Η δονητική φασματοσκοπία και οι μηχανικές μετρήσεις στη νανοτεχνολογία

Σχετικά έγγραφα
Strain gauge and rosettes

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Chapter 7 Transformations of Stress and Strain

MECHANICAL PROPERTIES OF MATERIALS

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory


(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

(Mechanical Properties)


«Υαξαθηεξηζκόο ηλώλ άλζξαθνο πςειήο αληνρήο»


Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Mechanics of Materials Lab

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Supporting Information

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

High Frequency Chip Inductor / CF TYPE

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Homework 3 Solutions

Naoki Hayashi MPa 10 %

NMBTC.COM /

Capacitors - Capacitance, Charge and Potential Difference

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

FP series Anti-Bend (Soft termination) capacitor series

Solution to Review Problems for Midterm III

1 String with massive end-points

Injection Molded Plastic Self-lubricating Bearings

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Aluminum Electrolytic Capacitors (Large Can Type)

[1] P Q. Fig. 3.1

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

Σύνθεση και Χαρακτηρισµός Χαµηλοδιάστατων Ηµιαγωγών Αλογονιδίων του Μολύβδου και Χαλκογενιδίων.

Νανοσύνθετα πολυαιθυλενίου υψηλής πυκνότητας (HDPE) / νανοϊνών χαλκού (Cu-nanofibers) με βελτιωμένη σταθερότητα στην υπεριώδη ακτινοβολία

the total number of electrons passing through the lamp.

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

SMD Wire Wound Ferrite Chip Inductors - LS Series. LS Series. Product Identification. Shape and Dimensions / Recommended Pattern LS0402/0603/0805/1008

of the methanol-dimethylamine complex

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Aluminum Electrolytic Capacitors

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018

Applications Coaxial cables for high frequency. Coaxial cables from 50 Ω to 95 Ω. Construction

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

ect of Modified Wheat Starches on the Textural Properties of Baked Products, such as Cookies

SMD Transient Voltage Suppressors

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Section 8.3 Trigonometric Equations

Homework 8 Model Solution Section

Tridiagonal matrices. Gérard MEURANT. October, 2008

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

EE101: Resonance in RLC circuits

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΜΗΧΑΝΙΚΩΝ Ι ΙΟΤΗΤΩΝ ΕΠΙΦΑΝΕΙΩΝ ΜΕ ΣΥΓΧΡΟΝΕΣ ΝΑΝΟΤΕΧΝΟΛΟ- ΓΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ

Ceramic PTC Thermistor Overload Protection

Lecture 21: Scattering and FGR

Approximation of distance between locations on earth given by latitude and longitude

Λιμνοποτάμιο Περιβάλλον και Οργανισμοί

4.6 Autoregressive Moving Average Model ARMA(1,1)

Διονύσιος Α. ΜΠΟΥΡΝΑΣ 1, Αθανάσιος Χ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ 2, Κωνσταντίνος ΖΥΓΟΥΡΗΣ 3, Φώτιος ΣΤΑΥΡΟΠΟΥΛΟΣ 3

Nuclear Physics 5. Name: Date: 8 (1)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

First Sensor Quad APD Data Sheet Part Description QA TO Order #

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

ST5224: Advanced Statistical Theory II

Right Rear Door. Let's now finish the door hinge saga with the right rear door

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Microwave Sintering of Electronic Ceramics

θ p = deg ε n = με ε t = με γ nt = μrad

Monolithic Crystal Filters (M.C.F.)

Αναερόβια Φυσική Κατάσταση

Transcript:

Η δονητική φασματοσκοπία και οι μηχανικές μετρήσεις στη νανοτεχνολογία Δρ Ι. Παρθένιος Κύριος Ε. Λ. Ε., ITE/IEXMH CNT

From macro to nano 25 cm (a) (b) (c) (d) Human Skin Human Cell on Si House Curtains Bilayer Graphene 1μm 25 cm 1 μm (t ~ 0.7 nm) Vandeparre H., et al. PRL, 106, 224301 (2011) 0D 1D 2D 3D

Various forms of carbon-based nanomaterials P. Ehrenfreund and B. H. Foing, Science 329, 1159 (2010)

Mechanical characterization of nanomaterials MWCNT Force = kd ~ 400 1340 nn Strain = δl/l Hard k (soft) Fracture strength: 11-63 GPa Strain at break: ~12% Young s Modulus: 274 to 954 GPa Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, and Ruoff RS, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 637-640 (2000).

