Το κρυπτοσύστημα RSA
|
|
- Λάμεχ Μακρής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Το κρυπτοσύστημα RSA Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία ( ) 25/11/ / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
2 Περιεχόμενα Κρυπτογραφία Δημοσίου Κλειδιού Ορισμός RSA Αριθμοθεωρητικές επιθέσεις Μοντελοποίηση - Ιδιότητες Ασφάλειας Παραλλαγές 2 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
3 Εισαγωγή I Συμμετρικά Κρυπτοσυστήματα - Το Μειονέκτημα Διανομή Κλειδιών Διανομή Κλειδιών σε Συμμετρικά Κρυπτοσυστήματα - Μειονεκτήματα Πρέπει να συναντηθούν για να ανταλλάξουν κλειδιά Σε περιβάλλοντα πολλών χρηστών: Ανταλλαγή κλειδιών ανά ζεύγος Για n χρήστες χρειάζονται n(n 1) 2 κλειδιά Εύκολο σε ελεγχομένα περιβάλλοντα, δύσκολο σε ανοικτά Δυσκολίες διαχείρισης (πχ. έκδοση νέων), αποθήκευσης 3 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
4 Εισαγωγή II Η λύση μετά από 2500 χρόνια κρυπτογραφίας: Whitfield Diffie, Martin Hellman New Directions in Cryptography - (1976) Ralph Merkle ίσως και νωρίτερα (GCHQ - James H. Ellis, Clifford Cocks, Malcolm J. Williamson) Βασική ιδέα Ασυμμετρία κρυπτογράφησης - αποκρυπτογράφησης Παράδειγμα - Λουκέτα Κλειδώνουν εύκολα Aνοίγουν δύσκολα (χωρίς το κλειδί) 4 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
5 New Directions in Cryptography Ανταλλαγή Κλειδιού Diffie - Hellman Δημιουργία κοινού κλειδιού πάνω από δημόσιο - μη ασφαλές κανάλι (online) Κρυπτογραφία Δημοσίου Κλειδιού Το κλειδί κρυπτογράφησης μπορεί να είναι δημόσιο Το κλειδί αποκρυπτογράφησης πρέπει να είναι μυστικό n χρήστες, n ζεύγη κλειδιών Εύκολη διανομή Ψηφιακή Υπογραφή Ασύμμετρα MACs Επαλήθευση με δημόσιο κλειδί - Δημιουργία με ιδιωτικό Αυθεντικότητα, Μη Αποκήρυξη 5 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
6 Trapdoor Functions Συναρτήσεις μονής κατεύθυνσης Μία συνάρτηση f λέγεται μονής κατεύθυνσης εάν είναι εύκολο να υπολογιστεί το f (x) δεδομένου του x, ενώ ο αντίστροφος υπολογισμός του x δεδομένου του f (x) είναι απρόσιτος. Ορισμός Mια συνάρτηση μονής κατεύθυνσης f για την οποία ο υπολογισμός της f 1 είναι εύκολος όταν δίνεται μια μυστική πληροφορία (secret trapdoor) k 6 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
7 RSA (1978) Η πρώτη κατασκευή κρυπτοσυστήματος δημοσίου κλειδιού Ron Rivest, Adi Shamir, Leonard Adleman Πατέντα μέχρι το / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
8 Το κρυπτοσύστημα Δημιουργία Κλειδιών: KeyGen(1 λ ) = ((e, n), d) n = p q, p, q πρώτοι αριθμοί λ 2 bits Επιλογή e με 1 < e < φ(n) και gcd(e, φ(n)) = 1 d = e 1 (mod φ(n)) με EGCD Κρυπτογράφηση Encrypt : Z n Z n Encrypt((e, N), m) = m e mod n Αποκρυπτογράφηση Decrypt : Z n Z n Decrypt(d, c) = c d mod n 8 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
9 Ορθότητα Πρέπει: Decrypt(d, Encrypt((e, n), m)) = m, m Decrypt(d, Encrypt((e, n), m)) = (m e ) d mod n = m ed mod n = m kφ(n)+1 mod n = m φ(n)k m mod n = m mod n λόγω Θ.Euler και αφού m Z n 9 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
10 Κωδικοποίηση Μηνύματος I Δεν απαιτείται m Z n για ορθότητα. Ισχύει για κάθε m Z n 10 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
11 Κωδικοποίηση Μηνύματος II Απόδειξη m Z n gcd(m, n) 1 = gcd(m, n) {p, q} Πρέπει νδο m ed = m (mod p) και m ed = m (mod q) Από CRT θα έχουμε: m ed = m mod pq 11 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
12 Κωδικοποίηση Μηνύματος III gcd(m, n) = p OK m ed = m (mod p) (kp) ed = kp = 0 (mod p) m ed = m m ed 1 = m m kφ(n) = m m k(p 1)(q 1) m m φ(q)k(p 1) = m 1 (mod q) λόγω του Θ. Fermat που ισχύει στο Z q OK Ομοίως και για gcd(m, n) = q 12 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
13 Παράμετρος Ασφάλειας Παραγοντοποίηση Modulus 768bit RSA-768 = = Παραγοντοποιήθηκε το 2009 μετά από 2 ημερολογιακά χρόνια (Factorization of a 768-bit RSA modulus) 2000 χρόνια σε single core system (2.2 GHz AMD Opteron) Χρήση modulus 1024bits: βραχυχρόνια ασφάλεια (80 bit AES key) 2048bits, 3072bits: μακροχρόνια ασφάλεια ( 128 bit AES key) 13 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
