Δυναμική Διατήρηση Γραμμικής Διάταξης

Σχετικά έγγραφα
επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S

Διαχρονικές δομές δεδομένων

Πίνακες Συμβόλων. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Σχεδίαση Βάσεων Δεδομένων

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης

Προσεγγιστικοί Αλγόριθμοι

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Διάλεξη 18: B-Δένδρα

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εργαστηριακός Οδηγός. Βάσεις Δεδομένων της Γ' Τάξης ΕΠΑΛ

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Κατακερματισμός (Hashing)

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Κατακερµατισµός. Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Ενότητα. Σχεδίαση Βάσεων Δεδομένων

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1

Πληροφορική 2. Δομές δεδομένων και αρχείων

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων & Αλγόριθμοι

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

f(t) = (1 t)a + tb. f(n) =

Διάλεξη 14: Δέντρα IV - B-Δένδρα

Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό

ΑΥΤΟΡΓΑΝΟΥΜΕΝΕΣ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης

viii 20 Δένδρα van Emde Boas 543

Ισοζυγισμένα υαδικά έντρα Αναζήτησης

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Διδάσκων: Παναγιώτης Ανδρέου

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ

ΑΝΑΛΥΣΗ 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

Κεφάλαιο 11 Ένωση Ξένων Συνόλων

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Outline. 6 Edit Distance

Βασικές Οδηγίες Χρήσης της Εφαρμογής

Οι λίστες, χάνοντας τα πλεονεκτήματα των πινάκων, λύνουν προβλήματα που παρουσιάζουν οι πίνακες

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Αλγόριθμοι Ταξινόμησης Μέρος 4

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Δομές Δεδομένων και Αλγόριθμοι. Λουκάς Γεωργιάδης

f(x) = και στην συνέχεια

Αρχικά, μεταβαίνετε στην ομώνυμη επιλογή της Καρτέλας ΦΟΡΕΙΣ. Επιλέγοντας Βιβλιοθήκη Μονάδας εμφανίζεται η παρακάτω εικόνα «Λίστα βιβλίων».

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Άσκηση Access 1. Να δημιουργηθεί μία βάση δεδομένων για ένα ξενοδοχείο με το όνομα Hotel. Πατάμε το εικονίδιο Κενή βάση δεδομένων επάνω δεξιά:

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα

Ουρά Προτεραιότητας (priority queue)

ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ

Advanced Data Indexing

Διαδικασιακός Προγραμματισμός

ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

1η Σειρά Γραπτών Ασκήσεων

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ACCESS

Διδάσκων: Κωνσταντίνος Κώστα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Διάλεξη 24: B-Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 13: Δέντρα ΙΙΙ - Ισοζυγισμένα Δέντρα, AVL Δέντρα

Δομές Δεδομένων και Αλγόριθμοι

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών

Transcript:

Διατηρεί μια γραμμική διάταξη δυναμικά μεταβαλλόμενης συλλογής στοιχείων. Υποστηρίζει τις λειτουργίες: Εισαγωγή νέου στοιχείου y αμέσως μετά από το στοιχείο x. x y Διαγραφή στοιχείου y. y Έλεγχος της σειράς διάταξης δύο στοιχείων x και y. y x Μπορούμε να επιτύχουμε χρόνο χειρότερη περίπτωση (με πιο περίπλοκη δομή) ανά πράξη, αντισταθμιστικά ή στην

Απλοϊκές λύσεις : Διπλά συνδεδεμένη λίστα : για εισαγωγή/διαγραφή, για ερώτημα διάταξης Ισορροπημένο δυαδικό δένδρο : για κάθε λειτουργία

Δημιουργούμε μια σύνθετη δομή που αποτελείται από : α) Μια διπλά συνδεδεμένη λίστα β) Ακέραιες ετικέτες : κάθε στοιχείο έχει ετικέτα τέτοια ώστε αν και μόνο αν το προηγείται του στη λίστα Τοποθετούμε στα άκρα της λίστας δύο (σταθερά) επιπλέον στοιχεία και με και όπου αρκετά μεγάλος ακέραιος.

