1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α."

Transcript

1 1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά για μεγαλύτερα κρυπτογραφικά πρωτόκολλα και συστήματα. Σε ένα σχήμα υπογραφής, κάθε μέρος έχει ένα μοναδικό κλειδί υπογραφής sk που μοναδικά υπογράφει το μήνυμα. Κάθε μεριά δημοσιεύει το αντίστοιχο δημόσιο κλειδί επαλήθευσης pk. Μόνο κάποιος με την γνώση του sk μπορεί να υπογράψει ένα μήνυμα, αλλά όλες οι μεριές έχουν πρόσβαση στο pk και μπορούν να επαληθέψουν μιαν υπογραφή. Τέτοια σχήματα είναι χρήσιμα γιατί αποφεύγουν πως κάποιος μέσω του κλειδιού επαλήθευσης να μπορεί να υπολογίσει το κλειδί υπογραφής με μη αμελητέα πιθανότητα. Επιπλέον είναι ανέφικτο για κάποιον αντίπαλο να παράγει ένα έγκυρο ζευγάρι μήνυμα-υπογραφή ως προς κάποιο κλειδί επαλήθευσης. Definition Ένα σχήμα ψηφιακής υπογραφής (digital signature scheme) είναι μια τριάδα αλγορίθμων (Gen,Sign,Verify) 1 τέτοια ώστε Ο αλγόριθμος παραγωγής κλειδιού Gen: Πάρε ως είσοδο μια παράμετρο ασφαλείας 1 λ και επέστρεψε το ζευγάρι (pk, sk). Θα ονομάζουμε το κλειδί pk ως δημόσιο ή επαλήθευσης και το κλειδί sk ως κρυφό ή υπογραφής Ο αλγόριθμος υπογραφής Sign: Πάρε ως είσοδο την κρυπτογραφική παράμετρο 1 λ, το κλειδί υπογραφής sk και ένα μήνυμα M και παρήγαγε την ψηφιακή υπογραφή σ του M. Ο αλγόριθμος επαλήθευσης Verify: Πάρε ως είσοδο το κλειδί επαλήθευσης vk, μια ψηφιακή υπογραφή σ και ένα μήνυμα m. Επέστρεψε True= 1 ή False=0 δείχνοντας αν η υπογραφή είναι έγκυρη ή όχι. Ο κύριος στόχος των ψηφιακών υπογραφών είναι μη δυνατότητα πλαστογράφησης (unforgeability), ή διαφορετικά πως ένας PPT αντίπαλος δεν μπορεί να κατασκευάσει ένα έγκυρο ζευγάρι μηνύματος-υπογραφής. Η δυνατότερη επίθεση ενάντια σε ψηφιακές υπογραφές ονομάζετε επίθεση επιλεγμένης μεθόδου (chosen method attack). Σε μια τέτοια επίθεση, ο αντίπαλος έχει απεριόριστη πρόσβαση σε ένα μαντείο υπογραφών που υπογράφει μηνύματα που διαλέγει ο αντίπαλος. Definition Ένα σχήμα ψηφιακών υπογραφών (Gen,Sign,Verify) χαρακτηρίζεται από μη δυνατότητα πλαστογράφησης ενάντια σε επιθέσεις επιλεγμένου μηνύματος (unforgeability against chosen message attacks) (UF-CMA) αν για κάθε PPT αντίπαλο A που χρησιμοποιεί το μαντείο υπογραφών Sign(sk, ) l φορές, η πιθανότητα να παράξει ο A l + 1 διαφορετικά έγκυρα ζευγάρια μηνύματος υπογραφής είναι αμελητέα. Όταν τα μηνύματα είναι διακριτά, θα λέμε πως υπάρχει ισχυρή μη δυνατότητα πλαστογράφησης (strong unforgeability). Όταν τα ζευγάρια μηνύματος-υπογραφής είναι διακριτά, θα λέμε πως υπάρχει απλή μη δυνατότητα πλαστογράφησης (regular unforgeability). 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n Το κρυπτοσύστημα RSA αναπτύχθηκε το 1977 στο MIT από τους Ron Rivest, Adi Shamer, and Leonard Adleman. Ήταν το πρώτο σχήμα κρυπτογράφησης δημοσίου κλειδιού που μπορούσε να κρυπτογραφήσει και να υπογράψει μηνύματα. Όπως και με το πρωτόκολλο ανταλλαγής κλειδιού Diffie-Hellman, το σύστημα έδινε τη δυνατότητα σε δύο μεριές να επικοινωνήσουν σε ένα δημόσιο κανάλι. Υποθέστε πως η Αλίκη αποφασίζει να στείλει στον αγαπητό της φίλο Βασίλη ένα μήνυμα. Για να εξασφαλιστεί μια ιδιωτική συνομιλία σε ένα μη ασφαλές κανάλι, ο Βασίλης διαλέγει και δημοσιεύει τους ακεραίους n και e. Η Αλίκη γράφει το μήνυμα x και υπολογίζει το E(x) = x e mod n, 1 Ο Gen και ο Sign είναι PPT αλγόριθμοι, ο Verify είναι ντετερμινιστικός πολυωνυμικού χρόνου αλγόριθμος. 1