14 Επιλογή πρώτων Τυχαία επιλογή ακέραιου λ 2 bits Primality test (Miller Rabin) επαναληπτικά p, q ίδιου μήκους p, q safe primes δηλ. p 1, q 1 έχουν μεγάλους πρώτους παράγοντες p + 1, q + 1 έχουν μεγάλους πρώτους παράγοντες 14 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
15 Επιλογή εκθέτη κρυπτογράφησης Θέλουμε ταχύτατη κρυπτογράφηση Εύκολος Υπολογισμός Δύναμης Με Square και Multiply Αναπαράσταση e στο δυαδικό Για κάθε 0 ύψωση στο τετράγωνο Για κάθε 1 ύψωση στο τετράγωνο και πολλαπλασιασμός Ελαχιστοποίηση Πολλαπλασιασμών: Low Hamming Weight Παράδειγμα: e {3, 17, = (RFC4871)} Μπορεί e να είναι πρώτος Ανεξάρτητη επιλογή από p, q 15 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
16 Βελτίωση αποκρυπτογράφησης Το κλειδί αποκρυπτογράφησης δεν μπορεί να είναι μικρό Επιθέσεις brute force Εξειδικευμένες επιθέσεις d > λ 3 Επιτάχυνση Υπολογισμός c p = c mod p, c q = c mod q Υπολογισμός d p = d mod (p 1), d q = d mod (q 1), Υπολογισμός m p = c dp p Συνδυασμός με CRT για m mod p, m q = c dq q mod q Βελτίωση:4 φορές 16 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
17 Σχετιζόμενα (Δύσκολα) Προβλήματα Το πρόβλημα RSA (e-οστές ρίζες) Δίνονται n = pq, e με gcd(e, φ(n)) = 1 και c Z n. Να βρεθεί η τιμή c 1 e (=d) To πρόβλημα RSA-KINV Δίνονται n = pq, e με gcd(e, φ(n)) = 1. Να βρεθεί η τιμή e 1 (mod φ(n))(= d) Το πρόβλημα FACTORING Δίνεται n = pq με p, q πρώτοι. Να βρεθούν τα p, q Το πρόβλημα COMPUTE-φ(n) Δίνεται n, φ(n) με n = pq όπου p, q πρώτοι. Να βρεθούν τα p, q 17 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
18 Σχέσεις Προβλημάτων I RSAP RSA-KINV Αν βρεθεί d = e 1 υπολογίζεται εύκολα c d mod n RSA-KINV FACTORING Έστω ότι μπορούν να βρεθούν p, q για n = pq (λύση FACTORING) Υπολογισμός (p 1) (q 1) Χρήση EGCD για εύρεση 1 e 18 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
19 Σχέσεις Προβλημάτων II COMPUTE-φ(n) FACTORING n = pq και φ(n) = (p 1)(q 1) Προκύπτει η εξίσωση p 2 (n φ(n) + 1)p + n = 0 FACTORING r RSA-KINV (RSA,1977) Αν γνωρίζουμε τον d = e 1 μπορούμε να κατασκευάσουμε πιθανοτικό αλγόριθμο παραγοντοποίησης του n με βάση τον Miller Rabin 19 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
20 Σχέσεις Προβλημάτων III Πώς; Υπολογίζουμε s = ed 1(= kφ(n)) φ(n), s είναι ζυγοί, άρα s = 2 t r με t 1 και r μονό a Z n : a s = 1 (mod n), δηλ. (a s 2 ) 2 = 1 (mod n) Υπάρχουν 4 τετραγωνικές ρίζες του 1 mod n = pq οι +1, 1, +x, x Για τις μη τετριμμένες x = 1 (mod p) και x = 1 (mod q) Έστω p: x = 1 (mod p) Διαλέγουμε τυχαία a Z n Με πιθανότητα 1 2 για το επιλεγμένο a έχουμε x {a s 2 (mod n),, a s 2 t (mod n)} p = gcd(x 1, n) 20 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
21 Σχέσεις Προβλημάτων Συνολική Εικόνα RSAP RSA-ΚINV COMPUTE-φ(N) FACTORING r RSA-KINV Αργότερα (May, 2004) FACTORING RSA-KINV Συνολική Εικόνα - Νέα RSAP RSA-ΚINV COMPUTE-φ(N) FACTORING Το RSAP λοιπόν δεν είναι δυσκολότερο από το FACTORING Μάλλον είναι ευκολότερο αλλά δεν γνωρίζουμε ακριβώς πόσο. Υπόθεση RSA: Το RSAP είναι υπολογιστικά απρόσιτο. 21 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
22 Επίθεση μικρού δημόσιου εκθέτη Κακή ιδέα Χρήση e = 3 για να μειωθεί το κόστος κρυπτογράφησης Τρία δημόσια κλειδιά k 1 = (3, n 1 ), k 2 = (3, n 2 ), k 3 = (3, n 3 ) O A αποκτά 3 κρυπτoγραφήσεις του ίδιου μηνύματος m c 1 = Encrypt(k 1, m) = m 3 mod n 1 c 2 = Encrypt(k 2, m) = m 3 mod n 2 c 3 = Encrypt(k 3, m) = m 3 mod n 3 Χρήση CRT για υπολογισμό του c = m 3 mod n 1 n 2 n 3 Αλλά m 3 < n 1 n 2 n 3 αφού m < n 1 και m < n 2 και m < n 3 Άρα m = 3 c 22 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
23 Επίθεση μικρού ιδιωτικού εκθέτη - Θεωρία Αναπαράσταση Με Συνεχή Κλάσματα 1 Έστω x R. Tότε a 0, a 1, a 2, a 3, : x = a a 1 + a a Αν x Q τότε η αναπαράσταση είναι πεπερασμένη Θεώρημα Έστω x R. Αν x a b < 1 τότε το κλάσμα a 2b 2 b εμφανίζεται στην προσέγγιση με συνεχή κλάσματα του x. Βασική ιδέα Για μεγάλες τιμές του e (μικρές τιμές του d - d < 1 3 n 1 4 ) μπορούμε να βρούμε το d μέσω της αναπαράστασης με συνεχή κλάσματα. 23 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
