arxiv: v1 [math.dg] 31 Jan 2009

Σχετικά έγγραφα
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Second Order Partial Differential Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EE512: Error Control Coding

Homework 8 Model Solution Section

Minimal Surfaces PDE as a Monge Ampère Type Equation

Spherical Coordinates

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

2 Composition. Invertible Mappings

D Alembert s Solution to the Wave Equation

Homomorphism in Intuitionistic Fuzzy Automata

4.6 Autoregressive Moving Average Model ARMA(1,1)

Space-Time Symmetries

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Congruence Classes of Invertible Matrices of Order 3 over F 2

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Reminders: linear functions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Every set of first-order formulas is equivalent to an independent set

Matrices and Determinants

Section 8.3 Trigonometric Equations

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Concrete Mathematics Exercises from 30 September 2016

Tridiagonal matrices. Gérard MEURANT. October, 2008

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Homework 3 Solutions

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Example Sheet 3 Solutions

Differential equations

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

On the Galois Group of Linear Difference-Differential Equations

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Numerical Analysis FMN011

Geodesic Equations for the Wormhole Metric

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Solution Series 9. i=1 x i and i=1 x i.

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

A General Note on δ-quasi Monotone and Increasing Sequence

derivation of the Laplacian from rectangular to spherical coordinates

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

6.3 Forecasting ARMA processes

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SPECIAL FUNCTIONS and POLYNOMIALS

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

C.S. 430 Assignment 6, Sample Solutions

Empirical best prediction under area-level Poisson mixed models

( y) Partial Differential Equations

Areas and Lengths in Polar Coordinates

Cosmological Space-Times

Partial Trace and Partial Transpose

Jordan Form of a Square Matrix

Areas and Lengths in Polar Coordinates

ADVANCED STRUCTURAL MECHANICS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Parametrized Surfaces

Cyclic or elementary abelian Covers of K 4

Generating Set of the Complete Semigroups of Binary Relations

Uniform Convergence of Fourier Series Michael Taylor

A summation formula ramified with hypergeometric function and involving recurrence relation

Inverse trigonometric functions & General Solution of Trigonometric Equations

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Prey-Taxis Holling-Tanner

On a four-dimensional hyperbolic manifold with finite volume

Abstract Storage Devices

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Other Test Constructions: Likelihood Ratio & Bayes Tests

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

The k-α-exponential Function

Differentiation exercise show differential equation

Lecture 15 - Root System Axiomatics

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Problem Set 3: Solutions

Finite Field Problems: Solutions

Lecture 26: Circular domains

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Second Order RLC Filters

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

arxiv: v1 [math-ph] 4 Jun 2016

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Appendix S1 1. ( z) α βc. dβ β δ β

PARTIAL NOTES for 6.1 Trigonometric Identities

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Tutorial problem set 6,

Approximation of distance between locations on earth given by latitude and longitude

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

The Simply Typed Lambda Calculus

Transcript:

arxiv:0902.0086v1 [math.dg] 31 Jan 2009 Maurer Cartan Forms of the Symmetry Pseudo-Group and the Covering of Plebañski s Second Heavenly Equation Oleg I. Morozov Department of Mathematics, Moscow State Technical University of Civil Aviation, Kronshtadtskiy Blvd 20, Moscow 125993, Russia oim@foxcub.org Abstract. We derive Wahlquist Estabrook forms of the covering of Plebañski s second heavenly equation from Maurer Cartan forms of its symmetry pseudo-group. AMS classification scheme numbers: 58H05, 58J70, 35A30