2 που είναι γνωστό ως η ύψωση στην e-οστη δύναμη (e-th Power map του x. Τότε στέλνει το y = E(x) στον Βασίλη, ο οποίος για να δει το μήνυμα, πρέπει να υπολογίσει την e-οστη ρίζα του y. Πιστεύεται πως αυτό είναι δύσκολο, όπως συζητήθηκε και στην ενότητα??. Αν ο Βασίλης διαλέξει τα n και e με ανάλογα, υπάρχει και μια εναλλακτική μέθοδος. Βλέπουμε πως ο Βασίλης μπορεί να εφαρμόσει την ύψωση στην d-οστη δύναμη του y για να πάρει το x, D(y) = y d = x ed x 1+φ(n)k x mod n όπου το k Z n και η συνάρτηση Euler φ(n) ορίζεται ως εξής: Definition Για κάθε n N, η συνάρτηση Euler (Euler function) φ(n) υπολογίζει τον αριθμό των ακεραίων στο Z n που είναι σχετικά πρώτοι με το n: φ(n) = # {k Z n : gcd(k, n) = 1}. Αντίστοιχα, το φ(n) είναι ο αριθμός των αντιστρέψιμος στοιχείων στο Z n : φ(n) = # {k Z n : kl = 1 for some l Z n }. Για να υπολογίσουμε την συνάρτηση Euler μελετάμε τις εξής περιπτώσεις p e p e 1, φ(n) = j φ(p ei i ), i=1 n = p e for prime p n = pe1 1 pe j j for distinct primes p i. Αν n = p e, είναι εύκολο να μετρήσουμε τους αριθμούς υπόλοιπο n τους οποίους το p δεν διαιρεί. Μπορούμε να επεκτείνουμε το φ σε ένα σύνθετο ακέραιο n = p e1 1 pej j χρησιμοποιώντας το γεγονός ότι το φ είναι πολλαπλασιαστικό σε σχετικά πρώτους ακέραιους: φ(mn) = φ(m)φ(n) όταν gcd(m, n) = 1. Αυτό μπορεί να δειχθεί αποδεικνύοντας ότι Z mn = Z m Z n χρησιμοποιώντας το Κινέζικο θεώρημα υπολοίπων. Ενδιαφερόμαστε στην ειδική περίπτωση όπου n είναι το γινόμενο δύο μεγάλων πρώτων p και q. Η πολλαπλασιαστική ομάδα Z n = {a Z n : gcd(a, n) = 1} αποτελείτε από φ(n) = (p 1)(q 1) στοιχεία. Για να είναι το παραπάνω πρωτόκολλο αποτελεσματικό (δηλαδή μόνο ο Βασίλης να γνωρίζει το d) επιλέγουμε το e να είναι ένας πρώτος τέτοιος ώστε 1 e φ(n) και gcd(e, φ(n)) = 1. Τότε η ύψωση στην e-οστη δύναμη E : Z n Z n, που ορίζεται από το x x e mod n είναι αντιστρέψιμη. Συγκεκριμένα, όταν ed 1 mod φ(n), η ύψωση στην d-οστή δύναμη D αντιστρέφει την E. Αν ο Βασίλης διαλέξει τα e και φ(n) προσεκτικά, μπορεί εύκολα να βρει το d χρησιμοποιώντας τον αλγόριθμο του Ευκλείδη. Είναι ξεκάθαρα πως η δύναμη αυτής της τεχνικής βασίζεται στην επιλογή του Βασίλη για το n. Αν τα p και q είναι προφανή τότε κάθε ενδιαφερόμενη μεριά θα μπορούσε να υπολογίσει το φ(n) και στη συνέχεια το d. Αντίστοιχα, δεδομένου του n και του φ(n) μπορεί κανείς να υπολογίσει το d. Αυτό συνεπάγεται πως το να βρει κανείς e-οστές ρίζες στο Z n εξασφαλίζεται από την παραγοντοποίηση του n. Επειδή το πρόβλημα της παραγωντοποίησης πιστεύεται πως είναι δύσκολο, η συνάρτηση RSA φαίνεται πως είναι δύσκολο να αντιστραφεί σε πολυωνυμικό χρόνο και συνεπώς αποτελεί συνάρτηση μιας κατεύθυνσης. Η υπόθεση RSA (RSA assumption) θεωρεί πως είναι δύσκολο να αντιστρέψει κανείς την συνάρτηση RSA. 2