24 Επίθεση μικρού ιδιωτικού εκθέτη - Προσαρμογή I n φ(n) = pq (p 1)(q 1) = p + q 1 < 3 n (1) O A γνωρίζει το e και ότι k : ed = 1 + kφ(n) Επίσης ισχύει Επίσης: e < φ(n) ke < kφ(n) < 1 + kφ(n) = ed k < d (2) e n k kn 1 + kφ(n) kn = ed = = d dn dn 1 k(n φ(n)) 1 + k(n φ(n)) dn dn 24 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
25 Επίθεση μικρού ιδιωτικού εκθέτη - Προσαρμογή II Από την σχέση (1): e n k d < 3k n dn = 3k d n Από την σχέση (2): e n k d < 3 n Από την υπόθεση για το μέγεθος του d έχουμε: d < 4 n n 3 d 2 < 9 2d 2 < 2 n 9 < n 3 3 n < 1 2d 2 25 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
26 Επίθεση μικρού ιδιωτικού εκθέτη - Προσαρμογή III Τελικά: e n k d < 1 2d 2 Επειδή gcd(k, d) = 1 το κλάσμα k/d είναι απλοποιημένο, και κατά συνέπεια θα εμφανίζεται στην προσέγγιση του e/n με συνεχή κλάσματα. 26 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
27 Επίθεση μικρού ιδιωτικού εκθέτη Διαδικασία Κρυπτογράφηση μηνύματος m (επιλογής του A ) Κατασκευή αναπαράστασης του e/n με συνεχή κλάσματα Ύψωση c σε κάθε έναν από τους παρονομαστές της Επιλογή παρονομαστή που επιτυγχάνει σωστή αποκρυπτογράφηση 27 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
28 Επίθεση μικρού ιδιωτικού εκθέτη - Παράδειγμα (e, n) = (207031, ) Προσεγγίσεις-δοκιμές για m = 8 και mod = = = = = = = [0; 1] = = 1 και mod = [0; 1; 5] = = 5 και mod = [0; 1; 5; 1] = = 6 και mod = 8 28 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
29 Επίθεση κοινού γινομένου I Πολύ Κακή ιδέα Χρήση κοινού n για να μειωθεί το κόστος πράξεων modulo Σενάριο TTP διαθέτει n = pq και μοιράζει στους χρήστες A, B τα κλειδιά (e A, d A ) και (e B, d B ). Εσωτερική Επίθεση (από γνώστη του d A ) Ο A αφού γνωρίζει το d A μπορεί να παραγοντοποιήσει το n (αναγωγή FACTORING r RSA-KINV) Υπολογισμός φ(n) Ευρεση d B = e 1 B (mod φ(n)) με EGCD Διάβασμα όλων των μηνυμάτων του B 29 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
30 Επίθεση κοινού γινομένου II Εξωτερική Επίθεση Ο A γνωρίζει (n, e 1 ), (n, e 2 ) Μπορεί να αποκρυπτογραφήσει οποιοδήποτε κοινό μήνυμα m c 1 = m e1 mod n c 2 = m e2 mod n Αν gcd(e 1, e 2 ) = 1 τότε με τον EGCD μπορούν να βρεθούν αποδοτικά t 1, t 2 : e 1 t 1 + e 2 t 2 = 1 c t 1 1 ct 2 2 = me 1t 1 m e 2t 2 = m 1 = m 30 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
31 To RSA δεν διαθέτει IND-CPA Γιατί είναι ντετερμινιστικό Ο A μπορεί να ξεχωρίσει κρυπτογραφήσεις μηνυμάτων του τις οποίες μπορεί να παράγει μόνος του (δημόσιο κλειδί) 31 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
32 Το RSA δεν διαθέτει IND-CCA(2) I Αφού δεν διαθέτει IND-CPA (δεν χρειάζεται το decryption oracle) 32 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
33 Το RSA δεν διαθέτει IND-CCA(2) II...αλλά και λόγω Malleability Στόχος: Αποκρυπτογράφηση του c = m e b mod n Μπορεί να αποκρυπτογραφήσει το c = c b x e mod n όπου το x είναι δικής του επιλογής Ανακτά το m b = m x Αν m b = m 0 επιστρέφει b = 0 αλλιώς επιστρέφει b = 1 Ομομορφικές ιδιότητες Encrypt((e, n), m 1 ) Encrypt((e, n), m 2 ) = m e 1 me 2 mod n = (m 1 m 2 ) mod n = Encrypt((e, n), m 1 m 2 ) 33 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
34 Διαρροή Πληροφοριών I Τι διαρρέει (χωρίς συνέπειες) Jacobi symbol ( c n ) = ( me n ) = ( me p Τι δεν διαρρέει Έστω c = m e mod n parity((e, n), c) = (m mod n) mod 2 loc((e, n), c) = (m mod n) > n 2 )( me q ) = ( m p )( m q ) = ( m n ) 34 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
35 Διαρροή Πληροφοριών II Θεώρημα (Goldwasser, Micali, Tong) Για κάθε στιγμιότυπο του RSA (e,n), τα παρακάτω είναι ισοδύναμα: 1 Υπάρχει ένας αποδοτικός αλγόριθμος A τέτοιος ώστε A(c) = m, m Z n 2 Υπάρχει ένας αποδοτικός αλγόριθμος που υπολογίζει την συνάρτηση parity 3 Υπάρχει ένας αποδοτικός αλγόριθμος που υπολογίζει την συνάρτηση loc 35 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
36 Διαρροή Πληροφοριών III parity loc loc(c) = parity(c Encrypt(2)) γιατί: 36 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
37 Διαρροή Πληροφοριών IV loc parity loc(c) = parity(c Encrypt(2)) γιατί: parity(c Encrypt(2)) = parity(encrypt(2 m)) = (2m mod n) mod 2 loc(c) = 1 m > n 2 2m > n δηλ. (2m mod n) mod 2 = 1 αφού n μονός και 2m mod n = 2m n αφού n < 2m < 2n loc(c) = 0 m n 2 τότε 2m n δηλ. (2m mod n) mod 2 = 0 37 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
