Σωματιδιακή Φυσική: Από το Ηλεκτρόνιο μέχρι το Higgs και το Μεγάλο Αδρονικό Επιταχυντή (LHC) στο CERN

Σχετικά έγγραφα
Καθ. Κ. Φουντάς, Εργ. Φυσικής Υψηλών Ενεργειών, Παν. Ιωαννίνων

Νετρίνο το σωματίδιο φάντασμα

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο

Φυσική Στοιχειωδών Σωματιδίων Ε: Από τί αποτελείται η ύλη σε θεμελειώδες επίπεδο;

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 19/04/16

Εισαγωγή στη Θεωρία των Στοιχειωδών Σωµατιδίων

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Το Καθιερωμένο Πρότυπο. (Standard Model)

To CERN (Ευρωπαϊκός Οργανισµός Πυρηνικών Ερευνών) είναι το µεγαλύτερο σε έκταση (πειραµατικό) κέντρο πυρηνικών ερευνών και ειδικότερα επί της σωµατιδι

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Μάθημα 1

Εισαγωγή στη φυσική στοιχειωδών σωματιδίων


Και τα τρία σωμάτια έχουν σπιν μονάδα.

Εισαγωγή στο Σχέδιο και τα Ηλεκτροτεχνικά Υλικά Κουτσοβασίλης Παναγιώτης

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά

Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Το μποζόνιο Higgs (Σωματίδιο του Θεού) και ο ρόλος του Μεγάλου Αδρονικού Επιταχυντή στην Ανακάλυψη του Ομάδα Μαθητών:

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΛΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

Κατερίνα Αρώνη Δεκέμβριος 2012


Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Ο Πυρήνας του Ατόμου

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ CERN. Επιστημονική ομάδα ΒΑΣΙΛΗΣ ΣΙΔΕΡΗΣ &ΝΙΚΟΣ ΚΑΛΑΦΑΤΗΣ. 3ο Λύκειο Γαλατσίου

n proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4)

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη σωμάτια. Τα σωμάτια ύλης

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης

Δύο Συνταρακτικές Ανακαλύψεις

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - 1 Λυμένα Προβλήματα - IV

Χρήστος Α. Ελευθεριάδης. ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ Βασικές αρχές και Πυρηνοσύνθεση

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου)

Διάλεξη 22: Παραβίαση της κατοπτρικής συμμετρίας στις ασθενείς αλληλεπιδράσεις

Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ

ΚΩΝΣΤΑΝΤΙΝΟς Ε. ΒΑΓΙΟΝΑΚΗς. Καθηγητής Πανεπιστημίου Ιωαννίνων ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ. Μια Εισαγωγή στη Βασική Δομή της Ύλης

ΠΕΡΙΕΧΟΜΕΝΑ. Το πείραμα στο CERN και ο σκοπός του. Το «πολυπόθητο» μποζόνιο Higgs. Μηχανισμοί ανίχνευσης του μποζονίου Higgs. και τι περιμένουμε;

CERN black board, Jul Presse écrite après l annonce de la découverte du boson de Higgs au séminaire du 4 juillet 2012 au CERN

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Διάλεξη 18: Καθιερωμένο πρότυπο (1978-?)

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα Τ3: Χ. Πετρίδου

Αναζητώντας παράξενα σωματίδια στο A LargeIonColliderExperimnent. MasterClasses : Μαθήματα στοιχειωδών σωματιδίων

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

The Large Hadron CERN Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων

Theory Greek (Cyprus) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 μονάδες)

ΖΑΝΝΕΙΟ ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ Η ΕΠΙΣΚΕΨΗ ΣΤΟ CERN

Η ΒΑΣΙΚΗ ΕΡΕΥΝΑ ΣΤΗ ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ

ΕΣΧΑΤΑ ΣΥΣΤΑΤΙΚΑ ΤΗΣ ΥΛΗΣ

Κεφάλαιο 37 Αρχική Κβαντική Θεωρία και Μοντέλα για το Άτομο. Copyright 2009 Pearson Education, Inc.