3 1.2 Ψηφιακές υπογραφές RSA Μετά την εισαγωγή του, η ασφάλεια του σχήματος υπογραφής RSA εξετάστηκε στο Κατακερματισμό πλήρους πεδίου ορισμού και αποδείχθηκε ασφαλές κάτω από το μοντέλο τυχαίου μαντείου βασιζόμενοι στην υπόθεση RSA. Γενικά μια συνάρτηση κατακερματισμού (hash function) είναι μια αντιστοίχηση που παίρνει ως είσοδο ένα μήνυμα αυθαίρετου μήκους και επιστρέφει ένα στοιχείο φραγμένου μεγέθους. Μια ιδανική συνάρτηση κατακερματισμού θα πρέπει να είναι εύκολα υπολογίσιμη, μη αντιστρέψιμη και να συμπεριφέρεται σαν ένεση υπό την έννοια ότι είναι σχεδόν απίθανο δύο μηνύματα, ανεξαρτήτως πόσο όμοια είναι, να αντιστοιχίζονται στην ίδια συμβολοσειρά. Σε αυτήν την ενότητα, θα θεωρήσουμε πως η συνάρτηση κατακερματισμού μας H είναι ιδανική με εύρος όπου {0, 1} = k=0 {0, 1}k. Στο σχήμα υπογραφών RSA, H : {0, 1} Z n, Τον γεννήτορα κλειδιού Gen: Πρώτα διάλεξε δύο τυχαίους πρώτους αριθμούς p και q τέτοιους ώστε p = q = λ. Υπολόγισε τα n = pq και φ(n) = (p 1)(q 1). Δεύτερον, διάλεξε έναν τυχαίο πρώτο e < φ(n) τέτοιο ώστε gcd(e, φ(n)) = 1 και υπολόγισε το d e 1 mod φ(n). Το κλειδί επαλήθευσης είναι το (n, e) και το κλειδί υπογραφής το d. Μια συνάρτηση κατακερματισμού πλήρους πεδίου ορισμού H είναι προσβάσιμη σε όλες τις μεριές. Ένα κλειδί υπογραφής Sign: Δεδομένου του d και ενός μηνύματος M, επέστρεψε την ψηφιακή υπογραφή σ = H(M) d mod n. Ένας αλγόριθμος επαλήθευσης Verify: Δεδομένων (n, e) και (M, σ), επαλήθευσε ότι σ e = H(M) mod n. Αν η ισότητα ισχύει το αποτέλεσμα είναι True; διαφορετικά το αποτέλεσμα είναι False. Θα ονομάζουμε ως σύγκρουση όταν δύο μηνύματα έχουν την ίδια υπογραφή υπό μια συνάρτηση κατακερματισμού. Αυτές οι περιπτώσεις προκαλούν πλαστογραφήσεις. Για παράδειγμα, αν το (M, σ) είναι ένα έγκυρο ζευγάρι μηνύματος-υπογραφής και το m είναι ένα μήνυμα τέτοιο ώστε H(M) = H(M ), τότε το (M, σ) είναι επίσης ένα έγκυρο ζευγάρι μηνύματος-υπογραφής. Για να ισχύει η υπόθεση RSA, το H πρέπει να ικανοποιεί μια μορφη ανοχής σε συγκρούσεις. Αυτό αποδεικνύεται στο λεγόμενο μοντέλο τυχαίου μαντείου. Ένα τυχαίο μαντείο (random oracle) είναι μια συνάρτηση που παράγει μια φαινομενικά τυχαία έξοδο για κάθε ερώτημα που λαμβάνει. Θα πρέπει να είναι συνεπής με τις απαντήσεις της: αν ένα ερώτημα επαναληφθεί θα πρέπει το μαντείο να επιστρέψει την ίδια απάντηση. Η απώλεια κάποιας συγκεκριμένης δομής του τυχαίων μαντείων τα καθιστά χρήσιμα σε κρυπτογραφικές εφαρμογές όταν για να σκεφτούμε αφαιρετικά για μια συνάρτηση κατακερματισμού. Αν ένα σχήμα είναι ασφαλές θεωρώντας πως ο αντίπαλος βλέπει κάποια συνάρτηση σαν τυχαίο μαντείο, λέμε πως είναι ασφαλές στο Μοντέλο Τυχαίου Μαντείου (Random Oracle Model). Η εικόνα 3 παρουσιάζει πως μια συνάρτηση κατακερματισμού H μοντελοποιείται ως τυχαίο μαντείο. Δεδομένου M / History, διάλεξε t r Z n και εισήγαγε (M, t) στο History. Επέστρεψε t. Δεδομένου M τέτοιου ώστε (M, t) History για κάποιο t, επέστρεψε t. Σχήμα 1: Ένα τυχαίο μαντείο, όπου το History αναπαριστά το σύνολο όλων των ζευγαριών (εισόδου,εξόδου) που εξυπηρέτησε το μαντείο. Θα δείξουμε πως το σχήμα υπογραφής RSA είναι ασφαλές στο Μοντέλου Τυχαίου Μαντείου υπό την υπόθεση RSA. 3