38 Διαρροή Πληροφοριών V parity loc parity(c) = loc(c Encrypt(2 1 )) Παρατηρώ: loc(c Encrypt(2 1 )) = loc(encrypt(m 2 1 )) = loc(encrypt(m n+1 2 )) parity(c) = 0 m mod 2 = 0 τότε: m 2 < n 2 αφού m < n parity(c) = 1 m mod 2 = 1 τότε: (m n+1 n+1 n+1 2 ) mod n = ((2k + 1) 2 ) mod n = k(n + 1) + 2 mod n = k + n+1 2 > n 2 όπου k = m 1 2 (και άρα k < n 1 2 k + n+1 2 < n) 38 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
39 Διαρροή Πληροφοριών VI Απόδειξη (1) (2) (3) Προφανώς (1) (2) (αν μπορώ να αποκρυπτογραφήσω ξέρω parity) και (2) (3) (από προηγούμενα) Για το (3) (1) Δυαδική αναζήτηση, χρησιμοποιώντας την loc, για να βρούμε το m: loc(encrypt(m)) = 0 m [0, n 2 ) και loc(encrypt(2m)) = 0 m [0, n 4 ) ( n 2, 3n 4 ) (ισοδύναμα: loc(encrypt(2m)) = 1 m [ n 4, n 2 ) ( 3n 4, n) loc(encrypt(4m)) = 0 m [0, n 8 ) κ.ο.κ. για log n βήματα. 39 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
40 padded-rsa I Βασική ιδέα Προσθήκη ψηφίων τυχαιοποίησης r στο μήνυμα. Κρυπτογράφηση f (m, r) Αποκρυπτογράφηση Αντιστροφή f (πρέπει να γίνεται εύκολα) PKCS1 v l.5 f (m, r) = r m 40 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
41 padded-rsa II Έστω m = l. Πριν την κρυπτογράφηση δημιουργείται το μήνυμα: m = r m, όπου r είναι μια τυχαία συμβολοσειρά από λ l bits. Θεώρηση του m ως ακέραιο Η κρυπτογράφηση γίνεται κανονικά ως: c = m e mod n H αποκρυπτογράφηση γίνεται κανονικά ως c d mod n = m Από το m κράταμε μόνο τα l bits χαμηλότερης τάξης. Αποδεικνύεται ότι διαθέτει ασφάλεια IND-CPA, όχι όμως IND-CCA (μπορούμε να εκμεταλλευτούμε την δομή του μηνύματος) 41 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
42 Η επίθεση του Bleichenbacher I Βασική Ιδέα:Padding Oracle Χρήση ενός συστήματος το οποίο μπορεί να αποφανθεί αν ένα κρυπτοκείμενο έχει προκύψει με σωστό padding Ακριβής Μορφή padded μηνύματος στο PKCS1: PKCS(m) = 0x00 0x02 r 0x00 m Αποκρυπτογράφηση: Έλεγχος πρώτου byte για την τιμή 0 Έλεγχος δεύτερου byte για την τιμή 2 Αναζήτηση του 0 Ανάκτηση του m Υλοποίηση oracle: Ύπαρξη μηνύματος λάθους για μη αποδεκτό padding ή ανάκτηση της πληροφορίας μέσω side channel (πχ. χρόνος απάντησης) 42 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
43 Η επίθεση του Bleichenbacher II Fact Ένα τυχαίο μήνυμα θα έχει την σωστή μορφή με πιθανότητα 2 16 Η επίθεση: Στόχος: Αποκρυπτογράφηση ενός c Ο A ξέρει ότι c = PKCS(m) e mod n Διαλέγει πολλά τυχαία s Στέλνει στο padding oracle μηνύματα της μορφής c = cs e mod n Λόγω ιδιοτήτων RSA: c = (spkcs(m)) e mod n Στα περισσότερα η αποκρυπτογράφηση δίνει λάθος padding 43 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
44 Η επίθεση του Bleichenbacher III Λύσεις Ιδέες; Αν δεν δώσει: Ξέρουμε ότι το padded plaintext έχει σωστή μορφή Δηλαδή το spkcs(m) βρίσκεται σε ένα συγκεκριμένο εύρος τιμών Τροποποίηση του s ώστε να περιορίζεται το εύρος της αναζήτησης Επανάληψη Με εως c μπορεί να αποκρυπτογραφηθεί το c Αφαίρεση μηνύματος λάθους για padding Τροποποίηση ώστε να υπάρχει ασφάλεια IND-CCA2 44 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
45 RSA-OAEP (PKCS1 v2.0) I Βασική Ιδέα Τα τυχαία bits πρέπει να διαχυθούν σε όλο το κρυπτοκείμενο Πρέπει να υπάρχει κάποιου είδους δέσμευση στο αρχικό μήνυμα ενσωματωμένη στο κρυπτοκείμενο Υποθέσεις m = l G, H : {0, 1} 2l {0, 1} 2l συναρτήσεις σύνοψης r {0, 1} 2l 45 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
46 RSA-OAEP (PKCS1 v2.0) II Κρυπτογράφηση m = m 0 l m 1 = G(r) m m 2 = r H(m 1 ) m = m 1 m 2 Κρυπτογράφηση c = m e mod n 46 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
47 RSA-OAEP (PKCS1 v2.0) III Αποκρυπτογράφηση Αποκρυπτογράφηση c d mod n = m Θεωρούμε ότι m = m a m b H(m a ) m b Ανακτούμε το r m a G(r) Ανακτούμε το m Έλεγχος l bits χαμηλότερης τάξης Αν είναι 0 τότε ανάκτηση μηνύματος από τα l bits υψηλότερης τάξης 47 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
48 RSA-OAEP (PKCS1 v2.0) IV 48 / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