ΤΟ ΒΙΒΛΊΟ ΖΩΓΡΑΦΙΚΉΣ ΤΟΥ ΠΕΙΡΆΜΑΤΟΣ ATLAS

Q2-1. Πού βρίσκεται το νετρίνο; (10 μονάδες) Theory. Μέρος A. Η Φυσική του Ανιχνευτή ATLAS (4.0 μονάδες) Greek (Greece)

ΤΟ ΒΙΒΛΙΟ ΖΩΓΡΑΦΙΚΉΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ ATLAS

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό.

Μ.Ζαµάνη

«Από τα Quarks μέχρι το κύτταρο» Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Πρασιανάκης Γιώργος Καραδημητρίου Μιχάλης

Τα μεγάλα πειράματα στο LHC

ΔΟΜΗ ΤΗΣ ΥΛΗΣ ΚΕΦΑΛΑΙΟ 1

Εκλαϊκευτική Ομιλία. Θεοδώρα. Παπαδοπούλου, Ομ. Καθηγήτρια Φυσικής, ΕΜΠ Μέλος του Συμβουλίου Πελοποννήσου. Ημερίδα CERN Τρίπολη, 13 Νοεμβρίου 2013

Yπεύθυνη καθηγήτρια Ομίλου Φυσικής, Γεωργία Ρουμπέα

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Η κλασσική, η σχετικιστική και η κβαντική προσέγγιση. Θωµάς Μελίστας Α 3

Σύγχρονη Φυσική 1, Διάλεξη 7, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Οι Μετασχηματισμοί του Lorentz και η Διαστολή του Χρόνου

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz

Η ύλη και οι δυνάµεις

ΕΙΔΙΚΗ ΣΧΕΤΙΚΟΤΗΤΑ. Νίκος Κανδεράκης

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 1: Η δομή του ατόμου. Τόλης Ευάγγελος

Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

ΑΝΤΙΥΛΗ. Φώτης Γκένας Αα. Ομάδα: Φώτης Γκένας, Βασίλης Φιλέρης, Παύλος Καπετάνιος, Αστέριος Κοκκωνάκης

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ

Τα ευρήματα δύο ερευνητικών ομάδων συμπίπτουν ως προς τις τιμές μάζας του μποζονίου Χιγκς

Σύγχρονη Φυσική 1, Διάλεξη 11, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Επιλεγμένες εφαρμογές της Ειδικής Θεωρίας της Σχετικότητας

ιστοσελίδα μαθήματος

Η κατακόρυφη τομή...

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Περίληψη μαθήματος. (Συνοδεύει τις διαφάνειες)

Η Φυσική που δεν διδάσκεται ΣΥΛΛΟΓΟΣ ΦΥΣΙΚΩΝ ΚΡΗΤΗΣ

Μαθήματα Στοιχειωδών Σωματιδίων με Απλά Υλικά

«Ταξίδι» στην Φυσική Στοιχειωδών Σωματιδίων. Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Πρασιανάκης Γιώργος Καραδημητρίου Μιχάλης

Ο Maxwell ενοποίησε τις Ηλεκτρικές με τις Μαγνητικές δυνάμεις στον

Το χρονικό των στοιχειωδών σωματιδίων

Παρατήρηση νέου σωματιδίου με μάζα 125 GeV Πείραμα CMS, CERN 4 Ιουλίου 2012

Το Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 3η Πετρίδου Χαρά

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια

Καλώς Ορίσατε στο CERN

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, Ιδιότητες των Σωματίων Ισοτοπικό Σπιν

Ανάλυση δεδοµένων του πειράµατος DELPHI Μέτρηση των ποσοστών διάσπασης του µποζονίου Ζ

Transcript:

Σωματιδιακή Φυσική: Από το Ηλεκτρόνιο μέχρι το Higgs και το Μεγάλο Αδρονικό Επιταχυντή (LHC) στο CERN Κωνσταντίνος Φουντάς Καθηγητής Παν/μίου Ιωαννίνων Ευάγγελος Γαζής Καθηγητής Εθνικού Μετσοβίου Πολυτεχνείου 1