Symmetry Pseudo-Group and Covering of Second Heavenly Equation 2 1. Introduction In our preceding papers [16] [19] it was shown that for a number of nonlinear partial differential equations (pdes) with three independent variables Wahlquist Estabrook forms of their coverings can be derived from Maurer Cartan forms of their symmetry pseudo-groups. In this paper we consider Plebañski s second heavenly equation, [21], u xz = u ty + u xx u yy u 2 xy, (1) describing self-dual metrics in theory of gravitation. This equation can be obtained as the compatibility condition for the following system of pdes, [8, 1], cf. [21, Eq. (3.13)]: q t = (u xy λ) q x u xx q y, q z = u yy q x (u xy + λ) q y, (2) where λ is an arbitrary constant. This condition is equivalent to the commutativity of the following four infinite-dimensional vector fields D t = D t + i,j 0 D x = D x + i,j 0 D y = D y + i,j 0 D i x D j y ((u xy λ) q 1,0 u xx q 0,1 ) q i+1,j q i,j+1 q i,j, q i,j, (3) q i,j, (4) D z = D z + i,j 0 D i x D j y (u yy q 1,0 (u xy + λ) q 0,1 ) q i,j, where D t, D x, D y and D z are restrictions of the total derivatives D t, D x, D y and D z to the infinite prolongation of (1). This construction is called a covering, [10] [13]. Dually coverings can be defined by means of differential 1-forms called Wahlquist Estabrook forms, [22]. For Eq. (1) an ideal of the Wahlquist Estabrook forms is generated by the following forms: ω 0,0 = dq 0,0 ((u xy λ) q 1,0 u xx q 0,1 ) dt q 1,0 dx q 0,1 dy (u yy q 1,0 (u xy + λ) q 0,1 ) dz, (5) ω i,j = D i x D j y ω 0,0, i, j 0. In this work we establish that the form ω 0,0 can be derived from Maurer Cartan forms of the contact symmetry pseudo-group of Eq. (1). 2. Symmetry pseudo-groups of differential equations Let π : R n R R n be a vector bundle with the local base coordinates (x 1,..., x n ) and the local fibre coordinate u; then by J 2 (π) denote the bundle of the secondorder jets of sections of π, with the local coordinates (x i, u, u i, u ij ), i, j {1,..., n}. For every local section (x i, f(x)) of π, denote by j 2 (f) the corresponding 2-jet (x i, f(x), f(x)/ x i, 2 f(x)/ x i x j ). A differential 1-form ϑ on J 2 (π) is called a contact

Symmetry Pseudo-Group and Covering of Second Heavenly Equation 3 form if it is annihilated by all 2-jets of local sections: j 2 (f) ϑ = 0. In the local coordinates every contact 1-form is a linear combination of the forms ϑ 0 = du u i dx i, ϑ i = du i u ij dx j, i, j {1,..., n}, u ji = u ij (here and later we use the Einstein summation convention, so u i dx i = n i=1 u i dx i, etc.) A local diffeomorphism : J 2 (π) J 2 (π), : (x i, u, u i, u ij ) ( x i, ū, ū i, ū ij ), is called a contact transformation if for every contact 1-form ϑ the form ϑ is also contact. We denote by Cont(J 2 (π)) the pseudo-group of contact transformations on J 2 (π). Let H R (2n+1)(n+3)(n+1)/3 be an open set with local coordinates a, b i k, ci, f ik, g i, s ij, wij k, z ijk, i, j, k {1,..., n}, such that a 0, det(b i k ) 0, fik = f ki, z ijk = z jik = z ikj. Let (Bk i) be the inverse matrix for the matrix (bk l ), so Bi k bk l = δl i. We consider the lifted coframe Θ 0 = a ϑ 0, Θ i = g i Θ 0 + a B k i ϑ k, Ξ i = c i Θ 0 + f ik Θ k + b i k dxk, Σ ij = s ij Θ 0 + w k ij Θ k + z ijk Ξ k + a B k i Bl j du kl, (6) i j, defined on J 2 (π) H. As it is shown in [15], the forms (6) are Maurer Cartan forms for Cont(J 2 (π)), that is, a local diffeomorphism : J 2 (π) H J 2 (π) H satisfies the conditions Θ0 = Θ 0, Θi = Θ i, Ξi = Ξ i, and Σij = Σ ij whenever it is projectable on J 2 (π), and its projection : J 2 (π) J 2 (π) is a contact transformation. The structure equations for Cont(J 2 (π)) read dθ 0 = Φ 0 0 Θ 0 + Ξ i Θ i, dθ i = Φ 0 i Θ 0 + Φ k i Θ k + Ξ k Σ ik, dξ i = Φ 0 0 Ξi Φ i k Ξk + Ψ i0 Θ 0 + Ψ ik Θ k, dσ ij = Φ k i Σ kj Φ 0 0 Σ ij + Υ 0 ij Θ 0 + Υ k ij Θ k + Λ ijk Ξ k, where the additional forms Φ 0 0, Φ0 i, Φk i, Ψi0, Ψ ij, Υ 0 ij, Υk ij, and Λ ijk depend on differentials of the coordinates of H. Suppose E is a second-order differential equation in one dependent and n independent variables. We consider E as a sub-bundle in J 2 (π). Let Cont(E) be the group of contact symmetries for E. It consists of all the contact transformations on J 2 (π) mapping E to itself. Let ι 0 : E J 2 (π) be an embedding and ι = ι 0 id : E H J 2 (π) H. Maurer Cartan forms of the pseudo-group Cont(E) can be obtained from the forms θ 0 = ι Θ 0, θ i = ι Θ i, ξ i = ι Ξ i and σ ij = ι Σ ij by means of Cartan s method of equivalence, [2] [5], [7, 9, 20], see details and examples in [6, 16, 17, 19]. 3. Symmetry pseudo-group and the covering of Plebañski s equation Following the method outlined in the previous section we find the Maurer Cartan forms and their structure equations for the symmetry pseudo-group of Eq. (1). The structure equations for the forms θ 0, θ i, ξ i, i {1, 2, 3}, read dθ 0 = η 5 θ 0 + ξ 1 θ 1 + ξ 2 θ 2 + ξ 3 θ 3 + ξ 4 θ 4,