49 Βιβλιογραφία 1 St. Zachos and Aris Pagourtzis. Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία. Πανεπιστημιακές Σημειώσεις 2 Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman and Hall/Crc Cryptography and Network Security Series). Chapman and Hall/CRC, Nigel Smart. Introduction to cryptography 4 Paar, Christof, and Jan Pelzl. Understanding cryptography: a textbook for students and practitioners. Springer Science-Business Media, Dan Boneh, Introduction to cryptography, online course 6 R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21: , Alexander May. Computing the rsa secret key is deterministic polynomial time equivalent to factoring. In Advances in Cryptology CRYPTO 2004, pages Springer, Michael J Wiener. Cryptanalysis of short rsa secret exponents. Information Theory, IEEE Transactions on, 36(3): , Boneh, Dan. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS 46.2 (1999): Bellare, Mihir, and Phillip Rogaway. Optimal asymmetric encryption. Advances in Cryptology EUROCRYPT 94. Springer Berlin Heidelberg, Bleichenbacher, Daniel. Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS1 Advances in Cryptology CRYPTO 98. Springer Berlin Heidelberg, / 49 (ΕΜΠ - Κρυπτογραφία ( )) Το κρυπτοσύστημα RSA
Το κρυπτοσύστημα RSA
Το κρυπτοσύστημα RSA Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2017-2018) 14/11/2017 RSA 1 / 50 Περιεχόμενα Κρυπτογραφία Δημοσίου Κλειδιού Ορισμός RSA Αριθμοθεωρητικές επιθέσεις Μοντελοποίηση
Διαβάστε περισσότεραΤο κρυπτοσύστημα RSA. Παναγιώτης Γροντάς - Άρης Παγουρτζής 20/11/2018. ΕΜΠ - Κρυπτογραφία ( ) RSA 1 / 51
Το κρυπτοσύστημα RSA Παναγιώτης Γροντάς - Άρης Παγουρτζής 20/11/2018 ΕΜΠ - Κρυπτογραφία (2018-2019) RSA 1 / 51 Περιεχόμενα Κρυπτογραφία Δημοσίου Κλειδιού Ορισμός RSA Αριθμοθεωρητικές επιθέσεις Μοντελοποίηση
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων
Διαβάστε περισσότεραΕπιθέσεις και Ασφάλεια Κρυπτοσυστημάτων
Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό
Διαβάστε περισσότεραCryptography and Network Security Chapter 9. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true
Διαβάστε περισσότεραΚρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα
Διαβάστε περισσότεραΚρυπτογραφία Δημοσίου Κλειδιού
Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου
Διαβάστε περισσότεραΚρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA
Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman
Διαβάστε περισσότεραΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας
Διαβάστε περισσότεραproject RSA και Rabin-Williams
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών project RSA και Rabin-Williams Στοιχεία Θεωρίας Αριθμών& Εφαρμογές στην Κρυπτογραφία Ονοματεπώνυμο Σπουδαστών: Θανάσης Ανδρέου
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο
Διαβάστε περισσότεραΚρυπτοσυστήματα Δημοσίου Κλειδιού
Κεφάλαιο 6 Κρυπτοσυστήματα Δημοσίου Κλειδιού 6.1 Εισαγωγή Η ιδέα της κρυπτογραφίας δημοσίων κλειδιών οφείλεται στους Diffie και Hellman (1976) [4], και το πρώτο κρυπτοσύστημα δημοσίου κλειδιού ήταν το
Διαβάστε περισσότεραΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΚρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)
Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο
Διαβάστε περισσότεραΚεφάλαιο 21. Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων
Κεφάλαιο 21 Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων Κρυπτογράφηση δημόσιου κλειδιού RSA Αναπτύχθηκε το 1977 από τους Rivest, Shamir και Adleman στο MIT Ο πιο γνωστός και ευρέως
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ζωή Παρασκευοπούλου Νίκος
Διαβάστε περισσότεραΜοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman
Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2016-2017) 22/11/2016 1 / 45 (ΕΜΠ - Κρυπτογραφία (2016-2017))
Διαβάστε περισσότεραPublic Key Cryptography. Dimitris Mitropoulos
Public Key Cryptography Dimitris Mitropoulos dimitro@di.uoa.gr Symmetric Cryptography Key Management Challenge K13 U1 U3 K12 K34 K23 K14 U2 K24 U4 Trusted Third Party (TTP) Bob KΒ K1 U1 KAB TTP KΑ K2 Alice
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Αριθμών
Ε Μ Π Σ Ε Μ & Φ Ε Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Κωστής Γ Διδάσκοντες: Στάθης Ζ Άρης Π 9 Δεκεμβρίου 2011 1 Πιθανές Επιθέσεις στο RSA Υπενθύμιση