Αναδρομή από τις αρχές του εικοστού αιώνα όταν γεννήθηκε η Σωματιδιακή Φυσική (Φυσική Υψηλών Ενεργειών)- ανακαλύψεις, τεχνικές, τεράστια πρόοδος αλλά επίσης σύγχυση και λάθη. Το καθιερωμένο Μοντέλο Τι ξέρουμε σήμερα για τον κόσμο και από τι έχει φτιαχτεί. Τα προβλήματα που απασχολούν την Φυσική Υψηλών Ενεργειών σήμερα. Το LHC και η αναζήτηση του σωματιδίου Higgs, της υπερσυμμετρίας (SUSY).. Καθ. Κ. Φουντάς/Παν. Ιωαννίνων, Καθ. Ε.Γαζής/ΕΜΠ 23/08/16 2

Σωματιδιακή Φυσική Η Σωματιδιακή Φυσική προσπαθεί να απαντήσει τα ακόλουθα ερωτήματα: Από τι στοιχειώδη σωμάτια αποτελείται στο σύμπαν? Πώς αλληλεπιδρούν τα στοιχειώδη σωμάτια μεταξύ τους? 3

Η Ιστορία της Σύγχρονης Φυσικής Στοιχειώδη Σωμάτια 1898-1964 Κοσμικές Ακτίνες Επιτραπέζια Πειράματα Επιταχυντές 4

Ηλεκτρόνια και Πρωτόνια Το 1898 Sir J.J. Thomson (Αγγλία) ανακάλυψε το Ηλεκτρόνιο μελετώντας την φύση των καθοδικών ακτινών. Το 1919 ο Ernst Rutherford (Αγγλία) ανακάλυψε το Πρωτόνιο.. 5

Ατομικές Θεωρίες των Thomson και Rutherford Πειράματα Σωματιδιακής Φυσικής Το Μοντέλο Thomson σδφσφ Το Μοντέλο Rutherford 6

Το Φωτόνιο - γ Οι κβαντική θεωρία του φωτός θεμελιώθηκε στις αρχές του 20 ου αιώνα από τους Plank και Einstein (Γερμανία/ Ελβετία) Το φώς είναι απλά ηλεκτρομαγνητική ακτινοβολία και έχει σωματιδιακή φύση. Το σωματίδιο του φωτός ονομάζεται φωτόνιο (γ) Το Φωτόνιο έχει μηδενική μάζα (άπειρη εμβέλεια) αλλά έχει ενέργεια: Ε = h ν (το h είναι μια σταθερά και το ν είναι η συχνότητα) και ορμή: p = E/c 7

Η Φυσική το 1930 (α) Ο κόσμος αποτελείται από Πρωτόνια - p + (με μάζα ~ 1840 φορές μεγαλύτερη του ηλεκτρονίου και θετικό φορτίο) Ηλεκτρόνια e - (αρνητικό φορτίο) Φωτόνια γ (μάζα = 0) Τα p + e - αλληλεπιδρούν με ανταλλαγή φωτονίων βάση της θεωρίας που ονομάζεται κβαντομηχανική των: Schrödinger (Austria), Bohr (Denmark), Heisenberg (Germany), Pauli (Schweiz) 8

Η Φυσική το 1930 (β) Έτσι μπορούσαν να εξηγήσουν τα περισσότερα φαινόμενα και φάσματα των ατόμων με την Κβαντική Μηχανική. Η ανταλλαγή φωτονίων μεταξύ φορτισμένων σωματιδίων είναι υπεύθυνη για την ηλεκτρομαγνητική δύναμη/ αλληλεπίδραση. 9

Η Φυσική το 1930 (γ) Rutherford (1909): οι πυρήνες αποτελούνται από πρωτόνια που είναι θετικά φορτισμένα. Chadwick (1932): και από Νετρόνια που εχουν την ίδια μάζα με τα Πρωτόνια αλλα είναι ηλεκτρικά ουδέτερα. 10