Mechanical characterization of nanomaterials Graphene AFM nanoindentation of graphene membrane Max deflection δ ~ 100 nm The elastic properties and intrinsic breaking strength of defect-free monolayer Breaking strength ~ 42 N/m Young s modulus ~1.0 Tpa Tensile Strength ~ 130 GPa Lee, et al., Science, 321, (2008), 385-388

Force to break a covalent bond in graphene 1 F Breaking strength deformation 42 Nm 0.142 nm 6 nn bond It is assumed that the deformation for bond breaking of the C-C bond in graphene is ~ 0.142 nm Force ~ 65 pn 1N optical tweezers Need: Precise force measurement Stretching DNA* *Gross, P. et al. Quantifying how DNA stretches, melts and changes twist under tension. Nature Physics 7, 731 736 (2011).

Tensile strength and stiffnes of materials A comparison ~100 GPa ~1000 GPa

Raman spectroscopy in Nanomechanics

Raman scattering Energy conservation: s i f Momentum conservation: k ki k f

Experimental set-ups I. II. 0.22 m 0.60 m Renishaw invia 2000 spectrometer system III. Jobin Yvon microscope/spex Triplemate 0.6m Remote Raman System

Raman spectra of graphitic materials - 2D Raman shift (cm -1 )

Raman Spectrum of SWCNT 1D

CF Structure Development and the corresponding Raman spectra of carbon fibres -3D High Modulus Low Modulus Carbon fibres (microscale) (Source: A. R. Bunsell, Fibre Reinforcements for Composite Materials, Amsterdam, The Netherlands: Elsevier Science Publishers B.V., 1988, p. 120.)

G-band of graphene under Strain in Tension & Compression

Axial Experiments in Graphene (tension & compression combined with Raman measurements)

Experimental Set-up for Application of Uniaxial Strain Simply-supported flake F1 Embedded flake or S1805 (785 nm) (514.5 nm) Materials & Geometry SU8 photo resist epoxy-based polymer PMMA beam substrate (2.9x12.0x70) mm 3 x = 10.4 mm and L = 70 mm Mechanical strain at the top of the beam x 2 3t 1 2L x L δ: deflection of the beam neutral axis L: span of the beam t : beam thickness Operating limits: L>> 10δ max -1.5% < ε < 1.5% 16

G-band under Strain in Tension & Compression F1

G-band vs. Strain (no residual strain) 0.0% 1.0% / 36.0 cm G 1 /% G / 17.5 cm 1 /% Mohiudin et al, PRB, 2009 Frank et al, ACS-Nano, 2010

Raman Intensity (a.u.) Raman 2D-peak splitting in single-layer graphene λ=514.5 nm Tension λ=785 nm 1.30% 0.90% 0.61% 0.41% 0.00% 2560 2600 2640 2680 2720 Raman shift (cm -1 ) Measurements of the 2D band alone, for excitation energies lower than 2.41 ev (514.5 nm), may lead to errors with regards to the detailed determination state of stress/strain in the specimen. Frank et al., ACS-Nano, 5, 2321 (2011)

Pos(2D) (cm -1 ) ω2d/ε (cm -1 /%) A simply-supported ( bare ) flake can be loaded! λ exc =514.5nm 2700 80 2680 ω = 2672.8 9.1ε 27.8ε 2 60 40 2660 ω = 2674.4 +25.8 ε 17.3ε 2 20 0 2640 Graphene flake -20 2620 PMMA Compression Tension -40-60 2600-1.5-1.3-1.1-0.9-0.7-0.5-0.3-0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 Strain (%) -80 Tsoukleri et al. Small 2009, 5, 2397]

Pos(2D) (cm -1 ) ω 2D /ε (cm -1 /%) 2700 2D Band for embedded flake λ exc =514.5nm 80 2680 2660 2640 2620 2600 ω = 2680.6+59.1 ε 55.1ε 2 PMMA PMMA 495 SU8 Compression ω = 2681.1 30.2 ε 13.7ε 2 Tension -1.5-1.3-1.1-0.9-0.7-0.5-0.3-0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 Strain (%) 60 40 20 0-20 -40-60 -80 Tsoukleri et al. Small 2009, 5, 2397

Tensile testsin graphene Current status Lee et al, Science (2008) Theory *

Graphene: a powerful stress/ strain sensor Phonon stress (σ) or strain (ε) sensitivities: G T 1 1 ~ 27.0 (cm % ) G T 1 1 ~ 2.7 (cm GPa ) For small(??) strains E, E 1TPa [Lee et al, Science (2008)] (2 D) T 1 1 1 ~ 60.0 cm (cm % ) (2 D) T 1 1 ~ 6.0 (cm GPa ) Knowing the wavenumber shift we can resolve the inverse problem i.e. to obtain the values of axial σ and/or ε in graphene-based materials through the above relations. Frank, O. et al. Development of a universal stress sensor for graphene and carbon fibres. Nat Commun 2, 255 (2011).