Διαβάστε περισσότεραΚρυπτοσυστήματα Διακριτού Λογαρίθμου
Κρυπτοσυστήματα Διακριτού Λογαρίθμου Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2016-2017) 29/11/2016 1 / 60 (ΕΜΠ - Κρυπτογραφία (2016-2017)) Κρυπτοσυστήματα Διακριτού Λογαρίθμου Περιεχόμενα
Διαβάστε περισσότεραΜοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman
Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2017-2018) 07/11/2017 Formal Models - DHKE 1 / 46 Περιεχόμενα
Διαβάστε περισσότεραΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΤΕΙ Κρήτης ΕΠΠ Εργαστήριο Ασφάλεια Πληροφοριακών Συστηµάτων ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τµηµα Εφαρµοσµενης Πληροφορικης Και Πολυµεσων Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Εισαγωγή
Διαβάστε περισσότερακρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας
κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας ιδιότητες ασϕάλειας ιδιότητες ασϕάλειας αγαθών Εμπιστευτικότητα (Confidentiality)
Διαβάστε περισσότεραΨηφιακές Υπογραφές. Παναγιώτης Γροντάς - Άρης Παγουρτζής. ΕΜΠ - Κρυπτογραφία - ( ) 28/11/2017. Digital Signatures 1 / 57
Ψηφιακές Υπογραφές Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία - (2017-2018) 28/11/2017 Digital Signatures 1 / 57 Περιεχόμενα Ορισμός - Μοντελοποίηση Ασφάλειας Ψηφιακές Υπογραφές RSA Επιθέσεις
Διαβάστε περισσότεραEl Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2
Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:
Διαβάστε περισσότεραΟικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr
Διαβάστε περισσότεραΜοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία
Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Παναγιώτης Γροντάς ΕΜΠ - Κρυπτογραφία 09/10/2015 1 / 46 (ΕΜΠ - Κρυπτογραφία) Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Περιεχόμενα Ορισμός Κρυπτοσυστήματος
Διαβάστε περισσότεραΚρυπτοσυστήματα Διακριτού Λογαρίθμου
Κρυπτοσυστήματα Διακριτού Λογαρίθμου Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2017-2018) 21/11/2017 DLP 1 / 62 Περιεχόμενα Διακριτός Λογάριθμος: Προβλήματα και Αλγόριθμοι Το κρυπτοσύστημα
Διαβάστε περισσότεραΙόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα
Διαβάστε περισσότεραΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία
ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα
Διαβάστε περισσότεραΟικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com
Διαβάστε περισσότεραΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης
Διαβάστε περισσότεραΚρυπτοσυστήματα Διακριτού Λογαρίθμου
Κρυπτοσυστήματα Διακριτού Λογαρίθμου Παναγιώτης Γροντάς - Άρης Παγουρτζής 27/11/2018 ΕΜΠ - Κρυπτογραφία (2018-2019) Κρυπτοσυστήματα Διακριτού Λογαρίθμου 1 / 57 Περιεχόμενα Διακριτός Λογάριθμος: Προβλήματα
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το
Διαβάστε περισσότεραΑριθμοθεωρητικοί Αλγόριθμοι
Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος
Διαβάστε περισσότεραΚρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός
Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA Τον Απρίλιο του 977 οι Ρόναλντ Ρίβεστ, Άντι Σαµίρ και Λέοναρντ Άντλεµαν, ερευνητές στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ) µετά από ένα χρόνο προσπαθειών
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας
Διαβάστε περισσότεραΚρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας
Κρυπτογραφία Έλεγχος πρώτων αριθών-παραγοντοποίηση Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία
Διαβάστε περισσότεραΜοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman
Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman Παναγιώτης Γροντάς - Άρης Παγουρτζής 30/10/2018 ΕΜΠ - Κρυπτογραφία (2018-2019) Formal Models - DHKE 1 / 48 Περιεχόμενα
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
Διαβάστε περισσότεραThreshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους
Threshold Cryptography Algorithms Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Ορισμός Το σύστημα το οποίο τεμαχίζει ένα κλειδί k σε n τεμάχια έτσι ώστε οποιοσδήποτε συνδυασμός πλήθους
Διαβάστε περισσότεραΨηφιακές Υπογραφές. Παναγιώτης Γροντάς - Άρης Παγουρτζής 09/12/2016. ΕΜΠ - Κρυπτογραφία - ( )