Φυσική = Απλότητα Συνεπώς όλες οι χιλιάδες από άτομα και μόρια μπορούσαν να εξηγηθούν μόνο με 4 σωματίδια: το φωτόνιο το πρωτόνιο το νετρόνιο και το ηλεκτρόνιο. Διαφορετικά είδη ύλης Χημικές Ενώσεις Πρωτόνιο Νετρόνιο Ηλεκτρόνιο Φωτόνιο 11

Προβληματισμοί του 1930 Η Κβαντική Θεωρία και Θεωρία της Ειδικής Σχετικότητας δεν είχαν ενοποιηθεί δηλαδή δεν υπήρχε ακόμα Σχετικιστική Κβαντική Θεωρία που να περιγράφει σωμάτια που έχουν ενεργεία μεγαλύτερη από αυτή που προέρχεται από την μάζα τους (E=mc 2 ). Η ραδιενέργεια που είχε ανακαλυφθεί από τον Becquerel το 1896 δεν φαινόταν να ταιριάζει με τα παραπάνω και επιπλέον δεν φαινόταν να υπακούει στην αρχή της διατήρησης της ορμής (άσχημα νέα για τους φυσικούς της εποχής) Α Ζ è Α (Ζ+1)+e - + Έλλειμμα ορμής Επιπλέον η ενέργεια των ακτινών e - δεν ήταν διακριτή όπως θα περίμενε κανείς από διάσπαση σε δύο σωμάτια ούτε και είχε την ενέργεια που θα περίμενε κανείς αν οι e - ήταν συστατικά του πυρήνα. Τη είδους δύναμη κρατάει τα πρωτόνια μαζί στον πυρήνα των ατόμων? Η δύναμη αυτή θα πρέπει να είναι ισχυρότερη της ηλεκτρομαγνητικής άπωσης που ασκούν μεταξύ τους. Έτσι η τρίτη αλληλεπίδραση αυτή ονομάστηκε Ισχυρή Πυρηνική Αλληλεπίδραση. Η δε θεωρία της βαρύτητας (Γενική Σχετικότητα, Einstein 1916) δεν ταίριαζε καθόλου με την Κβαντική Θεωρία (και ακόμα δεν ταιριάζει παρ όλους τους τόνους από χαρτί και μελάνι έχουν ξοδευτή έκτοτε). 12

Πειραματικές Διατάξεις του 1930 Οι πειραματικοί φυσικοί της εποχής είχαν αρχίσει να κατασκευάζουν διατάξεις που τους επέτρεπαν να βλέπουν σωματίδια: Θάλαμοι Νέφωσης (Cloud Chamber) Μετρητές (Geiger-Miller Counters) Wilson Cloud Chamber 13

Φωτογραφίες Σωματιδίων Συνήθως οι Θάλαμοι χρησιμοποιούνταν σε συνδυασμό με φωτογραφικές μηχανές και μαγνητικό πεδίο 14

Φωτογραφίες Σωματιδίων Φύλα από μόλυβδο η άλλο μέταλλο χρησιμοποιούνται για να απορροφήσουν ενέργεια από το σωματίδια: K 0 àπ - +π + π - +π + 15

Η εξίσωση του Dirac Ο Dirac στην προσπάθεια του να συμβιβάσει την κβαντική μηχανική με την σχετικότητα εφεύρε μια εξίσωση που όχι μόνο περιέγραφε κβαντικά φαινόμενα αλλά συγχρόνως ήταν συμβατή με την ειδική σχετικότητα του Einstein. Η εξίσωσης της κβαντικής θεωρίας του Schrödinger και Heisenberg ήταν απλώς υποπερίπτωση τις πιο γενικής εξίσωσης του Dirac. Η εξίσωση του Dirac προέβλεπε το διπλό αριθμό σωματιδίων από ότι είχαν παρατηρηθεί στην φύση μέχρι το 1930. Προέβλεπε ότι για κάθε σωματίδιο θα πρέπει να υπάρχει και ένα αντί-σωματίδιο. Κάτι ανάλογο συμβαίνει σήμερα με την Υπέρ-συμμετρία!. 16