4 < Κρυπτογραφία: Αρχές και πρωτόκολλα Theorem Στο Μοντέλο Τυχαίου Μαντείου, κάθε PPT αλγόριθμος πλαστογράφησης που επιτίθεται στο σχήμα ψηφιακών υπογραφών RSA και βρίσκει μια πλαστογραφημένη υπογραφή με πιθανότητα α μπορεί να μεταμορφωθεί σε έναν αλγόριθμο που βρίσκει e-οστές ρίζες με πιθανότητα τουλάχιστον 1 (α 1 q H 2 λ ), όπου λ είναι η παράμετρος ασφαλείας και q H είναι αριθμός επερωτήσεων που γίνονται στο τυχαίο μαντείο H. Απόδειξη. Έστω A να είναι ένας αντίπαλος που βρίσκει μια πλαστογραφημένη υπογραφή με πιθανότηταα. Θα κατασκευάσουμε έναν αλγόριθμο B που λύνει το πρόβλημα RSA. Έστω πως δίνεται στον B η είσοδος n, e, y, όπου τα n και e δίνονται από τον αλγόριθμο γέννεσης κλειδιού του RSA Gen και το y διαλέγεται τυχαία από το Z n. Ο στόχος του B είναι να βρει ένα z Z n τέτοιο ώστε z = y 1/e mod n. Για να το πετύχει αυτό, ο B διαμορφώνει το κλειδί επαλήθευσης (n, e) και το δίνει στον A. Ο A θα κάνει ερωτήσεις στο τυχαίο μαντείο καθώς επίσης και στο μαντείο υπογραφής. Και στις δύο περιπτώσεις ο B θα πρέπει να απαντήσει. Υποθέτουμε πως ο B ξέρει το q H. Αυτό δεν είναι πρόβλημα φού ο A φράσσεται από πολυωνυμικό χρόνο εκτέλεσης και το q H είναι σίγουρα μικρότερο από τον αριθμό των βημάτων εκτέλεσης του A. Η εικόνα 2 παρουσιάζει πως λειτουργεί ο B έχοντας πρόσβαση στον A. < n,e,y Attacker on RSA B ( n,e) H ( M) Forgery Attacker A Sign( sk,m) ( M, ) z=y 1/e mod n Σχήμα 2: Ο αντίπαλος B πρέπει να εξομοιώσει τα H και Sign για να χρησιμοποιήσει το A. Πρώτα υποθέτουμε πως ο A δεν χρησιμοποιεί τον αλγόριθμο υπογραφής Sign, συνεπώς ο A παράγει το (M, σ) αφού κάνει q H ερωτήματα στο τυχαίο μαντείο H. Ο B απαντάει αυτά τα ερωτήματα εξομοιώνοντας το H όπως φαίνεται στην Εικόνα 3. Εξ υποθέσεως, το σ είναι μια έγκυρη υπογραφή για το M με πιθανότητα α. Υποθέτουμε πως είναι έγκυρη, συνεπώς ισχύει πως σ = H(M) d mod n. Αν H(M) = y, τότε σ = H(M) d = y d mod n και το σ είναι μια e-οστή ρίζα του y (αφού d e 1 mod φ(n)). Παρατηρείστε πως το παραπάνω είναι εξαιρετικά απίθανο, αφού η πιθανότητα πως H(M) = y είναι πολυ μικρή. Αυτό ισχύει επειδή δεν υπάρχει σχέση μεταξύ της εξομοίωσης του τυχαίου μοντέλου από τον B και την τιμή y. Για να πάρουμε αυτό το αποτέλεσμα με μια λογική τυχαιότητα, ο B αποκλίνει από την Εικόνα 3 όταν απαντά τα ερωτήματα στο τυχαίο μαντείο. Ο B διαλέγει έναν τυχαίο αριθμό j στο {1,..., q H } και δοκιμάζει να απαντήσει το j-οστό ερώτημα στο τυχαίο μαντείο με y: H(M) = y. Συγκεκριμένα το τυχαίο μαντείο τροποποιείται παραμετροποιώντας το με τα j, y και λειτουργεί ως εξής: Κράτα έναν μετρητή για τα ερωτήματα. Δεδομένου ενός M / History: αν είναι το j-οστό ερώτημα, θέσε t = y, αλλιώς διάλεξε t r Z n. Εισήγαγε το (M, t) στο History. Επέστρεψε t. Δεδομένου ενός M τέτοιου ώστε (M, t) History για κάποιο t, επέστρεψε t. Σχήμα 3: Μια τροποποιημένη εξομοίωση του τυχαίου μοντέλου που χρησιμοποιείται από τον αλγόριθμο B για να βάλει μια πρόκληση y στις απαντήσεις του μαντείου. 4