Symmetry Pseudo-Group and Covering of Second Heavenly Equation 4 dθ 1 = (η 5 η 1 ) θ 1 η 3 θ 4 η 6 θ 2 + 1 3 (η 5 4 η 1 + 2 η 4 + 3 σ 22 ) θ 3 + ξ 1 σ 11 + ξ 2 σ 12 + ξ 3 σ 13 + ξ 4 σ 14, dθ 2 = 1 3 (η 4 2 η 1 + 2 η 5 ) θ 2 η 3 θ 3 + ξ 1 σ 12 + ξ 2 σ 22 + ξ 3 σ 23 + ξ 4 (σ 13 + σ 22 + σ 33 ), dθ 3 = 1 3 (η 1 2 η 4 + 2 η 5 ) θ 3 η 2 θ 2 + ξ 1 σ 13 + ξ 2 σ 23 + ξ 3 σ 33 + ξ 4 σ 34, dθ 4 = (η 5 η 4 ) θ 4 η 2 θ 1 + 1 3 (η 5 2 η 1 + 4 η 4 + 3 σ 33 ) θ 2 + ξ 1 σ 14 (2 η 2 + 2 η 3 + η 6 2 σ 23 ) θ 3 + ξ 2 (σ 13 + σ 22 + σ 33 ) + ξ 3 σ 34 + ξ 4 σ 44, dξ 1 = η 1 ξ 1 + η 2 ξ 4, dξ 2 = η 6 ξ 1 + 1 3 (η 5 + 2 η 1 η 4 ) ξ 2 + η 2 ξ 3 + 1 3 (η 5 4 η 4 + 2 η 1 + 3 σ 33 ) ξ 4, dξ 3 = 1 3 (4 η 1 2 η 4 η 5 3 σ 22 ) ξ 1 + η 3 ξ 2 + 1 3 (η 5 + 2 η 4 η 1 ) ξ 3 + (2 η 2 + 2 η 3 + η 6 2 σ 23 ) ξ 4, dξ 4 = η 3 ξ 1 + η 4 ξ 4. The involutive system of structure equations for this pseudo-group is given in Appendix. In the next calculations we use the following Maurer Cartan forms only: ξ 1 = b 11 dt + b 14 dz, ξ 2 = v 1 (b 11 dx + b 14 dy (b 11 (w 1) u xy + b 14 u xx + b 41 v) dt (b 14 (w + 1) u xy b 11 u yy + b 44 v) dz), ξ 3 = v 1 (b 41 dx + b 44 dy + (b 11 v b 41 (w 1) u xy b 44 u xx ) dt +(b 14 v b 44 (w + 1) u xy + b 41 u yy ) dz), ξ 4 = b 41 dt + b 44 dz, η 1 = (b 44 db 11 b 41 db 14 ) (b 11 b 44 b 14 b 41 ) 1 + r 1 ξ 1 + r 2 ξ 4, η 4 = (b 11 db 44 b 14 db 41 ) (b 11 b 44 b 14 b 41 ) 1 r 1 ξ 1 r 2 ξ 4, η 5 = 3 v 1 dv + η 1 + η 4, where b 11, b 14, b 41, b 44, v, w, r 1, r 2 are arbitrary parameters such that b 11 b 44 b 14 b 41 0 and v 0. Direct computations prove the following theorem. Either substituting for v = q 0,0, b 11 = q 1,0, b 14 = q 0,1, w = λ u 1 xy linear combination into the 1 (η 3 1 + η 4 η 5 ) ξ 2 ξ 4, or substituting for v = q 0,0, b 41 = q 1,0, b 44 = q 0,1, w = λ u 1 xy into the linear combination 1 (η 3 1 + η 4 η 5 ) + ξ 1 ξ 3 yields the form q0,0 1 ω 0,0 proportional to the form (5), which is the generating form of the ideal of Wahquist Estabrook forms of the covering (2) of Eq. (1). Another approach to computing Wahquist Estabrook forms of coverings of pdes from Maurer Cartan forms of their symmetry pseudo-groups was proposed in [18]. We hope to apply this to Eq. (1) elsewhere.