Η ανακάλυψη του ποζιτρονίου 1931 Carl Anderson Θρίαμβος της θεωρίας του Dirac!! Το ποζιτρόνιο είναι το αντί-σωμάτιο του ηλεκτρονίου και έχει τις ίδιες ιδιότητες με το ηλεκτρόνιο έκτος ότι είναι θετικά φορτισμένο. Carl Anderson at CALTECH, USA Το Αντι-Πρωτόνιο βρέθηκε το 1955 από ομάδα που συμμετείχε και ο Έλληνας Τ. Υψηλάντης 17

Ραδιενέργεια 1930 W. Pauli (Zürich, Schweiz) Την περίοδο αυτή κανένας φυσικός δεν είχε ιδέα ότι πίσω από τις ραδιενεργές μεταπτώσεις κρύβεται μια τέταρτη και άγνωστη μέχρι τότε αλληλεπίδραση, η Ασθενής Πυρηνική, η οποία είχε πολύ διαφορετικές ιδιότητες από τον Ηλεκτρομαγνητισμού και τη Βαρύτητα που ήταν ήδη γνωστές όπως είπαμε. Για την ώρα το πρόβλημα όλων ήταν η μη διατήρηση της ορμής που έφερνε όλη την Φυσική σε κρίση. Ο W. Pauli μας έβγαλε από το αδιέξοδο όταν πρότεινε την ύπαρξη του Νευτρίνο, ενός ουδέτερου σωματιδίου με πάρα πολύ μικρή η μηδενική μάζα, πολύ ασθενή αλληλεπίδραση με άλλα σωμάτια το οποίο παράγεται στης ραδιενεργές μεταπτώσεις. Έτσι διεσώθη η αρχή της διατήρησης της ορμής αλλά οι φυσικοί τώρα έπρεπε να βρουν το μυστηριώδες νετρίνο. Πέρασαν πάνω από 20 χρόνια μέχρι να βρεθεί τελικά την δεκαετία του 50. 18

Ισχυρή Πυρηνική Αλληλεπίδραση Ο Ιάπωνας Φυσικός H. Yukawa πρότεινε ότι οι ισχυρές αλληλεπιδράσεις που κρατούν τα πρωτόνια διαδίδονται διά μέσου ενός μεταδότη που έχει μάζα (οι ισχυρές αλληλεπιδράσεις έχουν πολύ μικρή εμβέλεια). Μάλιστα χρησιμοποιώντας την Κβαντομηχανική πέτυχε να λογαριάσει την μάζα αυτού το μεταδότη σε περίπου 200 MeV. Φυσικά απόμενε στους πειραματικούς φυσικούς να αποδείξουν ότι το σωματίδιο του κ. Yukawa υπάρχει και εκεί άρχισαν τα προβλήματα καθότι οι πειραματικοί βρήκαν πρώτα το λάθος σωματίδιο (Μιόνιο) που δυστυχώς είχε μάζα που ήτανε κοντά στην μάζα του Yukawa (106 MeV αρκετά κοντά αν λάβει κανείς υπόψη του την διακριτική ικανότητα των τότε πειραμάτων) H. Yukawa (Japan) 19

Ανακάλυψη του Μιονίου 1937 Ένα ηλεκτρόνιο 200 φορές βαρύτερο από το ηλεκτρόνιο Η ανακάλυψη έγινε δυνατή με την χρήση τεχνικής που αναπτύχτηκε από τον P. Blackett ο οποίος σύνδεσε την φωτογραφική μηχανή με μετρητές Geiger Miller σε διάταξη trigger. Δηλαδή η μηχανή φωτογράφιζε μόνο όταν οι μετρητές Geiger Miller είχαν σήμα που έδειχνε ότι κάποιο φορτισμένο σωματίδιο πέρασε το θάλαμο. Το σωματίδιο έκπληξη που κανείς δεν ούτε το περίμενε ούτε το χρειαζόταν (Who ordered this? I.I. Rabi) Anderson (US) Blackett(UK) Rabi(US) 20