5 Στη συνέχεια θα συμβολίζουμε το πλαστογραφημένο μήνυμα εξόδου του αντίπαλου με M, και τα ερωτήματα στο μαντείο υπογραφών M 1,..., M qs. Όπως συζητήθηκε πάνω θα θεωρήσουμε αρχικά πως q S = 0, i.e., δεν γίνονται ερωτήσεις στο μαντείο υπογραφών. Θεωρείστε το γεγονός E, πως m History και το γεγονός E ως το συμπληρωματικό του E. Επιπλέον έστω S να είναι το γεγονός ότι ο αντίπαλος A επιτυχώς παράγει μια πλαστογραφημένη υπογραφή (δηλαδή ο αλγόριθμος επαλήθευσης με είσοδο M, σ επιστρέφει 1). Βασιζόμενοι στο θεώρημα, γνωρίζουμε πως Prob[S] = α. Από την άλλη παρατηρείστε ότι Prob[S E] 1/φ(n) 2 λ. Σε αυτή την περίπτωση αφού βρισκόμαστε στην χώρο υποσυνθήκης του E o αντίπαλος δεν έχει ρωτήσει M στο H και συνεπώς η τιμή H(M) δεν είναι απροσδιόριστη μέχρι και την εμπλοκή του αλγόριθμου επαλήθευσης. Αφού ο αντίπαλος έχει ήδη παράξει το σ, η πιθανότητα να ισχύει πως H(M) e = σ in Z n είναι 1/φ(n) 2 λ. Τώρα στον χώρο πιθανοτήτων υπό συνθήκη του E, υπάρχει μια πιθανότητα 1/q H πως το τυχαίο μαντείο θα απαντήσει σωστά το ερώτημα στο οποίο θα ερωτηθεί το. Θα ονομάζουμε αυτό το γεγονός G. Αν το G συμβεί, συνεπάγεται ότι H(M) = y, δηλαδή το y θα είχε εισαχθεί στη σωστή θέση. Σε τέτοια περίπτωση ο B θα έβρισκε επιτυχώς την e-οστή ρίζα του y. Θα ονομάζουμε αυτό το γεγονός V. Στη συνέχεια δίνουμε ένα κάτω φράγμα για την πιθανότητα του V. Πρώτων έχουμε ότι Prob[S E] 2 λ, γιαυτό Βασιζόμενοι σε αυτό παίρνουμε το κάτω φράγμα Prob[S E] = Prob[S E] Prob[ E] 2 λ. Prob[S E] α 2 λ. Στη συνέχεια διαχωρίζουμε την πιθανότητα σύμφωνα με το E και υπολογίζουμε την πιθανότητα του V ως εξής: Prob[V ] = Prob[V E] Prob[E] + Prob[V E] Prob[S G E] Prob[E]. Λόγω της ανεξαρτησίας των γεγονότων S, G στον χώρο πιθανοτήτων υπό συνθήκη του E, έχουμε πως Prob[V ] Prob[S E] Prob[G E] Prob[E] = Prob[S E] Prob[G E] = α 2 λ q H. Αυτό ολοκληρώνει το θεώρημα μας για την περίπτωση q S = 0. Στη συνέχεια θεωρούμε την γενική περίπτωση όπου το q S είναι πολυωνυμικό στο λ. Επιπρόσθετα στα ερωτήματα τυχαίου μαντείου, ο A ρωτάει τον B να υπογράψει το μήνυμα M i. Ο B θα πρέπει να απαντήσει με έναν τρόπο έτσι ώστε να είναι συνεπής με τα ερωτήματα στο τυχαίο μαντείο: Αν ο B επιστρέψει σ i, θα ισχύει ότι σ i = H(M i ) d mod n και έτσι σi e = H(M i) mod n. Αυτό συνεπάγεται πως το (M i, σi e ) είναι στο History. Θα το επιτύχουμε αυτό τροποποιώντας ξανά την εξομοίωση του H από τον B όπως φαίνεται στην Εικόνα??. Κράτα έναν μετρητή για τα ερωτήματα. Δεδομένου ενός M / History: Αν είναι το j-οστό ερώτημα, θέσε t = y, ρ =, διαφορετικά διάλεξε ρ r Z n και θέσε t = ρ e mod n. Εισήγαγε το (M, t, ρ) στο History. Επέστρεψε t. Δεδομένου ενός M τέτοιου ώστε (M, t, ρ) History για κάποιο t, επέστρεψε t. Σχήμα 4: Μια δεύτερη τροποποίηση της εξομοίωσης του τυχαίου μαντείου από τον B για να βάλει το y στις απαντήσεις του μαντείου διατηρώντας το συνεπές σύμφωνα με την αλγόριθμο επαλήθευσης της ύψωσης στην e-οστή δύναμη. Τώρα όταν θα ερωτηθεί να υπογράψει το M i, ο B μπορεί πρώτα να ρωτήσει το τυχαίο μαντείο του για το M i και μετά να συμβουλευτεί τις εγγραφές του History για το (M i, t i, ρ i ). Εκτός από την περίπτωση ρ i = μπορεί να απαντήσει την ερώτηση με ρ i. Παρατηρείστε πως η εξομοίωση είναι τέλεια όσο ρ i, 5