Symmetry Pseudo-Group and Covering of Second Heavenly Equation 5 References [1] Bogdanov, L.V., Konopelchenko, B.G.: On the -dressing method applicaple to heavenly equation. Phys. Lett. A 345, 137 143 (2005) [2] Cartan, É.: Sur la structure des groupes infinis de transformations. Œuvres Complètes, Part II, 2, 571 715. Gauthier - Villars, Paris (1953) [3] Cartan, É.: Les sous-groupes des groupes continus de transformations. Œuvres Complètes, Part II, 2, 719 856. Gauthier - Villars, Paris (1953) [4] Cartan, É.: Les problèmes d équivalence. Œuvres Complètes, Part II, 2, 1311 1334. Gauthier - Villars, Paris (1953) [5] Cartan, É.: La structure des groupes infinis. Œuvres Complètes, Part II, 2, 1335 1384. Gauthier - Villars, Paris (1953) [6] Fels, M., Olver, P.J.: Moving coframes. I. A practical algorithm. Acta. Appl. Math. 51, 161 213 (1998) [7] Gardner, R.B.: The Method of Equivalence and its Applications. CBMS NSF regional conference series in applied math., SIAM, Philadelphia (1989) [8] Husain, V.: Self-dual gravity and the chiral model. Phys. Rev. Lett., 72, 800 803 (1994) [9] Kamran, N.: Contributions to the Study of the Equivalence Problem of Élie Cartan and its Applications to Partial and Ordinary Differential Equations. Mem. Cl. Sci. Acad. Roy. Belg., 45, Fac. 7 (1989) [10] Krasil shchik, I.S., Vinogradov, A.M.: Nonlocal symmetries and the theory of coverings. Acta Appl. Math., 2, 79 86 (1984) [11] Krasil shchik, I.S., Lychagin, V.V., Vinogradov, A.M.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Gordon and Breach, New York (1986) [12] Krasil shchik, I.S., Vinogradov, A.M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math., 15, 161 209 (1989) [13] Krasil shchik, I.S., Vinogradov, A.M. (eds.): Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Transl. Math. Monographs 182, Amer. Math. Soc., Providence (1999). [14] Morozov, O.I.: Moving coframes and symmetries of differential equations. J. Phys. A, Math. Gen., 35, 2965 2977 (2002) [15] Morozov, O.I.: Contact-equivalence problem for linear hyperbolic equations. J. Math. Sci., 135, 2680 2694 (2006) [16] Morozov, O.I.: Coverings of differential equations and Cartan s structure theory of Lie pseudogroups. Acta Appl. Math. 99, 309 319 (2007) [17] Morozov, O.I.: Cartan s structure theory of symmetry pseudo-groups, coverings and multi-valued solutions for the Khokhlov Zabolotskaya equation, Acta Appl. Math. 101, 231-241 (2008) [18] Morozov, O.I.: Contact integrable extensions of symmetry pseudo-group and coverings of the r-th modified dispersionless Kadomtsev Petviashvili equation Preprint arxiv:0809.1218v1 [math.dg] (2008) [19] Morozov, O.I.: Cartan s structure of symmetry pseudo-group and coverings for the r-th modified dispersionless Kadomtsev Petviashvili equation. Acta Appl. Math., accepted, 2009 [20] Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge, Cambridge University Press (1995) [21] Plebañski, J.F.: Some solutions of complex Einstein equations, J. Math. Phys., 16, 2395 2402 (1975) [22] Wahlquist, H.D., Estabrook, F.B.: Prolongation structures of nonlinear evolution equations. J. Math. Phys., 16, 1 7 (1975)

