Synthesis of Non-Symmetrically Sulphonated Phosphine Sulphonate Based Pd(II) Catalyst Salts for Olefin Polymerisation Reactions

Σχετικά έγγραφα
Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Supporting Information. Experimental section

Supplementary!Information!

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting information

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting information

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Electronic Supplementary Information

Supporting Information for. Update of spectroscopic data for 4-hydroxyldictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota

CCl 3 + and CBr 3 + Salts with the [Al(OR F ) 4 ] and [( F RO) 3 Al-F-Al(OR F ) 3 ] Anions

Extended dissolution studies of cellulose in imidazolium based ionic liquids

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting Information

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ

Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Supporting Information

Supplementary information

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

SUPPORTING INFORMATION

Electronic Supplementary Information

Supplementary Information

Supporting Information

L. Kaßner a, K. Nagel a, R. E. Grützner b, M. Korb c, T. Rüffer c, H. Lang c and S. Spange a

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

The Free Internet Journal for Organic Chemistry

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Electronic Supplementary Information

Supporting Information

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Fast healing of polyurethane thermosets using. reversible triazolinedione chemistry and shapememory

SUPPLEMENTARY MATERIAL

and Trimethylene Carbonate

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Selective mono reduction of bisphosphine

Supporting Information. for

Electronic supplementary information for

SUPPORTING INFORMATION

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting information

Supporting Information

Available online at shd.org.rs/jscs/

Electronic Supplementary information

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Supporting Information

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

π-face DONOR PROPERTIES OF N-HETEROCYCLIC CARBENES MARCUS SÜßNER AND HERBERT PLENIO

Supporting Information

Supporting information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Supporting Information

Supporting Information

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Supporting Information

Table of Contents 1 Supplementary Data MCD

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Electronic Supplementary Information

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Available online at

Supplementary material

Submittal Data Sheet Wilo Stratos Z - High Efficiency Domestic Hot Water Circulator

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

Supplementary Information

Available online at shd.org.rs/jscs/

Supporting Information

Transcript:

Supplementary Information for: Synthesis of Non-Symmetrically Sulphonated Phosphine Sulphonate Based Pd(II) Catalyst Salts for Olefin Polymerisation Reactions Timo M. J. Anselment a, Carly E. Anderson a and Bernhard Rieger a M. Bele Boeddinghaus b, Thomas F. Fässler b a Dipl.-Chem. Univ. T. M. J. Anselment, Dr. C. E. Anderson, Prof. Dr. Dr. h.c. B. Rieger, WACKER-Lehrstuhl für Makromolekulare Chemie der Technischen Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany. Fax: +49.89.289-13562; Tel: +49.89.289-13571; E-mail: rieger@tum.de. b Dipl.-Chem. Univ. M. B. Boeddinghaus, Prof. Dr. T. F. Fässler, Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien der Technischen Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.

1. NMR spectra for newly synthesised compounds 1.1 [K] 2 [rac-o,m-triphenylphosphine disulphonate] (rac-o,m-tppds) 2b 1 H NMR (5 MHz, D 2 O) δ 8.6 (m, 1H), 7.82 (m, 1H), 7.7 (m, 1H), 7.51 (m, 1H), 7.41 (m, 2H), 7.37 7.29 (m, 3H), 7.26 (m, 3H), 7.4 (m, 1H). 31 P NMR (121 MHz, D 2 O) δ -1.5 13 C{ 1 H} NMR (75 MHz, D 2 O) δ 148.2 (d, J(C-P) = 26.2 Hz), 143.7 (d, J(C-P) = 6.4 Hz), 139.6 (d, J(C-P) = 12.8 Hz), 137.1 (d, J(C-P) = 1.3 Hz), 137. (d, J(C-P) = 7.9 Hz), 136.9 (s), 134.7 (s), 134.5 (d, J (C-P)= 21.8 Hz), 134.4 (s), 132.3 (s), 131. (s), 13.8 (s), 13.7 (s), 13.2 (s), 13.2 (d, J(C-P) = 5.9 Hz), 129.8 (d, J(C-P) = 7. Hz), 128.3 (d, J(C-P) = 4.7 Hz), 126.7 (s). 1 H NMR (5 MHz, D 2 O, water suppression)