6 αφού ρ e i = t i mod n, δηλαδή το ρ i είναι η e-οστή ρίζα του t i = H(M i ) in Z n. Για τον σκοπό μας όμως δεν μας ενδιαφέρει η περίπτωση που ρ i = αφού σημαίνει πως ο B μάντεψε λάθος για την θέση του M (εξαιτίας την προϋπόθεσης για μια επιτυχής πλαστογράφηση πως ο A προσπαθεί να πλαστογραφήσει ένα μήνυμα που δεν ρώτησε το μαντείο υπογραφών) και συνεπώς η εξομοίωση δεν θα είναι επιτυχής. Τελειώνουμε την απόδειξη εξασφαλίζοντας πως ο αντίπαλος A δεν μπορεί να καταλάβει κάποια διαφορά στις απαντήσεις του τυχαίου μαντείου όπως ορίστηκε στην Εικόνα??. Όντως παρατηρούμε πως οι τιμές που επιστρέφει ο αντίπαλος είναι της μορφής ρ e mod n, σε αντίθεση με τιμές t επιλεγμένες ομοιόμορφα από το Z n. Αυτό όμως δεν θέτει κάποιο πρόβλημα αφού η συνάρτηση RSA είναι αμφιμονοσήμαντη στο Z n και συνεπώς, ρ e mod n είναι μια τυχαία μεταβλητή που κατανέμεται ομοιόμορφα στο Z n υπό την υπόθεση πως το ρ είναι ομοιόμορφα κατανεμημένο. Notes by S. Pehlivanoglu, J. Todd, & H.S. Zhou 6

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

1 Diffie-Hellman Key Exchange Protocol

1 Diffie-Hellman Key Exchange Protocol 1 Diffie-Hellman Key Exchange Potocol To 1976, οι Whitefield Diffie και Matin Hellman δημοσίευσαν το άρθρο New Diections in Cyptogaphy, φέρνοντας επανάσταση στην οποία οφείλεται η λεγόμενη "μοντέρνα κρυπτογραφια".

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα [1, n] που

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

1 Βασικές Έννοιες Ιδιωτικότητας

1 Βασικές Έννοιες Ιδιωτικότητας 1 Βασικές Έννοιες Ιδιωτικότητας Τα κρυπτογραφικά εργαλεία που συζητήσαμε μέχρι στιγμής δεν μπορούν να λύσουν το πρόβλημα της ανάγκης για ιδιωτικότητα των χρηστών ενός συστήματος Η ιδιωτικότητα με την έννοια

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Η συνάρτηση φ(.) του Euler Για κάθε ακέραιο n > 0, έστω φ(n) το πλήθος των ακεραίων στο

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών

Στοιχεία Θεωρίας Αριθμών Ε Μ Π Σ Ε Μ & Φ Ε Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Κωστής Γ Διδάσκοντες: Στάθης Ζ Άρης Π 9 Δεκεμβρίου 2011 1 Πιθανές Επιθέσεις στο RSA Υπενθύμιση

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Υπογραφές Επιπρόσθετης Λειτουργικότητας Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Υπογραφές Επιπρόσθετης Λειτουργικότητας Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

project RSA και Rabin-Williams

project RSA και Rabin-Williams Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών project RSA και Rabin-Williams Στοιχεία Θεωρίας Αριθμών& Εφαρμογές στην Κρυπτογραφία Ονοματεπώνυμο Σπουδαστών: Θανάσης Ανδρέου

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 32 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας ιδιότητες ασϕάλειας ιδιότητες ασϕάλειας αγαθών Εμπιστευτικότητα (Confidentiality)

Διαβάστε περισσότερα

* * * ( ) mod p = (a p 1. 2 ) mod p.

* * * ( ) mod p = (a p 1. 2 ) mod p. Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού ΤΕΙ ΚΡΗΤΗΣ ΤΜΉΜΑ ΜΗΧΑΝΙΚΏΝ ΠΛΗΡΟΦΟΡΙΚΉΣ Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Συναρτήσεις Κατακερματισμού Ο όρος συνάρτηση κατακερματισμού (hash function) υποδηλώνει ένα μετασχηματισμό που παίρνει

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Κεφάλαιο 21. Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων

Κεφάλαιο 21. Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων Κεφάλαιο 21 Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων Κρυπτογράφηση δημόσιου κλειδιού RSA Αναπτύχθηκε το 1977 από τους Rivest, Shamir και Adleman στο MIT Ο πιο γνωστός και ευρέως

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρήτης ΕΠΠ Εργαστήριο Ασφάλεια Πληροφοριακών Συστηµάτων ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τµηµα Εφαρµοσµενης Πληροφορικης Και Πολυµεσων Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Εισαγωγή