Symmetry Pseudo-Group and Covering of Second Heavenly Equation 6 Appendix The involutive system of structure equations for the symmetry pseudo-group of Eq. (1): dθ 0 = η 5 θ 0 + ξ 1 θ 1 + ξ 2 θ 2 + ξ 3 θ 3 + ξ 4 θ 4, dθ 1 = (η 5 η 1 ) θ 1 η 3 θ 4 η 6 θ 2 + 1 (η 3 5 4 η 1 + 2 η 4 + 3 σ 22 ) θ 3 + ξ 1 σ 11 + ξ 2 σ 12 + ξ 3 σ 13 + ξ 4 σ 14, dθ 2 = 1 (η 3 4 2 η 1 + 2 η 5 ) θ 2 η 3 θ 3 + ξ 1 σ 12 + ξ 2 σ 22 + ξ 3 σ 23 + ξ 4 (σ 13 + σ 22 + σ 33 ), dθ 3 = 1 (η 3 1 2 η 4 + 2 η 5 ) θ 3 η 2 θ 2 + ξ 1 σ 13 + ξ 2 σ 23 + ξ 3 σ 33 + ξ 4 σ 34, dθ 4 = (η 5 η 4 ) θ 4 η 2 θ 1 + 1 (η 3 5 2 η 1 + 4 η 4 + 3 σ 33 ) θ 2 + ξ 1 σ 14 (2 η 2 + 2 η 3 + η 6 2 σ 23 ) θ 3 + ξ 2 (σ 13 + σ 22 + σ 33 ) + ξ 3 σ 34 + ξ 4 σ 44, dξ 1 = η 1 ξ 1 + η 2 ξ 4, dξ 2 = η 6 ξ 1 + 1 (η 3 5 + 2 η 1 η 4 ) ξ 2 + η 2 ξ 3 + 1 (η 3 5 4 η 4 + 2 η 1 + 3 σ 33 ) ξ 4, dξ 3 = 1 (4 η 3 1 2 η 4 η 5 3 σ 22 ) ξ 1 + η 3 ξ 2 + 1 (η 3 5 + 2 η 4 η 1 ) ξ 3 + (2 η 2 + 2 η 3 + η 6 2 σ 23 ) ξ 4, dξ 4 = η 3 ξ 1 + η 4 ξ 4, dσ 11 = η 7 θ 1 + η 8 θ 2 + η 9 θ 3 + η 10 θ 4 + η 11 ξ 1 + η 12 ξ 2 + η 13 ξ 3 + η 14 ξ 4 + (η 5 2 η 1 ) σ 11 2 η 6 σ 12 + 2 (η 3 5 4 η 1 + 2 η 4 + 3 σ 22 ) σ 13 2 η 3 σ 14, dσ 12 = η 7 θ 2 + η 10 θ 3 + η 12 ξ 1 + (2 η 7 η 9 ) ξ 2 + η 15 ξ 3 + η 16 ξ 4 (η 3 + η 6 ) σ 22 + 1 (2 η 3 5 + η 4 5 η 1 ) σ 12 2 η 3 σ 13 + 1 (η 3 5 + 2 η 4 4 η 1 + 3 σ 22 ) σ 23 η 3 σ 33, dσ 13 = (η 15 η 8 η 10 ) θ 2 η 7 θ 3 + η 13 ξ 1 + η 15 ξ 2 + (η 16 2 η 7 + η 9 η 13 ) ξ 3 + η 17 ξ 4 η 2 σ 12 + 2 (η 3 5 η 1 η 4 ) σ 13 η 6 σ 23 η 3 σ 34 + 1 (η 3 5 4 η 1 + 2 η 4 + 3 σ 22 ) σ 33, dσ 14 = (η 15 η 8 η 10 ) θ 1 + (η 16 + η 9 η 13 ) θ 2 η 8 θ 3 η 7 θ 4 + η 14 ξ 1 + η 16 ξ 2 + η 17 ξ 3 + η 18 ξ 4 η 2 σ 11 1 (η 3 5 2 η 1 + 4 η 4 3 σ 33 ) σ 12 2 (η 2 + η 3 + η 6 σ 23 ) σ 13 + (η 5 η 1 η 4 ) σ 14 η 6 (σ 22 + σ 33 ) + 1 (η 3 5 4 η 1 + 2 η 4 + 3 σ 22 ) σ 34 η 3 σ 44, dσ 22 = (2 η 7 η 9 ) ξ 1 η 10 ξ 2 + η 7 ξ 3 + (2 η 15 2 η 10 η 8 ) ξ 4 2 η 3 σ 23 + 1 (η 3 5 4 η 1 + 2 η 4 ) σ 22, dσ 23 = η 15 ξ 1 + η 7 ξ 2 + (η 15 η 8 η 10 ) ξ 3 + η 19 ξ 4 η 2 σ 22 η 3 σ 33 + 1 (η 3 5 η 1 η 4 ) σ 23, dσ 33 = (η 16 2 η 7 + η 9 η 13 ) ξ 1 + (η 15 η 8 η 10 ) ξ 2 + (η 19 + η 7 η 9 + η 13 η 16 ) ξ 3 + η 20 ξ 4 2 η 2 σ 23 + 1 (η 3 5 + 2 η 1 4 η 4 ) σ 33, dσ 34 = (η 7 η 9 + η 13 η 16 + η 19 ) θ 2 + (η 8 + η 10 η 15 ) θ 3 + η 17 ξ 1 + η 19 ξ 2 + η 20 ξ 3 + η 21 ξ 4 2 η 2 σ 13 η 2 σ 22 1 (η 3 5 2 η 1 + 4 η 4 ) σ 23 (3 η 2 + 2 η 3 + η 6 3 σ 23 ) σ 33 + 1 (2 η 3 5 + η 1 5 η 4 ) σ 34,