-1.16-1.52 1E+5-1.16-1.52 1E+5 1E+5 1E+5 9 9 8 7 8 2b 6 7 5 6 4 5 3 4 2 2c 2a 1 3 2 6 5 4 3 2 1 f1 (ppm) -1 3b -2-3 -4-5 -6-7 -8-9 6.99 1. 1.31-1 -12-14 -16-1 1 2.35 6.99 1. 1.31-1 5 45 4 35 3 25 2 15 1 5 f1 (ppm) -5-1 -15-2 -25-3 -35-4 -45-5 31 P { 1 H} NMR (121 MHz, D 2 O) 13 C{ 1 H} NMR (75 MHz, D 2 O)

1.2 [Na] 3 [o,m,m-triphenylphosphine trisulphonate] (o,m,m-tppts) 2c 1 H NMR (5 MHz, D 2 O) δ 8.9 (m, 1H), 7.89 7.85 (m, 2H), 7.73 7.69 (m, 2H), 7.61 (m, 1H), 7.55 (m, 2H), 7.49 7.42 (m, 3H), 7.14 (m, 1H). 31 P NMR (121 MHz, D 2 O) δ -1.3 13 C{ 1 H} NMR (75 MHz, D 2 O) δ 148.1 (d, J (C-P) = 26.5 Hz), 143.7 (d, J (C-P) = 6.4 Hz), 138.8 (d, J (C-P) = 13. Hz), 137.3 (d, J (C-P) = 19.2 Hz), 137.1 (d, J (C-P) = 1.3 Hz), 133.7 (d, J (C-P) = 21.7 Hz), 132.5 (s), 131. (d, J (C-P) = 2.6 Hz), 13.8 (s), 13.3 (d, J (C-P) = 6.2 Hz), 128.3 (d, J (C-P) = 4.9 Hz), 127. (s). 1 H NMR (5 MHz, D 2 O, water suppression)

2c 2b 3c 31 P { 1 H} NMR (121 MHz, D 2 O) 13 C{ 1 H} NMR (75 MHz, D 2 O)

1.3 1-(3-Sulphonatophenyl)-1H-9-thia-1-phosphaanthracene-9.9.1-trioxide 4, sodium salt 1 H NMR (5 MHz, D 2 O) δ 8.17 (m, 2H), 8.5 8.1 (m, 2H), 7.98 (m, 2H), 7.91 (m, 2H), 7.76 (m, 2H), 7.67 (m, 2H), 7.57 7.48 (m, 2H). 13 C{ 1 H} NMR (75 MHz, D 2 O) δ 144.7 (d, J(C-P) = 13.6 Hz), 141.3 (d, J(C-P) = 7.6 Hz), 135.3 (s), 135.2 (d, J(C-P) = 11.5 Hz), 134.8 (d, J(C-P) = 11.9 Hz), 134. (d, J(C-P) = 4.9 Hz), 132.2 (d, J(C-P) = 113.7 Hz), 131.5 (s), 13.9 (d, J(C-P) = 13.5 Hz), 129.1 (d, J(C-P) = 12.8 Hz), 128.9 (d, J(C-P) = 12. Hz), 126.3 (d, J(C-P) = 7.5 Hz). 31 P{ 1 H} NMR (121 MHz, D 2 O) δ 8.9 (s). 1 H NMR (5 MHz, D 2 O, water suppression)

31 P { 1 H} NMR (121 MHz, D 2 O) 13 C{ 1 H} NMR (75 MHz, D 2 O)

1.4 [K(18-crown-6)] 2 [rac-o,m-tppds] 5b 1 H NMR (3 MHz, CD 2 Cl 2 ) δ 8.9 (m, 1H), 7.95 (m, 1H), 7.76 (m, 1H), 7.35 7.15 (m, 8H), 7.1 7.3 (m, 2H), 3.53 (s, 57H). 13 C NMR (75 MHz, CD 2 Cl 2 ) δ 152.8 (d, J(C-P) = 27.3 Hz), 147.7 (d, J(C-P) = 7.9 Hz), 139.9 (d, J(C-P) = 14.2 Hz), 139.5 (d, J(C-P) = 16.7 Hz), 136.1 (d, J(C-P) = 2.5 Hz), 135. (d, J(C-P) = 23.5 Hz), 134.6 (d, J(C-P) = 11.7 Hz), 134. (d, J(C-P) = 19.4 Hz), 131.7 (d, J(C-P) = 29.2 Hz), 129.4 (s), 128.8 (s), 128.4 (d, J(C-P) = 6.1 Hz), 128.2 (s), 128.1 (d, J(C-P) = 3.6 Hz), 128. (d, J(C-P) = 6.1 Hz), 126.4 (s), 7.4 (s). 31 P NMR (121 MHz, CD 2 Cl 2 ) δ -9.3 (s). 1 H NMR (3 MHz, CD 2 Cl 2 )

