Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία



Σχετικά έγγραφα
Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία

Το κρυπτοσύστημα RSA

Το κρυπτοσύστημα RSA

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Το κρυπτοσύστημα RSA. Παναγιώτης Γροντάς - Άρης Παγουρτζής 20/11/2018. ΕΜΠ - Κρυπτογραφία ( ) RSA 1 / 51

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman

Κρυπτοσυστήματα Διακριτού Λογαρίθμου

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman

Κρυπτοσυστήματα Διακριτού Λογαρίθμου

Public Key Cryptography. Dimitris Mitropoulos

Κρυπτοσυστήματα Διακριτού Λογαρίθμου

Κρυπτογραφία Δημοσίου Κλειδιού

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Συμμετρικά κρυπτοσυστήματα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτογραφικά Πρωτόκολλα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Αποδείξεις Μηδενικής Γνώσης

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

CCA. Simple CCA-Secure Public Key Encryption from Any Non-Malleable ID-based Encryption

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Κεφάλαιο 8. Συναρτήσεις Σύνοψης. 8.1 Εισαγωγή

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

Ψηφιακές Υπογραφές. Παναγιώτης Γροντάς - Άρης Παγουρτζής. ΕΜΠ - Κρυπτογραφία - ( ) 28/11/2017. Digital Signatures 1 / 57

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Εφαρμοσμένη Κρυπτογραφία Ι

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους

Symmetric Cryptography. Dimitris Mitropoulos

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

Ψηφιακές Υπογραφές. Παναγιώτης Γροντάς - Άρης Παγουρτζής 09/12/2016. ΕΜΠ - Κρυπτογραφία - ( )

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Στοιχεία Θεωρίας Αριθμών

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Εφαρμοσμένη Κρυπτογραφία Ι

project RSA και Rabin-Williams

Κρυπτοσυστήματα Δημοσίου Κλειδιού

UP class. & DES και AES

Εφαρμοσμένη Κρυπτογραφία Ι

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

Κεφάλαιο 1. Εισαγωγή. 1.1 Εισαγωγή Ιστορική Αναδρομή

Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

Παύλος Εφραιμίδης. Κρυπτογραφικά Πρωτόκολλα. Ασφ Υπολ Συστ

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

Κρυπτογραφικά Πρωτόκολλα

Ασφάλεια ικτύων (Computer Security)

Hashing Attacks and Applications. Dimitris Mitropoulos

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εφαρμοσμένη Κρυπτογραφία Ι

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Βασικές Έννοιες Κρυπτογραφίας

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού

Ψηφιακές Υπογραφές. Άρης Παγουρτζής Στάθης Ζάχος. Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών;

ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΘΩΣ ΚΑΙ ΣΤΟ ΔΙΑΔΙΚΤΥΟ

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Διαχείριση κλειδιών. Χρήστος Ξενάκης

Εφαρμοσμένη Κρυπτογραφία Ι

Transcript:

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 1 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Επιθέσεις ενεργητικού αντιπάλου A Chosen Plaintext Attack Ικανότητα: Ο A μπορεί να κρυπτογραφεί μηνύματα της αρεσκείας του Στόχος: Ο A θέλει να μάθει την αποκρυπτογράφηση ενός κρυπτοκειμένου Chosen Ciphertext Attack Ικανότητα: Ο A μπορεί να κρυπτογραφεί μηνύματα της αρεσκείας του Ικανότητα: Ο A μπορεί να αποκρυπτογραφεί κάποια μηνύματα της αρεσκείας του Στόχος: Ο A θέλει να μάθει την αποκρυπτογράφηση ενός συγκεκριμένου διαφορετικού μηνύματος 2 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Indistinguishability under Chosen Plaintext Attack (IND-CPA) CPA Game Δημιουργία ζεύγους κλειδιών (PK,SK) Δημοσίευση PK Ο A μπορεί να κρυπτογραφεί πολυωνυμικό πλήθος μηνυμάτων Τελικά υποβάλλει δύο μηνύματα M 0, M 1 στο σύστημα Το σύστημα διαλέγει τυχαία 1 bit b και στέλνει το C = Enc(M b ) στον A Ο A συνεχίζει να κρυπτογραφεί πολυωνυμικό πλήθος μηνυμάτων και κάνει οποιονδηποτε άλλο υπολογισμό μπορεί Τελικά μαντεύει το b Ορισμός ασφάλειας Το κρυπτοσύστημα έχει την ιδιότητα IND-CPA αν κάθε PPT A έχει αμελητέο πλεονέκτημα στον υπολογισμό του b από το να μαντέψει τυχαία 3 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Indistinguishability under Chosen Ciphertext Attack (IND-CCA) I CCA Game Δημιουργία ζεύγους κλειδιών (PK,SK) Δημοσίευση PK Ο A μπορεί να κρυπτογραφεί πολυωνυμικό πλήθος μηνυμάτων Ο A χρησιμοποιεί το σύστημα ως decryption oracle και μπορει να αποκρυπτογραφήσει συγκεκριμένα μηνύματα Τελικά υποβάλλει δύο μηνύματα M 0, M 1 στο σύστημα, διαφορετικά από αυτα που μπορει να αποκρυπτογραφήσει Το σύστημα διαλέγει τυχαία 1 bit b και αποστέλλει το C = Enc(M b ) στον A Ο A συνεχίζει να κρυπτογραφεί πολυωνυμικό πλήθος μηνυμάτων και να κάνει οποιονδηποτε άλλο υπολογισμό μπορεί 4 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Indistinguishability under Chosen Ciphertext Attack (IND-CCA) II Προαιρετικά ο A μπορει να συνεχίσει να χρησιμοποιεί το decryption oracle Τελικά μαντεύει το b Ορισμός ασφάλειας Το κρυπτοσύστημα έχει την ιδιότητα IND-CCA1 αν κάθε PPT A έχει αμελητέο πλεονέκτημα στον υπολογισμό του b από το να μαντέψει τυχαία Αν ισχύει το προαιρετικό βήμα το κρυπτοσύστημα είναι IND-CCA2 (adaptive IND-CCA) Malleability:Μια σχετική ιδιότητα Οποιαδηποτε αλλαγή στο ciphertext οδηγεί σε αντίστοιχη αλλαγή στο plaintext Κάποιες φορές είναι επιθυμητή και κάποιες όχι 5 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Παραδείγματα με παραδοσιακό RSA I To παραδοσιακό RSA δεν είναι IND-CPA γιατί είναι deterministic Αν τα δύο μηνύματα του A είναι: m 0 = Buy IBM m 1 = Sell IBM τότε ο A μπορεί να τα κρυπτογραφήσει και να τα συγκρίνει με το νόμιμο ciphertext To παραδοσιακό RSA είναι malleable Στόχος: Αλλοίωση του c = m e (mod n) c = c( 9 10 )e (mod n) = (m 9 10 )e (mod n) H αποκρυπτογράφηση δίνει το m 9 10 Ο A μπορεί να αλλοιώσει κάποιο μήνυμα χωρίς να το γνωρίζει 6 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Παραδείγματα με παραδοσιακό RSA II To παραδοσιακό RSA δεν είναι IND-CCA Έστω ότι ο A μπορεί να αποκρυπτογραφήσει μηνύματα επιλογής του, εκτός του c Στόχος: Αποκρυπτογράφηση του c = m e b (mod n) Μπορεί να αποκρυπτογραφήσει το c = c b x e δικής του επιλογής Ανακτά το m b = m x Αν m b = m 0 επιστρέφει b = 0 αλλιώς επιστρέφει b = 1 (mod n) όπου το x είναι 7 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Παραδείγματα με παραδοσιακό ElGamal I To ElGamal είναι IND-CPA αν ισχύει η DDH assumption To παραδοσιακό El Gamal είναι malleable Στόχος: Αλλοίωση του c = (G, M) = (g r, mh r ) c = (G, M ) = (Gg r, M 9 10 hr ) = (g r+r, m 9 10 hr+r ) H αποκρυπτογράφηση M δίνει το m 9 G x 10 Ο A μπορεί να αλλοιώσει κάποιο μήνυμα χωρίς να το γνωρίζει 8 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Παραδείγματα