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ζωή Παρασκευοπούλου Νίκος

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο

Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία PROJECT Συνοπτική Παρουσίαση του Κβαντικού Αλγόριθμου Παραγοντοποίησης

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Συναίνεση χωρίς την παρουσία σφαλμάτων Κατανεμημένα Συστήματα Ι 4η Διάλεξη 27 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 4η Διάλεξη 1 Συναίνεση χωρίς την παρουσία σφαλμάτων Προηγούμενη

Διαβάστε περισσότερα

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA Τον Απρίλιο του 977 οι Ρόναλντ Ρίβεστ, Άντι Σαµίρ και Λέοναρντ Άντλεµαν, ερευνητές στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ) µετά από ένα χρόνο προσπαθειών

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

Κρυπτογραφία. Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται

Διαβάστε περισσότερα

Κρυπτογραφία. Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Χρήστος Κούτρας Γιώργος

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Ψηφιακές Υπογραφές. Παναγιώτης Γροντάς - Άρης Παγουρτζής. ΕΜΠ - Κρυπτογραφία - ( ) 28/11/2017. Digital Signatures 1 / 57

Ψηφιακές Υπογραφές. Παναγιώτης Γροντάς - Άρης Παγουρτζής. ΕΜΠ - Κρυπτογραφία - ( ) 28/11/2017. Digital Signatures 1 / 57 Ψηφιακές Υπογραφές Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία - (2017-2018) 28/11/2017 Digital Signatures 1 / 57 Περιεχόμενα Ορισμός - Μοντελοποίηση Ασφάλειας Ψηφιακές Υπογραφές RSA Επιθέσεις

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

Αλγόριθµοι δηµόσιου κλειδιού

Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Ηδιανοµή του κλειδιού είναι ο πιο αδύναµος κρίκος στα περισσότερα κρυπτογραφικά συστήµατα Diffie και Hellman, 1976 (Stanford Un.) πρότειναν ένα

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Θεωρία αριθμών Αλγεβρικές δομές Χρήστος Ξενάκης Το σύνολο των ακεραίων Ζ = {..., -2, -1, 0, 1, 2,...} Το σύνολο των φυσικών Ν = {0, 1, 2,...}

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 35 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων

Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Πληροφοριακών Συστηµάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 3η Δρ. A. Στεφανή Τµ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Ψηφιακές Υπογραφές- Βασικές Αρχές Η Ψηφιακή Υπογραφή είναι ένα µαθηµατικό

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία Κωνσταντινίδης Ορέστης Σ.Ε.Μ.Φ.Ε. Επιβλέπων καθηγητής: Άρης Παγουρτζής

Διαβάστε περισσότερα

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους

Διαβάστε περισσότερα

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

Την αποδοχή του κειμένου από τον υπογράφοντα και την συμφωνία του με αυτό.

Την αποδοχή του κειμένου από τον υπογράφοντα και την συμφωνία του με αυτό. Κεφάλαιο 7 Ψηφιακές Υπογραφές 7.1 Εισαγωγή Στο κεφάλαιο αυτό θα ασχοληθούμε με τα Σχήματα Υπογραφών ή Σχήματα Ψηφιακών Υπογραφών (Digital Signature Schemes) όπως αλλιώς ονομάζονται. Θα μιλήσουμε για την

Διαβάστε περισσότερα

Κρυπτογραφία. Hash functions. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Hash functions. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Hash functions Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 34 Περιεχόμενα 1 Συναρτήσεις μονής-κατεύθυνσης

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας (2017-18) Βοηθοί διδασκαλίας Παναγιώτης Γροντάς

Διαβάστε περισσότερα

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013 Ψευδο-τυχαιότητα Συναρτήσεις µιας Κατεύθυνσης και Γεννήτριες Ψευδοτυχαίων Αριθµών Παύλος Εφραιµίδης 2013/02 1 Αριθµοί και String Όταν θα αναφερόµαστε σε αριθµούς θα εννοούµε ουσιαστικά ακολουθίες από δυαδικά

Διαβάστε περισσότερα

ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007

ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007 Ψηφιακές υπογραφές Ψηφιακές υπογραφές Υπάρχει ανάγκη αντικατάστασης των χειρόγραφων υπογραφών µε ψηφιακές (ΨΥ) Αυτές πρέπει να διαθέτουν τα εξής χαρακτηριστικά: Ο παραλήπτης πρέπει να είναι σε θέση να

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 6: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Βυζαντινά Σφάλματα Τι θα δούμε σήμερα Κάτω Φράγμα για Αλγόριθμους Συμφωνίας με Βυζαντινά Σφάλματα: n > 3f Αλγόριθμος Συμφωνίας