5b 31 P { 1 H} NMR (121 MHz, CD 2 Cl 2 ) 13 C{ 1 H} NMR (75 MHz, CD 2 Cl 2 )

1.5 [K(18-crown-6)][o-TPPMS] 5a 1 H NMR (3 MHz, CD 2 Cl 2 ) δ 8.11 (m, 1H), 7.42 7.15 (m, 12H), 7.4 (m, 1H), 3.56 (s, 27H). 13 C{ 1 H} NMR (75 MHz, CD 2 Cl 2 ) δ 152.7 (d, J(C-P) = 27.1 Hz), 139.9 (d, J(C-P) = 14.5 Hz), 135.9 (d, J(C-P) = 2.4 Hz), 135. (d, J(C-P) = 23.2 Hz), 134.2 (s), 133.9 (s), 129.4 (s), 128.9 (s), 128.5 (d, J(C-P) = 6.1 Hz), 128.3 (s), 128. (d, J(C-P) = 5.1 Hz), 7.5 (s). 31 P{ 1 H} NMR (121 MHz, CD 2 Cl 2 ) δ -9. (s). 1 H NMR (3 MHz, CD 2 Cl 2 )

31 P { 1 H} NMR (121 MHz, CD 2 Cl 2 ) 13 C{ 1 H} NMR (75 MHz, CD 2 Cl 2 )

1.6 [K(18-crown-6)] 2 [κ 2 (P,O){rac-o,m-TPPDS}] 6 1 H NMR (5 MHz, CD 2 Cl 2 ) δ 8.7 (m, 1H), 8.3 (m, 1H), 7.94 (m, 1H), 7.64 (m, 2H), 7.46 (m, 2H), 7.36 (m, 5H), 7.6 (m, 1H), 3.54 (s, 48H),.53 (d, 3 J (H-P) = 3.2 Hz, 3H). 13 C NMR (75 MHz, CD 2 Cl 2 ) δ 15.1 (d, J(C-P) = 14. Hz), 148.4 (d, J(C-P) = 1.5 Hz), 135.6 (d, J(C-P) = 1.5 Hz), 135.5 (s), 135.4 (d, J(C-P) = 11.9 Hz), 135.4 135.2 (m), 132. 131.5 (m), 131.3 (d, J(C-P) = 13.4 Hz), 131.3 13.8 (m), 131. (d, J(C-P) = 2.6 Hz), 13.8 (d, J(C-P) = 2.1 Hz), 13.7 129.8 (m), 13.2 (d, J(C-P) = 6.4 Hz), 129. 128.9 (m), 128.9 128.8 (m), 128.4 128.3 (m), 128.2 (d, J(C-P) = 3.6 Hz). 31 P NMR (121 MHz, CD 2 Cl 2 ) δ +27.4..53.53 8 24 75 23 8.8 8.8 8.7 8.6 8.4 8.2 7.95 7.93 7.66 7.64 7.63 7.62 7.48 7.47 7.45 7.44 7.41 7.4 7.38 7.37 7.35 7.34 7.32 7.8 7.6 7.4 4 38 36 34 32 3 7 65 6 55 22 21 2 19 18 28 5 17 26 24 22 2 18 16 14 45 4 35 3 16 15 14 13 12 12 25 11 1.8.97 1.6 2.1 2.16 5.25.97 1 8 6 4 2-2 2 15 1 5 1 9 8 7 6 8.15 8.1 8.5 8..48 2.1 7.95 2. 7.9 7.85 1.9 7.8 1.8 7.75 7.7 1.7 7.65 7.6 7.55 f1 (ppm) 1.6 1.5 7.5 7.45 1.4 7.4 1.3 7.35 7.3 1.2 7.25 7.2 7.15 1.1 1. f1 (ppm) 7.1 7.5.9 7..8 6.95.7 3.15 3..6.5.4.3.2.1. -5 5 4 3 2 1 1.8.97 1.6 2.1 13.97 2.16 5.25.97 51.88.48 3.15 3. -1 8. 7.5 7. 6.5 6. 5.5 5. 4.5 4. f1 (ppm) 3.5 3. 2.5 2. 1.5 1..5.