Mechanical characterization of single layer graphene Ti strip AFM nanoindentation C. Lee, et al., Science 321, 385 (2008) E =1.0 TPa, Fracture strength = 130 GPa Bending of the substrate (PDMS) & Raman PDMS M. Huang, et al., Proc. Nat. Acad. Sci. 106, 7304 (2009) 1 ω ε 12.5 cm % G 1 ω ε 5.6 cm % G 1 ω2d ε 21.0 cm % 4-point bending of the substrate (PMMA) & Raman T. M. G. Mohiuddin, et al., Phys. Rev. B 79, 205433 (2009) Graphene under pressure & Raman J. Nicolle, et al., Nano Lett. 11, 3564 (2011) Bulge test & Raman (Biaxial deformation) J.-U. Lee, et al., Nano Lett. 12, 4444 (2012) Controlled creation of periodic ripples in suspended graphene sheets using thermally generated strains W. Bao, et al., Nat Nano 4, 562 (2009) Imaging of a vibrating graphene beam using SPM Garcia-Sanchez, et al., Nano Lett., 8, 1399 (2008) Graphene resonator with local buckling E = 2.4 TPa!!!

Axial Experiments in CNT yarns (tension combined with Raman measurements)

Draw-Twist process for CNT yarn production Ribbon Spindle Motor MWNT forest Twisted Yarn Si substrate Spinning machine CNT forest CNT yarn M. Zhang, et al. Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Tecnology, Science, 36, p. 1358, 2004

Yarn model geometry (Ideal helical structure) r k R Yarn segment concentric packing of l layers (R is the radius of the outer layer of the yarn and r k is the radius of layer k ) layer helix angles (h is the height along the yarn axis of one turn of twist) Outer layer helix angle Inner layer k helix angle a a s s 2 R arctan h r tan a k s arctan R

Twist (turns/m) of yarns tan a 1 s h D a s a s 2 R arctan h 1 ~ 14786 m 1 h where α s = 26 o and D = 10.5 μm were measured by SEM pictures

Stress / MPa 1000 CNT yarn mechanical performance CNT yarn (θ = 26 0, D = 10.5 μm) 0.01 min -1 Shell Sliding Experiment in MWCNT 800 0.1 min -1 0.05 min -1 0.02 min -1 600 400 200 0 0.002 min -1 strain rate: 0.002 min -1 0.010 min -1 0.020 min -1 0.050 min -1 0.100 min -1 0 1 2 3 4 5 6 7 Strain / % CNT yarns behave like a viscoelastic Material Strain-to-failure increases with strain rate CNT yarn strength is 620 MPa and is independent from strain rate (friction forces are independent from the rate of the relative movement between CNT bundles) Qian D. eta al. Appl Mech Rev vol 55, no 6, November 2002 Yu, M.-F., et al.,. J. Phys. Chem. B 104, 8764 8767 (2000).

CNT yarn fracture surface (i) grab-like pike-like (ii) A bundle of MWCNTs located at the yarn centre is clearly unveiled (ii) showing that the bundle is subjected to higher strains when an external tensile load is applied to the yarn. This is consistent with ideal helix yarn models where when an ideal helical structure is under an external tensile load, the fiber strains are largest along the yarn axis and smallest in the outermost layer.

Stress transfer in CNT yarns Raman Spectroscopy D G CNT yarn surface indicative spectrum 2D 2D peak position decreases slightly (~4cm -1 ) with strain 2D FWHM decreases showing a min value which reflects the decreasing of helix angle and consequently the spread of strain values 1200 1300 1400 1500 1600 1700 1800 Raman shift (cm -1 ) 2400 2500 2600 2700 2800 2900 Raman shift (cm -1 ) These results indicate that the fiber strains are largest along the yarn axis and smallest in the outermost layer. 2D peak position and FWHM as a function of uniaxial tensile strain 2D peak position 2D FWHM

Breaking the diffraction limit with TERS (Tip Enhanced Raman Spectrocopy) AFM + Raman microscopy Graphene G Stadler, J., et al., Nano Lett. 10, 4514 4520 (2010). 2D The AFM nano-antenna can locally enhance the electromagnetic field intensity near the tip apex and become a localized nano-source of light. P. Dorozhkin et al, Microscopy Today, doi:10.1017/s1551929510000982 (2010)

Thank you very much for your kind attention!