Πως καθορίζουμε τις τιμές ; Έστω τα στοιχεία της λίστας, και έστω ένα νέο στοιχείο που πρέπει να εισαχθεί μεταξύ του και του. Ορίζουμε τη διαφορά των ετικετών δύο στοιχείων και ως Αν υπάρχει χώρος στο διάστημα, δηλαδή, τότε θέτουμε Αν τότε πρέπει να επαναριθμήσουμε τις ετικέτες κάποιων στοιχείων ώστε να έχουμε χώρο για την εισαγωγή του νέου στοιχείου.

Αν τότε πρέπει να γίνει επαναρίθμηση κάποιου διαστήματος τοπική επαναρίθμηση 16 17 18 24? 16 17 19 21 24

Έστω. Η ιδέα είναι να βρούμε δύο στοιχεία και με και η διαφορά ετικετών επαναριθμήσουμε τις ετικέτες των νέο στοιχείο. να είναι αρκετά μεγάλη, έτσι ώστε αν στοιχείων να έχουμε χώρο για το Αν τότε και αναζητούμε το στα δεξιά του. Αν τότε και αναζητούμε το στα αριστερά του.

Έστω. Υποθέτουμε ότι. (Η περίπτωση είναι συμμετρική.) Για ευκολία ορίζουμε τον παρακάτω συμβολισμό : και. Αναζητούμε το μικρότερο δείκτη τέτοιον ώστε.

Αναζητούμε το μικρότερο δείκτη τέτοιον ώστε. Έστω ότι δεν υπάρχει τέτοιο. Για απλότητα υποθέτουμε. Επιλέγουμε ακέραιο τέτοιο ώστε. Τότε για κάθε ισχύει. Άρα Αφού, έχουμε Συνεπώς αρκεί να επιλέξουμε.

Αναζητούμε το μικρότερο δείκτη τέτοιον ώστε. Για η αναζήτηση του είναι εγγυημένα επιτυχής και επομένως μπορούμε να επαναριθμήσουμε τις ετικέτες των στο διάστημα Έχουμε άρα μπορούμε να μοιράσουμε ομοιόμορφα τις ετικέτες των στοιχείων σε ένα διάστημα ακεραίων. Συνεπώς, μετά την επαναρίθμηση, οι νέες διαδοχικές ετικέτες θα διαφέρουν τουλάχιστον κατά 2.

Επιδόσεις Το κόστος ανά πράξη είναι : χειρότερης περίπτωσης για διαγραφή ή ερώτημα διάταξης αντισταθμιστικό για εισαγωγή

Επιδόσεις Υποθέσαμε ότι γνωρίζουμε τον αριθμό στοιχείων που θα εισαχθούν στη δομή. Μπορούμε να χειριστούμε την περίπτωση μεταβλητού αριθμού στοιχείων με διπλασιασμό/υποδιπλασιασμό του (όπως στους δυναμικούς πίνακες) : Αν με την επόμενη εισαγωγή ο αριθμός των στοιχείων της δομής γίνει τότε θέτουμε Αν με την επόμενη διαγραφή ο αριθμός των στοιχείων της δομής γίνει τότε θέτουμε Με αυτό τον τρόπο έχουμε κόστος : χειρότερης περίπτωσης για ερώτημα διάταξης αντισταθμιστικό για διαγραφή αντισταθμιστικό για εισαγωγή, όπου στοιχείων στη δομή ο μέγιστος αριθμός

Δομή δύο επιπέδων Μπορούμε να επιτύχουμε σταθερό αντισταθμιστικό χρόνο ανά εισαγωγή και διαγραφή, διατηρώντας αρίθμηση δύο επιπέδων : 0? 0? 0? Χωρίζουμε τα στοιχεία σε ομάδες των. Τα στοιχεία αποθηκεύονται στο δεύτερο επίπεδο. Το πρώτο επίπεδο αποθηκεύει ένα στοιχείο ανά ομάδα.