Symmetry Pseudo-Group and Covering of Second Heavenly Equation 7 dσ 44 = (η 7 η 9 + η 13 η 16 + η 19 ) θ 1 + (η 20 2 (η 8 + η 10 η 15 )) θ 2 + η 18 ξ 1 (η 9 η 13 + η 16 ) θ 3 + (η 8 + η 10 η 15 ) θ 4 + (η 20 η 8 2 η 10 + 2 η 15 + η 17 ) ξ 2 + η 21 ξ 3 + η 22 ξ 4 2 (η 3 5 + 2 η 1 4 η 4 + 6 σ 33 ) (σ 13 + σ 33 ) 2 η 2 σ 14 2 (η 3 5 + 2 η 1 4 η 4 + 6 σ 33 ) σ 22 2 (η 6 + 2 (η 2 + η 3 σ 23 )) σ 34 + (η 5 2 η 4 ) σ 44, dη 1 = η 7 ξ 1 + (η 15 η 8 η 10 ) ξ 4 + η 2 η 3, dη 2 = (η 15 η 8 η 10 ) ξ 1 + (η 19 + η 7 η 9 + η 13 η 16 ) ξ 4 + (η 1 η 4 ) η 2, dη 3 = η 10 ξ 1 η 7 ξ 4 + (η 4 η 1 ) η 3, dη 4 = (η 8 + η 10 η 15 ) ξ 4 η 7 ξ 1 η 2 η 3, dη 5 = 0, dη 6 = η 8 ξ 1 + (η 7 η 8 η 10 + η 15 ) ξ 3 + (η 9 η 13 + η 16 ) ξ 4 + 1 (η 3 6 4 η 2 2 η 3 ) η 1 + 1 (2 η 3 4 + η 5 + 3 σ 22 ) η 2 + 1 (η 3 5 4 η 4 + 3 σ 33 ) η 3 1 (η 3 4 η 5 ) η 6, dη 7 = η 23 ξ 1 + η 24 ξ 4 + η 7 η 1 η 10 η 2 + 2 (η 15 η 8 η 10 ) η 3, dη 8 = η 25 ξ 1 + η 23 ξ 2 + η 24 ξ 3 + η 26 ξ 4 2 (2 η 3 8 + 5 η 10 4 η 15 ) η 1 + η 2 η 9 + 2 (η 9 η 13 + η 16 ) η 3 + 1 (5 η 3 8 + 8 η 10 4 η 15 ) η 4 + 1 (η 3 8 + η 10 2 η 15 ) η 5 η 6 η 7 + 2 (η 8 + η 10 η 15 ) σ 22 η 10 σ 33, dη 9 = η 27 ξ 1 + η 28 ξ 2 η 23 ξ 3 η 25 ξ 4 1 (12 η 3 7 + 7 η 9 ) η 1 (3 η 8 + 2 η 10 ) η 3 + η 10 (η 6 + 2 σ 23 2 η 2 ) + 2 (3 η 3 7 η 9 ) η 4 + 1 (3 η 3 7 η 9 ) η 5 + 3 η 7 σ 22, dη 10 = η 28 ξ 1 η 23 ξ 4 + η 10 (2 η 1 η 4 ) + 3 η 3 η 7, dη 11 = η 23 θ 1 + η 25 θ 2 + η 27 θ 3 + η 28 θ 4 + η 29 ξ 1 + η 30 ξ 2 + η 31 ξ 3 + η 32 ξ 4 + (3 η 11 + 4 η 13 ) η 1 + 3 η 14 η 3 2 η 13 η 4 (η 11 + η 13 ) η 5 + 3 (η 12 (η 6 + η 8 ) η 7 σ 11 η 9 σ 13 η 10 σ 14 η 13 σ 22 ), dη 12 = η 23 θ 2 + η 28 θ 3 + η 30 ξ 1 + (2 η 23 η 27 ) ξ 2 + (η 24 + η 25 + η 28 ) ξ 3 + (η 26 η 27 + η 31 ) ξ 4 + 8 (η 3 12 + η 15 ) η 1 + (η 13 + 2 η 16 ) η 3 1 (η 3 12 + 4 η 15 ) η 4 2 (η 3 12 + η 15 ) η 5 + 2 (2 η 7 η 9 ) η 6 3 η 7 σ 12 (η 8 + η 10 + 2 η 15 ) σ 22 η 9 σ 23 η 10 (3 σ 13 + σ 33 ), dη 13 = η 24 θ 2 η 23 θ 3 + η 31 ξ 1 + (η 24 + η 25 + η 28 ) ξ 2 (2 η 23 η 26 ) ξ 3 + η 33 ξ 4 1 (16 η 3 7 + 8 η 9 3 η 13 + 8 η 16 ) η 1 + η 12 η 2 + 2 η 17 η 3 + 2 (4 η 3 7 2 η 9 + 3 η 13 2 η 16 ) η 4 + 2 (2 η 3 7 η 9 η 16 ) η 5 + 2 η 15 (η 6 σ 12 ) + η 7 (σ 13 + 4 σ 22 ) + η 8 (2 σ 12 σ 23 ) η 9 (2 σ 22 + σ 33 ) + η 10 (2 σ 12 σ 34 ) + 2 (η 13 η 16 ) σ 22, dη 14 = η 24 θ 1 + η 26 θ 2 η 25 θ 3 η 23 θ 4 + η 32 ξ 1 + (η 26 η 27 + η 31 ) ξ 2 + η 33 ξ 3 + η 34 ξ 4 + 2 (η 3 12 + 3 η 14 + 4 η 17 ) η 1 + (η 11 + 2 η 13 ) η 2 + 2 (η 13 + η 18 ) η 3 1 (4 η 3 12 3 η 14 + 4 η 17 ) η 4 + 1 (η 3 12 3 η 14 2 η 17 ) η 5 + (η 13 + 2 η 16 ) η 6