Ψηφιακές Υπογραφές Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία - (2016-2017) 09/12/2016 1 / 69 (ΕΜΠ - Κρυπτογραφία - (2016-2017)) Ψηφιακές Υπογραφές Περιεχόμενα Ορισμός - Μοντελοποίηση Ασφάλειας
Διαβάστε περισσότεραΠρόβληµα 2 (15 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε
Διαβάστε περισσότερα7. O κβαντικός αλγόριθμος του Shor
7. O κβαντικός αλγόριθμος του Shor Σύνοψη Ο κβαντικός αλγόριθμος του Shor μπορεί να χρησιμοποιηθεί για την εύρεση της περιόδου περιοδικών συναρτήσεων και για την ανάλυση ενός αριθμού σε γινόμενο πρώτων
Διαβάστε περισσότεραΚρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας
Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 35 Περιεχόμενα 1 Message
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής
Διαβάστε περισσότεραΚρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας
Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38 Περιεχόμενα 1 Message
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας (2017-18) Βοηθοί διδασκαλίας Παναγιώτης Γροντάς
Διαβάστε περισσότεραΑλγόριθµοι δηµόσιου κλειδιού
Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Ηδιανοµή του κλειδιού είναι ο πιο αδύναµος κρίκος στα περισσότερα κρυπτογραφικά συστήµατα Diffie και Hellman, 1976 (Stanford Un.) πρότειναν ένα
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση
Διαβάστε περισσότεραΚρυπτογραφικά Πρωτόκολλα
Κρυπτογραφικά Πρωτόκολλα Παναγιώτης Γροντάς ΕΜΠ - Κρυπτογραφία - (2017-2018) 05/12/2017 Cryptographic Protocols 1 / 34 Περιεχόμενα Ασφαλής Υπολογισμός Πολλών Συμμετεχόντων Πρωτόκολλα Πολλοί συμμετέχοντες
Διαβάστε περισσότεραΚεφάλαιο 8. Συναρτήσεις Σύνοψης. 8.1 Εισαγωγή
Κεφάλαιο 8 Συναρτήσεις Σύνοψης 8.1 Εισαγωγή Οι Κρυπτογραφικές Συναρτήσεις Σύνοψης (ή Κατακερματισμού) (σμβ. ΣΣ) παίζουν σημαντικό και θεμελιακό ρόλο στη σύγχρονη κρυπτογραφία. Όπως και οι ΣΣ που χρησιμοποιούνται
Διαβάστε περισσότεραΟι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
Διαβάστε περισσότεραΑσφάλεια Πληροφοριακών Συστημάτων
Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το
Διαβάστε περισσότεραΗλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας
Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται
Διαβάστε περισσότεραΠρόβληµα 2 (12 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον
Διαβάστε περισσότεραΕισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές
Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο
Διαβάστε περισσότερα8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές
Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Υπογραφές Επιπρόσθετης Λειτουργικότητας Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΜΣ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΣΤΟΛΙΔΟΥ ΚΥΡΙΑΚΗ ΕΠΙΒΛΕΠΩΝ: ΜΠΙΣΜΠΑΣ ΑΝΤΩΝΙΟΣ, Καθηγητής
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές
Διαβάστε περισσότερα6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6.1. Εισαγωγή Οι σύγχρονες κρυπτογραφικές λύσεις συμπεριλαμβάνουν κρυπτογραφία δημόσιου κλειδιού ή αλλιώς, ασύμμετρη κρυπτογραφία. Η ασύμμετρη κρυπτογραφία βασίζεται αποκλειστικά
Διαβάστε περισσότεραΚρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση
Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού
Διαβάστε περισσότεραΠαύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ
Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ
KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,
Διαβάστε περισσότεραΟικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2016-2017 Outline Public Key Cryptography! RSA cryptosystem " Περιγραφή και
Διαβάστε περισσότεραBlum Blum Shub Generator
Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Αριθμών : Blum Blum Shub Generator Διονύσης Μανούσακας 31-01-2012 Εισαγωγή Πού χρειαζόμαστε τυχαίους αριθμούς; Σε κρυπτογραφικές εφαρμογές κλειδιά κρυπτογράφησης
Διαβάστε περισσότεραΚεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων
Κεφάλαιο Ψηφιακές Υπογραφές Πίνακας Περιεχομένων 11.1 Εισαγωγή..............................................1 11.2 Ένα πλαίσιο για μηχανισμούς ψηφιακών υπογραφών........... 2 11.3 RSA και σχετικά σχήματα
Διαβάστε περισσότερα1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.