Η περιπέτεια με το Μιόνιο Μην έχοντας άλλη χρήση για το Μιόνιο και επειδή η μάζα ταίριαζε οι Φυσικοί υπέθεσαν ότι αυτό πρέπει να είναι ο φορέας των ισχυρών αλληλεπιδράσεων. Δυστυχώς ο Ιάπωνας φυσικός Tomonaga λογάριασε ότι αν το Μιόνιο ήταν ευαίσθητο στις ισχυρές αλληλεπιδράσεις θα έπρεπε να μεταπίπτει πιο γρήγορα από ότι στο κενό όταν περνά μέσα από υλικά με βαρείς (μεγάλους) πυρήνες. Διάφορα πειράματα έγιναν και συνεχίστηκαν μέχρι το 1945 και ύστερα από αρκετά διαφωνούντα αποτελέσματα αποδείχτηκε ότι το μιονιο δεν έχει καμιά σχέση με τις ισχυρές πυρηνικές αλληλεπιδράσεις. Το μιονιο επέμενε πεισματικά να είναι ένας αδελφός του ηλεκτρονίου απλώς λίγο βαρύς (200 φορές). Tomonaga 21

Πιόνια 1948 Ευτυχώς το σωμάτιο του Yukawa βρέθηκε στο Παν/μιο του Bristol (UK) από την ομάδα των Powel-Occialini: Occialini, Powel 22

Σωματιδιακή Φυσική το 1948 Έτσι η κατάσταση το 1948 είχε ως εξής: q Σωμάτια με μεγάλη μάζα (~2000 ηλεκτρόνια) : 1. Πρωτόνιο (p + ), με θετικό φορτίο και αλληλεπιδράσεις Ηλεκτρομαγνητική, Ισχυρή πυρηνική και Βαρύτητα. 2. Νετρόνιο (n), ηλεκτρικά ουδέτερο αλλά με ισχυρή πυρηνική και βαρύτητα. q Σωμάτια με μικρή σχετικά μάζα: 1. Ηλεκτρόνιο, (e - ), Ποζιτρόνιο (e + ), Μιόνιο(μ - ) με θετικό αλλά και αρνητικό φορτίο. Το Ηλεκτρόνιο και τα Μιονια αλληλεπιδρούν ηλεκτρομαγνητικά. Το ηλεκτρόνιο ήταν συνδεδεμένο με ραδιενεργές μεταπτώσεις. 2. Νετρίνο ν ουδέτερο σχετιζόμενο με ραδιενεργές μεταπτώσεις. 3. Πιόνιο π ± με θετικό και αρνητικό φορτίο. 23

3 Σημαντικά Αποτελέσματα 1947-1949 (α) q 1947 B. Pontecorvo: 1. Εάν το μιόνιο δεν είναι το σωματίδιο του Yukawa τότε δεν χρειάζεται να έχει σπίν μηδέν και μπορεί να έχει σπίν ½. 2. Συνεπώς μπορεί να μεταπέσει σε 3 φερμιόνια αντί για δυο. q 1948 Διδακτορική Διατριβή J. Steinberger Επιβλέπων καθ. E. Fermi (Παν/μιο Σικάγου): 1. Το μ - μεταπίπτει σε ηλεκτρόνιο και δυο νετρίνα: μ - è e - + αντι- ν e +ν μ 2. Όλοι πίστευαν στην αρχή ότι τα δυο νετρίνα είναι τα ίδια αλλά χρειάστηκε άλλη μια δεκαετία για να αποδειχτεί το αντίθετο. 24

3 Σημαντικά Αποτελέσματα 1947-1949 Κβαντική Χρωμοδυναμική Με βάση τη Κβαντική Χρωμοδυναμική το πιόνιο επιβεβαιώνει την συμμετοχή του στις ισχυρές αλληλεπιδράσεις στη σκέδαση μεταξύ πρωτονίου-νετρονίου: 23/08/16 Καθ. Κ. Φουντάς/Παν. Ιωαννίνων, Καθ. Ε.Γαζής/ ΕΜΠ 25