Symmetry Pseudo-Group and Covering of Second Heavenly Equation 8 + η 7 σ 14 + η 8 (2 σ 11 + σ 13 σ 22 σ 33 ) η 9 (2 σ 12 + σ 34 ) + η 10 (2 σ 11 σ 44 ) + η 12 σ 33 + 2 ((η 13 + η 16 ) σ 12 η 13 σ 23 η 15 σ 11 η 17 σ 22 ), dη 15 = (η 24 + η 25 + η 28 ) ξ 1 + η 23 ξ 2 + η 24 ξ 3 + η 35 ξ 4 4 (η 3 8 η 10 + 2 η 15 ) η 1 + (2 η 7 η 9 ) η 2 (2 η 7 η 9 + η 13 η 16 η 19 ) η 3 + 1 (2 (η 3 8 + η 10 ) η 15 ) η 4 + 1 (η 3 8 + η 10 2 η 15 ) η 5 η 6 η 7 + 2 (η 8 + η 10 η 15 ) σ 22 η 10 σ 33, dη 16 = η 24 θ 2 η 23 θ 3 + (η 26 η 27 + η 31 ) ξ 1 + (2 η 24 + η 25 ) ξ 2 + η 35 ξ 3 + η 36 ξ 4 + 1 (4 η 3 7 2 η 9 + 5 η 16 + 4 η 19 ) η 1 + (η 12 + 2 η 15 ) η 2 (σ 13 + 2 σ 33 ) η 7 (η 8 + 2 η 10 4 η 15 2 η 17 η 20 ) η 3 2 (4 η 3 7 2 η 9 η 16 + η 19 ) η 4 + 1 (2 η 3 7 η 9 2 η 16 η 19 ) η 5 (η 8 + 2 η 10 3 η 15 ) η 6 (2 σ 12 + σ 23 ) η 8 + (σ 22 + σ 33 ) η 9 (2 σ 12 + σ 34 ) η 10 + (η 13 η 16 η 19 ) σ 22 2 η 15 ( σ 12 + σ 23 ), dη 17 = (η 23 η 26 + η 35 ) θ 2 η 24 θ 3 + η 33 ξ 1 + η 35 ξ 2 (2 η 24 + η 25 + η 33 η 36 ) ξ 3 + η 37 ξ 4 + 2 (η 3 15 + η 17 + 2 η 20 ) η 1 (4 η 7 2 η 9 + η 13 3 η 16 ) η 2 (4 η 7 2 η 9 + 2 η 13 2 η 16 η 21 ) η 3 1 (4 η 3 15 5 η 17 + 2 η 20 ) η 4 + 1 (η 3 15 2 η 17 η 20 ) η 5 (2 η 7 η 9 + η 13 η 16 η 19 ) η 6 (σ 12 + 3 σ 23 ) η 9 + (σ 12 4 σ 23 2 σ 34 ) η 7 (σ 13 σ 22 2 σ 33 ) η 8 (σ 13 + σ 22 + σ 33 ) η 10 + (σ 12 3 σ 23 ) η 13 + (σ 13 + σ 22 ) η 15 (σ 12 + 3 σ 23 ) η 16 η 19 σ 12 η 20 σ 22, dη 18 = (η 23 η 26 + η 35 ) θ 1 (η 25 + η 33 η 36 ) θ 2 η 26 θ 3 η 24 θ 4 + η 34 ξ 1 + η 36 ξ 2 + η 37 ξ 3 + η 38 ξ 4 + 1 (4 η 3 16 + 3 η 18 + 4 η 21 ) η 1 + 2 (η 14 + 2 η 17 ) η 2 + (4 η 17 + η 22 ) η 3 2 (4 η 3 16 + 3 η 18 η 21 ) η 4 + 1 (2 η 3 16 3 η 18 η 21 ) η 5 (η 8 + 2 η 10 2 η 15 3 η 17 η 20 ) η 6 η 7 (σ 11 2 σ 44 ) + η 8 (2 σ 12 + σ 14 + 2 σ 34 ) + η 9 (σ 11 σ 13 2 σ 22 2 σ 33 ) + η 10 (2 σ 12 + σ 14 ) η 15 (2 σ 12 + σ 14 ) η 13 (σ 11 σ 13 2 σ 22 2 σ 33 ) + η 16 (σ 11 σ 13 2 σ 22 ) 4 η 17 σ 23 η 19 σ 11 η 20 σ 12 η 21 σ 22, dη 19 = η 35 ξ 1 + η 24 ξ 2 + (η 23 η 26 + η 35 ) ξ 3 + η 39 ξ 4 + 1 (2 η 3 7 + η 19 ) η 1 (3 η 8 + 4 η 10 5 η 15 ) η 2 (2 η 8 + 2 η 10 2 η 15 η 20 ) η 3 4 (η 3 7 η 19 ) η 4 + 1 (η 3 7 η 19 ) η 5 (η 8 + η 10 η 15 ) η 6 η 7 (σ 22 2 σ 33 ) + 2 (η 8 + η 10 η 15 ) σ 23 + (η 9 η 13 + η 16 η 19 ) σ 22, dη 20 = (η 36 2 η 24 η 25 η 33 ) ξ 1 + (η 23 η 26 + η 35 ) ξ 2 (η 9 η 13 + η 16 4 η 19 ) η 2 + (η 24 + η 25 + η 33 η 36 + η 39 ) ξ 3 + η 40 ξ 4 2 (η 3 8 + η 10 η 15 + η 20 ) η 1 + 2 (η 7 η 9 + η 13 η 16 + η 19 ) η 3 + 1 (4 (η 3 8 + η 10 η 15 ) + 7 η 20 ) η 4 1 (η 3 8 + η 10 η 15 + η 20 ) η 5 + (η 7 η 9 + η 13 η 16 + η 19 ) η 6 4 (η 7 η 9 + η 13 η 16 + η 19 ) σ 23 3 (η 8 + η 10 η 15 ) σ 33, dη 21 = (η 24 + η 25 + η 33 η 36 + η 39 ) θ 2 (η 23 η 26 + η 35 ) θ 3 + η 37 ξ 1 + η 39 ξ 2 + η 40 ξ 3 + η 41 ξ 4 + 1 (4 η 3 19 η 21 ) η 1 (η 8 + 2 η 10 2 η 15 3 η 17 5 η 20 ) η 2 2 (η 3 19 η 21 ) (4 η 4 η 5 ) (η 7 η 9 ) (3 σ 13 + 2 σ 22 + 2 σ 33 ) + η 8 (2 σ 23 3 σ 34 )