με παραδοσιακό ElGamal II To παραδοσιακό El Gamal δεν είναι IND-CCA Έστω ότι ο A μπορεί να αποκρυπτογραφήσει μηνύματα επιλογής του, εκτός του c Στόχος: Αποκρυπτογράφηση του c = (G, M) = (g r, m b h r ) Κατασκευή c = (G, M ) = (Gg r, Mah r ) = (g r+r, m b ah r+r ), όπου a επιλέγεται από τον A H αποκρυπτογράφηση M G x δίνει το am b και κατά συνέπεα το m b Αν m b = m 0 επιστρέφει b = 0 αλλιώς επιστρέφει b = 1 9 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Λύσεις RSA I Randomised Encryption Αντί για κρυπτογράφηση m κρυπτογράφηση f(m, r) όπου r random Η f είναι εύκολα αντιστρέψιμη από οποιονδήποτε Μια απλή υλοποίηση της f: random padding Χρήση στο SSL μέχρι πρόσφατα: PKCS1 10 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Λύσεις RSA II Η επίθεση του Bleichenbacher (1998) [Ble98] Στόχος: Αποκρυπτογράφηση του c = f(m, r) e (mod n) Αποστολή πολλών μηνυμάτων της μορφής c = cx e x O A προσπαθεί να βρει μηνύματα m για τα οποία f(m, r) = (c ) d (mod n) Ανακτά το m = m x Πρακτικά: χρήση SSL error codes ως decryption oracle (mod n) με τυχαια Με 300000 εως 2000000 c μπορεί να αποκρυπτογραφηθεί το c Λύση: RSA - OAEP secure in the random oracle model [BR95] 11 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Λύσεις El Gamal:Cramer Shoup cryptosystem [CS98] I Ronald Cramer, Victor Shoup, Crypto 1998 Επέκταση του El Gamal Χρηση συνάρτησης σύνοψης H Αν ισχυει η υπόθεση DDH, τότε παρέχει IND-CCA2 Δημιουργία Κλειδιών Επιλογή πρώτων p, q με p = 2q + 1 G ειναι η υποομάδα ταξης q στον Z p Επιλογή random generators g 1, g 2 Επιλογή τυχαίων στοιχείων x 1, x 2, y 1, y 2, z Z q c = g x 1 1 g x 2 2 d = g y 1 1 g y 2 2, h = g z 1 Δημόσιο Κλειδί: (c, d, h) Μυστικό Κλειδί: (x 1, x 2, y 1, y 2, z) 12 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Λύσεις El Gamal:Cramer Shoup cryptosystem [CS98] II Κρυπτογράφηση Μετατροπή μηνύματος m στο G Επιλογή τυχαίου r Z q Υπολογισμός u 1 = g r 1, u 2 = g r 2 e = mh r α = H(u 1, u 2, e) v = c r d rα Κρυπτογράφημα: (u 1, u 2, e, v) 13 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Λύσεις El Gamal:Cramer Shoup cryptosystem [CS98] III Αποκρυπτογράφηση Υπολογισμός α = H(u 1, u 2, e) Έλεγχος αν u x 1 1 u x 2 2 (u y 1 1 u y 2 2 ) α = v Σε περίπτωση αποτυχίας έξοδος χωρίς αποκρυπτογράφηση Σε περιπτωση επιτυχίας υπολογισμός m = e u z 1 14 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Λύσεις El Gamal:Cramer Shoup cryptosystem [CS98] IV Παρατηρήσεις h, z αντιστοιχούν σε δημόσιο - ιδιωτικό κλειδί El Gamal u 1, e αντιστοιχούν στο κρυπτογράφημα του El Gamal H H μπορεί να αντικατασταθεί για αποφυγή του random oracle u 2, v λειτουργούν ως έλεγχος ακεραιότητας, ώστε να μπορεί να αποφευχθεί το malleability Διπλάσια πολυπλοκότητα από ElGamal τόσο σε μέγεθος κρυπτοκειμένου, όσο και σε υπολογιστικές απαιτήσεις 15 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

References I [Ble98] Daniel Bleichenbacher Chosen ciphertext attacks against protocols based on the rsa encryption standard pkcs1 pages 1 12 Springer-Verlag, 1998 [Bon12] Dan Boneh Cryptography i Coursera Online Course, November 2012 [BR95] Mihir Bellare and Phillip Rogaway Optimal asymmetric encryption how to encrypt with rsa pages 92 111 Springer-Verlag, 1995 [CS98] Ronald Cramer and Victor Shoup A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack In Hugo Krawczyk, editor, Advances in Cryptology CRYPTO 98, volume 1462 of Lecture Notes in Computer Science, pages 13 25 Springer Berlin Heidelberg, 1998 [KL07] Jonathan Katz and Yehuda Lindell Introduction to Modern Cryptography (Chapman & Hall/Crc Cryptography and Network Security Series) Chapman & Hall/CRC, 2007 [Sho98] Victor Shoup Why chosen ciphertext security matters, 1998 16 / 16 Σχολή ΗΜΜΥ ΕΜΠ() Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία