 * a r ; 5 * a; a + h) = 1900,00 mm k j = (a 1 ² / (a * b)) 0,5 = 3,80 f j = β j * k j * f ck / γ c = 50,92 N/mm² A eff = 10 * (N sd + F T,Rd ) / f j = 236,32 cm² c = d * (f y *10/ ( 3 * f j * γ M0 )) 0,5 = 121,36 mm x 0 = 100 * A eff / ( 2 * c + b f ) = 43,54 mm x 0 /(t f + 2 * c) = 0,17 < 1

Folder: _EC3 foot and support Limit moment at column base: r c = h t / 2 + c - x 0 / 2 = 249,59 mm M Rd = (F T,Rd * 10³ *(h t /2 + 100 - e) + A eff * 100 * f j * r c ) / 10 6 = 342,02 knm Check permissible strength of column to bending and compression.: M Ny,Rd = 1,1 * M pl,y,rd * (1- N sd / N pl,rd ) = 318,32 knm Analysis: M sd / MIN(M Ny,Rd ; M Rd ) = 0,70 < 1

Folder: _EC3 Frames Frames Sway frame with bracing out of plane of frame, plastic theory: q d H d B D h A C l Plan and elevation values: Frame width l = 8,00 m Frame depth h = 6,00 m Number of column n c = 2 Number of storeys n s = 1 Beam: Profil Typ1 = SEL("steel/Profils"; Name; ) = IPE Selected Profil1= SEL("steel/"Typ1; Name; ) = IPE 240 Column height h 1 = TAB("steel/"Typ1; h; Name=Profil1) = 240,00 mm Web thickness s 1 = TAB("steel/"Typ1; s; Name=Profil1) = 6,20 mm Moment of inertia I y1 = TAB("steel/"Typ1; Iy; Name=Profil1) = 3890,00 cm 4 Cross-sectional area A 1 = TAB("steel/"Typ1; A; Name=Profil1) = 39,10 cm² Moment of resistance W y1 = TAB("steel/"Typ1; Wy; Name=Profil1) = 324,00 cm² Moment of resistance Wpl y1 = 1,14 * W y1 = 369,36 cm³ Column section: Profil Typ2 = SEL("steel/Profils"; Name; ) = HEB Selected Profil2 = SEL("steel/"Typ2; Name; ) = HEB 240 Flange width b 2 = TAB("steel/"Typ2; b; Name=Profil2) = 240,00 mm Column height h 2 = TAB("steel/"Typ2; h; Name=Profil2) = 240,00 mm Web thickness s 2 = TAB("steel/"Typ2; s; Name=Profil2) = 10,00 mm Moment of inertia I y2 = TAB("steel/"Typ2; Iy; Name=Profil2) = 11260,00 cm 4 Moment of inertia I z2 = TAB("steel/"Typ2; Iz; Name=Profil2) = 3920,00 cm 4 Moment of inertia I t2 = TAB("steel/"Typ2; IT; Name=Profil2) = 103,00 cm 4 Moment of inertia I ω2 = 10³*TAB("steel/"Typ2; Iω; Name=Profil2) =486900,00 cm 6 Cross-sectional area A 2 = TAB("steel/"Typ2; A; Name=Profil2) = 106,000 cm² i y = TAB("steel/"Typ2; iy; Name=Profil2) = 10,30 cm i z = TAB("steel/"Typ2; iz; Name=Profil2) = 6,08 cm Moment of resistance W ely2 = TAB("steel/"Typ2;Wy; Name=Profil2) = 938,00 cm³ Moment of resistance W ply2 = 1,25 * W ely2 = 1172,50 cm³ Loads: H d = 9,00 kn q d = 9,00 kn/m