3 Σημαντικά Αποτελέσματα 1947-1949 (β) q 1949 Lee, Young, Rosenbluth: Υπολόγισαν την σταθερά σύζευξης για μ - è e - ν e ν μ, π - è μ - ν μ, Ζ è (Ζ+1) e - ν e και τις βρήκαν να μην διαφέρουν πολύ μεταξύ τους. Ήταν όμως πολύ διαφορετικές από άλλες που είχαν να κάνουν με ηλεκτρομαγνητισμό και ισχυρές αλληλεπιδράσεις. Έτσι συμπέραναν ότι και οι τρεις είχαν να κάνουν με μία νέα αλληλεπίδραση, την ασθενή πυρηνική αλληλεπίδραση q Συνεπώς έχομε 4 είδη αλληλεπιδράσεων (δυνάμεων) 1. Βαρύτητα 2. Ασθενή Πυρηνική (W ± /Z 0 ) 3. Ηλεκτρομαγνητισμό (φωτόνιο) 4. Ισχυρή πυρηνική (γκλουόνιο) 26

1950 - Επιταχυντές Μαγνητικό πεδίο Β q Επιταχυνόμενα σωμάτια μπορεί να είναι 1. πρωτόνια και αλλά βαριά σωμάτια (Αδρονικός επιταχυντής) 2. Ηλεκτρόνια και ποζιτρόνια 27

1950 1960 Νέοι Ανιχνευτές q Θάλαμοι φυσαλίδων αντικατέστησαν τους θαλάμους νέφωσης 28

Φυσική με Επιταχυντές q Οι επιταχυντές παρέχουν δέσμες με μεγάλη ένταση σωματιδίων έτσι έδωσαν την δυνατότητα να μελετηθούν οι ιδιότητες των σωματιδίων που είχαν ευρεθεί με κοσμικές ακτίνες και επέτρεψαν την ανακάλυψη μεγάλου αριθμού νέων σωματιδίων. Τα πιο σημαντικές ανακαλύψεις ήταν 1. 3 ειδών νετρίνα, τα ν e, ν μ, ν τ και 3 ειδών ηλεκτρόνια τα e -, μ -, τ - που όλα μαζί λέγονται λεπτόνια 2. Μια μεγάλη συλλογή βαρύτερων σωματιδίων όπως K, η, ρ, Σ, Δ, Ω. 29

Κουάρκς (α) q Οι πληθώρα των σωματιδίων έγινε δυνατόν να εξηγηθεί με την θεωρία των Κουάρκς. Murray Gell Mann Nicolas Samios, Ω - (sss) 30

Κουάρκς (β) q Έτσι όλα τα βαριά σωμάτια αποτελούνται από Κουάρκς που έρχονται και αυτά όπως τα λεπτόνια σε ζευγάρια. 1. u (up) d (down) 2. c(charm) s (strange) 3. t (top) b (bottom) Το Καθιερωμένο Πρότυπο Έτσι έχουμε πάλι ένα σχετικά μικρό αριθμό σωματιδίων!!! 31

ΔΕΥΤΕΡΗ ΔΙΑΛΕΞΗ 23/08/16 Καθ. Κ. Φουντάς/Παν. Ιωαννίνων, Καθ. Ε.Γαζής/ ΕΜΠ 32

Το Σωματίδιο Higgs q q Ήταν το μόνο σωματίδιο το οποίο προβλέπεται από το καθιερωμένο πρότυπο που δεν είχε ανακαλυφθεί ακόμα. Είναι απαραίτητο για να εξήγηση 1. Γιατί τα κουάρκς και τα λεπτόνια έχουν μάζα. 2. Για να κάνει όλες τις άλλες προβλέψεις συμβατές με τα πειραματικά δεδομένα των τελευταίων 30 ετών. q Σύμφωνα με το καθιερωμένο πρότυπο πρέπει να έχει μάζα κάτω από ~ TeV q 2 Πειράματα στο CERN το ATLAS και το CMS έχουν σχεδιαστεί με σκοπό την ανακάλυψη του σωματιδίου Higgs. q Ένα νέο σωματίδιο ανακαλύφθηκε τον Ιούλιο του 2012 όπου με παραιτέρω μελέτες έχει αποδειχθεί ότι είναι το Higgs. 33