27.39 14 13 12 11 1 9 8 7 6 5 4 3 2 1 5 45 4 35 3 25 2 15 f1 (ppm) 1 5-5 -1-15 -2 31 P { 1 H} NMR (121 MHz, CD 2 Cl 2 ) 7.48 1.28 65 15.18 149.99 148.46 148.46 148.32 148.32 135.57 135.55 135.45 135.29 131.96 131.96 131.52 131.35 131.17 131.1 13.98 13.83 13.76 13.73 13.63 13.63 13.23 13.14 13.9 128.92 128.92 128.77 128.77 128.31 128.31 128.17 8 6 75 7 65 6 55 55 5 5 45 4 35 3 25 45 4 2 15 35 1 5 3 15 149 148 147 146 145 144 143 142 141 14 139 138 f1 (ppm) 137 136 135 134 133 132 131 13 129 128-5 25 2 15 1 5 15 14 13 12 11 1 9 8 f1 (ppm) 7 6 5 4 3 2 1 13 C{ 1 H} NMR (75 MHz, CD 2 Cl 2 )

1.7 [K(18-crown-6)][κ 2 (P,O){o-TPPMS}] 7 1 H NMR (3 MHz, CD 2 Cl 2 ) δ 8. (m, 1H), 7.55 7.18 (m, 12H), 6.91 (m, 1H), 3.47 (s, 24H),.44 (d, 3 J (H- P) = 3.4 Hz, 3H). 13 C NMR (75 MHz, CD 2 Cl 2 ) δ 15.1 (d, J (C-P) = 14. Hz), 135.3 (d, J (C-P) = 1.4 Hz), 134.9 (d, J (C-P) = 12.5 Hz), 131.6 (d, J (C-P) = 52.5 Hz), 13.9 (d, J (C-P) = 2.4 Hz), 13.8 (d, J (C-P) = 2.1 Hz), 13.4 (d, J (C- P) = 41. Hz), 13. (d, J (C-P) = 6.3 Hz), 128.8 (d, J (C-P) = 11. Hz), 128.3 (d, J (C-P) = 7.5 Hz), 7.5 (s), - 2.5 (s). 31 P NMR (121 MHz, CD 2 Cl 2 ) δ +26.6. 32 3 28 26 24 22 2 18 16 14 12 1 8 6 4 2.98 12.21 1. 24.41 2.82 8.1 8.1 8.9 8.8 8.7 8.7 8.6 8.6 7.53 7.42 7.41 7.39 7.39 7.3 7.3 7.1 7. 6.98 6.97 3.55.52.51-2 8.5 8. 7.5 7. 6.5 6. 5.5 5. 4.5 4. f1 (ppm) 3.5 3. 2.5 2. 1.5 1..5. -.5 1 H NMR (3 MHz, CD 2 Cl 2 )

26.89 6.92 32 3 28 26 24 22 2 18 16 14 12 1 8 6 4 2-2 45 4 35 3 25 2 15 1 f1 (ppm) 5-5 -1-15 -2 31 P { 1 H} NMR (121 MHz, CD 2 Cl 2 ) 13 C{ 1 H} NMR (75 MHz, CD 2 Cl 2 )

2. Polymer analysis 2.1 Selected GPC data 2.1.1 Polyethylene The depicted GPC plots show a representative behaviour of the synthesised polyethylene with observed bimodal distribution of molecular weights. Multi detection was employed to facilitate separate processing of the high and low molecular weight traces.

PE of Entry 9 in Table 3:

RI only detection: 2.1.2 GPC plot of an AN/ethene copolymerisation (Entry 16)

2.2 High temperature 1 H-NMR spectroscopic assignment for the AN/ethene copolymerisation (Entry 16)