Symmetry Pseudo-Group and Covering of Second Heavenly Equation 9 + (η 10 η 15 ) (2 σ 23 3 σ 34 ) (η 13 η 16 ) (3 σ 13 + 2 σ 22 + 3 σ 33 ) η 19 (3 σ 13 + 2 σ 22 ) + η 20 (4 η 3 + 2 η 6 5 σ 23 ), dη 22 = (η 24 + η 25 η 36 + η 33 + η 39 ) θ 1 + (2 (η 23 η 26 + η 35 ) + η 40 ) θ 2 3 (η 7 + η 19 ) σ 14 + (η 25 + η 33 η 36 ) θ 3 (η 23 η 26 + η 35 ) θ 4 + η 38 ξ 1 + (3 η 18 + 2 η 21 ) η 2 + (2 η 23 η 26 + 2 η 35 + η 37 + η 40 ) ξ 2 + η 41 ξ 3 + η 42 ξ 4 + 3 η 21 (2 η 3 + η 6 2 σ 23 ) 2 (η 8 + 2 (η 10 η 15 ) η 17 η 20 ) η 1 + 3 (η 9 η 13 + η 16 ) (σ 14 + σ 34 ) + (4 (η 8 + 2 (η 10 η 15 ) η 17 η 20 ) + 3 η 22 ) η 4 + 3 η 17 σ 33 3 η 20 (σ 13 + σ 22 ) (η 8 + 2 (η 10 η 15 ) η 17 η 20 + η 22 ) η 5 + 3 η 8 (2 (σ 13 + σ 22 ) + σ 33 σ 44 ) + 3 (η 10 η 15 ) (2 σ 13 + 2 σ 22 σ 44 ).