Το LHC 34

Το Πείραμα CMS q Είναι το μόνο σωματίδιο το οποίο προβλέπεται από το καθιερωμένο πρότυπο που δεν έχει ανακαλυφθεί ακόμα. q Είναι απαραίτητο για να εξήγηση 1. 2. γιατί τα κουάρκς και τα λεπτόνια έχουν μάζα. Για να κάνει όλες τις άλλες προβλέψεις συμβατές με τα πειραματικά δεδομένα των τελευταίων 30 ετών. q Σύμφωνα με το καθιερωμένη 23/08/16 Καθ. Κ. Φουντάς/Παν. Ιωαννίνων, Καθ. Ε.Γαζής/ΕΜΠ 35

Το Πείραμα CMS q Είναι το μόνο σωματίδιο το οποίο προβλέπεται από το καθιερωμένο πρότυπο που δεν έχει ανακαλυφθεί ακόμα. q Είναι απαραίτητο για να εξήγηση 1. γιατί τα κουάρκς και τα λεπτόνια έχουν μάζα. 2. Για να κάνει όλες τις άλλες προβλέψεις συμβατές με τα πειραματικά δεδομένα των τελευταίων 30 ετών. q Σύμφωνα με το καθιερωμένη 36

Το Πείραμα CMS 37

Διατάξεις Συλλογής Δεδομένων στο CMS 38

Professor Higgs 39

4 Ιουλίου 2012 23/08/16 Καθ. Κ. Φουντάς/Παν. Ιωαννίνων, Καθ. Ε.Γαζής/ ΕΜΠ 40

4 Ιουλίου 2012 23/08/16 Καθ. Κ. Φουντάς/Παν. Ιωαννίνων, Καθ. Ε.Γαζής/ ΕΜΠ 41

4 Ιουλίου 2012 μ + (Z 1 ) p T : 43 GeV 8 TeV DATA e - (Z 2 ) p T : 10 GeV 4-lepton Mass : 126.9 GeV μ - (Z 1 ) p T : 24 GeV e + (Z 2 ) p T : 21 GeV 23/08/16 Καθ. Κ. Φουντάς/Παν. Ιωαννίνων, Καθ. Ε.Γαζής/ ΕΜΠ 42

4 Ιουλίου 2012 γ(z 1 ) E T : 8 GeV μ - (Z 1 ) p T : 28 GeV 7 TeV DATA 4μ+γ Mass : 126.1 GeV μ + (Z 2 ) p T : 6 GeV μ - (Z 2 ) p T : 14 GeV μ + (Z 1 ) p T : 67 GeV 23/08/16 Καθ. Κ. Φουντάς/Παν. Ιωαννίνων, Καθ. Ε.Γαζής/ ΕΜΠ 43

Προβλήματα της Σωματιδιακής Φυσικής q Το Higgs +Υπερσυμμετρία+. q Τα Νετρίνα και η μικρή Μάζα τους q Γιατί το σύμπαν αποτελείται μόνο από ύλη με πολύ μικρό ποσοστό αντι-ύλης 44

Από την διάλεξη του 2010 q Ο Μεγάλος Επιταχυντής Αδρονίων άρχισε μια νέα εποχή στη σωματιδιακή φυσική και πιστεύω ότι η επόμενη δεκαετία θα είναι πλούσια σε ανακαλύψεις!!!!!! q Ένα μεγάλο πλούσιο σε έρευνα και παγκόσμιο πρόγραμμα σε φυσική νετρίνων άρχισε και υπόσχεται όχι λιγότερα από το LHC. 45