1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά
Διαβάστε περισσότεραΣύγχρονη Κρυπτογραφία
Σύγχρονη Κρυπτογραφία 50 Υπάρχουν μέθοδοι κρυπτογράφησης πρακτικά απαραβίαστες Γιατί χρησιμοποιούμε λιγότερο ασφαλείς μεθόδους; Η μεγάλη ασφάλεια κοστίζει σε χρόνο και χρήμα Πολλές φορές θυσιάζουμε ασφάλεια
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.
Διαβάστε περισσότεραΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Διαβάστε περισσότεραΚρυπτογραφία. Κωνσταντίνου Ελισάβετ
Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο
Διαβάστε περισσότεραΠληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος
Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου
Διαβάστε περισσότεραW i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων:
6/4/2017 Μετά την πρόταση των ασύρματων πρωτοκόλλων από τους Diffie-Hellman το 1976, το 1978 προτάθηκε ένα πρωτόκολλο από τους Merkle-Hellman το οποίο βασίστηκε στο ότι δεν μπορούμε να λύσουμε γρήγορα
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων ΕΙΣΑΓΩΓΉ ΣΤΟ CRYPTOOL... 3 DOWNLOADING CRYPTOOL... 3 ΜΗΧΑΝΙΣΜΟΊ ΚΑΙ ΑΛΓΌΡΙΘΜΟΙ ΚΡΥΠΤΟΓΡΑΦΊΑΣ ΣΤΟ CRYPTOOL...
Διαβάστε περισσότεραΚεφάλαιο 2. Κρυπτογραφικά εργαλεία
Κεφάλαιο 2 Κρυπτογραφικά εργαλεία Συμμετρική κρυπτογράφηση Καθολικά αποδεκτή τεχνική που χρησιμοποιείται για τη διαφύλαξη της εμπιστευτικότητας δεδομένων τα οποία μεταδίδονται ή αποθηκεύονται Γνωστή και
Διαβάστε περισσότεραΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο 2015 1 ΤΙ ΕΙΝΑΙ Η ΚΡΥΠΤΟΛΟΓΙΑ?
Διαβάστε περισσότεραΕισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας
Διαβάστε περισσότεραΑσφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ
Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ Περιγραφή μαθήματος Η Κρυπτολογία είναι κλάδος των Μαθηματικών, που ασχολείται με: Ανάλυση Λογικών Μαθηματικών
Διαβάστε περισσότεραΑριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA
Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo
Διαβάστε περισσότεραΘεμελιώδη Θέματα Επιστήμης Υπολογιστών
http://www.corelab.ntua.gr/courses/ Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνο ΣΕΜΦΕ Ενότητα 0: Εισαγωγή Διδάσκοντες: Στάθης Ζάχος, Άρης Παγουρτζής Υπεύθυνη εργαστηρίου / ασκήσεων: Δώρα Σούλιου
Διαβάστε περισσότεραΑυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού
Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού Μ. Αναγνώστου 13 Νοεμβρίου 2018 Συναρτήσεις κατακερματισμού Απλές συναρτήσεις κατακερματισμού Κρυπτογραφικές συναρτήσεις κατακερματισμού Secure
Διαβάστε περισσότεραΨευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013
Ψευδο-τυχαιότητα Συναρτήσεις µιας Κατεύθυνσης και Γεννήτριες Ψευδοτυχαίων Αριθµών Παύλος Εφραιµίδης 2013/02 1 Αριθµοί και String Όταν θα αναφερόµαστε σε αριθµούς θα εννοούµε ουσιαστικά ακολουθίες από δυαδικά
Διαβάστε περισσότεραΚρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC)
Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) Σύνοψη Πρόβλημα: θέλωναστείλωμήνυμασεκάποιον δημόσια χωρίς να μπορούν να το καταλάβουν οι άλλοι Λύση: το κωδικοποιώ Γνωρίζω τον παραλήπτη:
Διαβάστε περισσότεραΠρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9
Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Η συνάρτηση φ(.) του Euler Για κάθε ακέραιο n > 0, έστω φ(n) το πλήθος των ακεραίων στο
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους
ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1
Διαβάστε περισσότεραΠαύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ
Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 θα εξετάσουμε τα ακόλουθα εργαλεία κρυπτογραφίας: ψηφιακές υπογραφές κατακερματισμός (hashing) συνόψεις μηνυμάτων μ (message digests) ψευδοτυχαίοι
Διαβάστε περισσότεραΕφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία
Ελληνική ημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία Ενότητα 10 : Θέματα διασφάλισης της πληροφορίας στον αγροτικό τομέα (1/3) Μελετίου Γεράσιμος 1 Ανοιχτά
Διαβάστε περισσότεραΚρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας
Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος
Διαβάστε περισσότερα