Διαβάστε περισσότερα

Κεφάλαιο 8. Συναρτήσεις Σύνοψης. 8.1 Εισαγωγή

Κεφάλαιο 8. Συναρτήσεις Σύνοψης. 8.1 Εισαγωγή Κεφάλαιο 8 Συναρτήσεις Σύνοψης 8.1 Εισαγωγή Οι Κρυπτογραφικές Συναρτήσεις Σύνοψης (ή Κατακερματισμού) (σμβ. ΣΣ) παίζουν σημαντικό και θεμελιακό ρόλο στη σύγχρονη κρυπτογραφία. Όπως και οι ΣΣ που χρησιμοποιούνται

Διαβάστε περισσότερα

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Threshold Cryptography Algorithms Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Ορισμός Το σύστημα το οποίο τεμαχίζει ένα κλειδί k σε n τεμάχια έτσι ώστε οποιοσδήποτε συνδυασμός πλήθους

Διαβάστε περισσότερα

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων Κεφάλαιο Ψηφιακές Υπογραφές Πίνακας Περιεχομένων 11.1 Εισαγωγή..............................................1 11.2 Ένα πλαίσιο για μηχανισμούς ψηφιακών υπογραφών........... 2 11.3 RSA και σχετικά σχήματα

Διαβάστε περισσότερα

Blum Blum Shub Generator

Blum Blum Shub Generator Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Αριθμών : Blum Blum Shub Generator Διονύσης Μανούσακας 31-01-2012 Εισαγωγή Πού χρειαζόμαστε τυχαίους αριθμούς; Σε κρυπτογραφικές εφαρμογές κλειδιά κρυπτογράφησης

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 θα εξετάσουμε τα ακόλουθα εργαλεία κρυπτογραφίας: ψηφιακές υπογραφές κατακερματισμός (hashing) συνόψεις μηνυμάτων μ (message digests) ψευδοτυχαίοι

Διαβάστε περισσότερα

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις Ο ΑΤΔ Λεξικό Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος Υλοποιήσεις Πίνακας με στοιχεία bit (0 ή 1) (bit vector) Λίστα ακολουθιακή (πίνακας) ή συνδεδεμένη Είναι γνωστό το μέγιστο

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Κρυπτοσυστήματα Δημοσίου Κλειδιού

Κρυπτοσυστήματα Δημοσίου Κλειδιού Κεφάλαιο 6 Κρυπτοσυστήματα Δημοσίου Κλειδιού 6.1 Εισαγωγή Η ιδέα της κρυπτογραφίας δημοσίων κλειδιών οφείλεται στους Diffie και Hellman (1976) [4], και το πρώτο κρυπτοσύστημα δημοσίου κλειδιού ήταν το

Διαβάστε περισσότερα

F 5 = (F n, F n+1 ) = 1.

F 5 = (F n, F n+1 ) = 1. Λύσεις Θεμάτων Θεωρίας Αριθμών 1. (α) Να δειχθεί ότι ο πέμπτος αριθμός της μορφής Fermat, δηλαδή ο F 5 2 25 + 1 διαιρείται από το 641. (β) Εστω F n η ακολουθία των αριθμών Fermat, δηλαδή F n 2 2n + 1,

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών;

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; 1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; Η ακεραιότητα δεδομένων(data integrity) Είναι η ιδιότητα που μας εξασφαλίζει ότι δεδομένα

Διαβάστε περισσότερα

Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές

Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές Ψηφιακά Πιστοποιητικά Υποδομή δημόσιου κλειδιού (Public Key Infrastructure

Διαβάστε περισσότερα

Λύσεις 4ης Σειράς Ασκήσεων

Λύσεις 4ης Σειράς Ασκήσεων Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής

Διαβάστε περισσότερα

Public Key Cryptography. Dimitris Mitropoulos

Public Key Cryptography. Dimitris Mitropoulos Public Key Cryptography Dimitris Mitropoulos dimitro@di.uoa.gr Symmetric Cryptography Key Management Challenge K13 U1 U3 K12 K34 K23 K14 U2 K24 U4 Trusted Third Party (TTP) Bob KΒ K1 U1 KAB TTP KΑ K2 Alice

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων ΕΙΣΑΓΩΓΉ ΣΤΟ CRYPTOOL... 3 DOWNLOADING CRYPTOOL... 3 ΜΗΧΑΝΙΣΜΟΊ ΚΑΙ ΑΛΓΌΡΙΘΜΟΙ ΚΡΥΠΤΟΓΡΑΦΊΑΣ ΣΤΟ CRYPTOOL...

Διαβάστε περισσότερα

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Κρυπτογραφία Έλεγχος πρώτων αριθών-παραγοντοποίηση Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια

Διαβάστε περισσότερα

Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού

Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού Μ. Αναγνώστου 13 Νοεμβρίου 2018 Συναρτήσεις κατακερματισμού Απλές συναρτήσεις κατακερματισμού Κρυπτογραφικές συναρτήσεις κατακερματισμού Secure

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής

Διαβάστε περισσότερα