Enter Freezing temperature and freezing band FB 20 TFC Define CONSTANTS CPA RA CPA KA 1 KV CPV RV CPV KV.

Σχετικά έγγραφα
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant

By R.L. Snyder (Revised March 24, 2005)

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

APPENDIX A. Summary of the English Engineering (EE) System of Units

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Pof moist air and uses these properties to analyze conditions and

PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES

Homework 3 Solutions

Lifting Entry (continued)

Approximation of distance between locations on earth given by latitude and longitude

Fin coil calculation with NTU

PETROSKILLS COPYRIGHT

5.0 DESIGN CALCULATIONS

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

Homework 8 Model Solution Section

STEAM TABLES. Mollier Diagram

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Exercises to Statistics of Material Fatigue No. 5

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State


Math 6 SL Probability Distributions Practice Test Mark Scheme

PETROSKILLS COPYRIGHT

CONSULTING Engineering Calculation Sheet

MZ0.5GF SERIES ZENER DIODE TECHHICAL SPECIFICATION FEATURES. ABSOLUTE MAXIMUM RATINGE: (Ta=25 ) Parameter Symbols Limits Unit

Section 7.6 Double and Half Angle Formulas

Thermodynamic Tables to accompany Modern Engineering Thermodynamics

Spherical Coordinates

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Solution to Review Problems for Midterm III

2 Composition. Invertible Mappings

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Lecture 15 - Root System Axiomatics

ENSINGER High-temperature plastics. Material standard values.

Higher Derivative Gravity Theories

Properties of Nikon i-line Glass Series

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Exercises in Electromagnetic Field

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Second Order RLC Filters

Consolidated Drained

Numerical Analysis FMN011

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

RECIPROCATING COMPRESSOR CALCULATION SHEET

RECIPROCATING COMPRESSOR CALCULATION SHEET

6. MAXIMUM LIKELIHOOD ESTIMATION

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

titanium laser beam volume to be heated joint titanium Fig. 5.1

500mW Zener Diodes TZXJ2.0A TZXJ mW Zener Diodes. Features. Mechanical Data. Maximum Ratings (T Ambient=25ºC unless noted otherwise)

with serial RS485/RS232 output RS485

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Solutions to Exercise Sheet 5

How to register an account with the Hellenic Community of Sheffield.

NTC Thermistor:TSM type

; +302 ; +313; +320,.

TODA-ISU Corporation. SMD Power Inductor. SPI series. SMD Team

Journal of the Institute of Science and Engineering. Chuo University

Chapter 2. Stress, Principal Stresses, Strain Energy

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Design Method of Ball Mill by Discrete Element Method

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

NTC thermistors for temperature measurement

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

Free Energy and Phase equilibria

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

the total number of electrons passing through the lamp.

Problem Set 3: Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Statistical Inference I Locally most powerful tests

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

4 Way Reversing Valve

Section 8.3 Trigonometric Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ΙΚΤΥΩΤΟ ΜΟΝΤΕΛΟ (Network Model) Μαθ. # 15

Precision Metal Film Fixed Resistor Axial Leaded

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

SERIES DATASHEET INDUCTORS RF INDUCTORS (MRFI SERIES)

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Transcript:

ATMOSPHERIC THERMODYNAMIC FUNCTIONS This section contains the standard thermodynamic functions that can be used with a specific procedure. Go to page for the start of any specific calculations Enter Freezing temperature and freezing band TFC FB. Define CONSTANTS CPA. RA CPA KA KA KV CPV. RV CPV KV RA ε RV fcpa( M) := CPA + CPV M fra( M) := RA + RV M fka( M) := fra( M) fcpa( M) P PV. T. TF T + TFC G 9. PG TG MG. LV LF CW 9 CI 9 αl.9 αi.9 βl. βi.9 ΓL.9 ΓI.

. FUNCTIONS: Vapor pressure, mixing ratio, virtual temperature fpvl( T) exp αl βl T ΓLlnT ( ) fpvi( T) exp αi βi T ΓIlnT ( ) fpv( T) if( T > TF, fpvl( T), fpvi( T) ) fmvs( P, T) ε fmvl( P, T) ε fpv( T) P fpv( T) fpvl( T) P fpvl( T) fpv( P, M) M P M + fms( P, T, M) fmvs( P, T) ε fmv( P, T, M) if( fmvs( P, T) > M, M, fmvs( P, T) ) fu( P, T, M) := ( M) fmvs( P, T) fpv( P, T, M) fmv( P, T, M) ε P + fmv( P, T, M) fpa( P, T, M) P fpv( P, T, M) fmc( P, T, M) if( fmvs( P, T) < M, M fmvs( P, T), ) fmlb( P, T, M) ift > TF FB, fmc( P, T, M) T TF + FB, FB fml( P, T, M) if( T TF, fmc( P, T, M), fmlb( P, T, M) ) fmib( P, T, M) ift < TF, fmc( P, T, M) TF T, FB fmi( P, T, M) if( T < TF FB, fmc( P, T, M), fmib( P, T, M) )

. ENTROPY fsa( P, T) CPA ln T RA ln P T P fsv( P, T) CPV ln T T RV ln P PV + LV T fsl( T) CW ln T T fsi( T) CI ln T T LF T fsa( P, T, M) fsa( fpa( P, T, M), T) fsv( P, T, M) fmv( P, T, M) fsv( fpv( P, T, M), T) fsl( P, T, M) fml( P, T, M) fsl( T) fsi( P, T, M) fmi( P, T, M) fsi( T) fst( P, T, M) fsa( P, T, M) + fsv( P, T, M) + fsl( P, T, M) + fsi( P, T, M) fst( P, T, M) fsm( P, T, M) := ( + M) fsc( T) if( T > TF, fsl( T), fsi( T) ) faa( P, T, M) fsa( P, T) + M fsc( T) fθm( P, T, M, PC) T PC P RA+ M RV CPA+ M CPV

. ENTHALPY fha( T) CPA ( T T) fhv( T) [ CPV ( T T) + LV] fhl( T) [ CW ( T T) ] fhi( T) [ CI ( T T) LF] fha( P, T, M) fha( T) fhv( P, T, M) fmv( P, T, M) fhv( T) fhl( P, T, M) fml( P, T, M) fhl( T) fhi( P, T, M) fmi( P, T, M) fhi( T) fht( P, T, M) fha( P, T, M) + fhv( P, T, M) + fhl( P, T, M) + fhi( P, T, M) fhc( T) if( T > TF, fhl( T), fhi( T) ) fee( P, T, M) fha( T) + M fhc( T) fhw( P, T, M, W) fha( T) + M fhv( T) + if( W > TF, fhl( W), fhi( W) ) ( fmvs( P, W) M) fσ( P, T, M, Z) fht( P, T, M) + G ( + M) Z. VIRTUAL TEMPERATURE AND HEIGHT M + ε ftv( T, M) T + M ftv( P, T, M) if M < fmvs( P, T), ftv( T, M), ftv( T, fmvs( P, T) ) + fmvs( P, T) + M fα( P, P, TV, TV) G RA ln ln TV TV P P fz( P, P, TV, TV) TV TV fα( P, P, TV, TV)

SOLVER BLOCKS ISENTROPIC EXPANSION TEMPERATURE Given fst( P, TG, M) = S ftsol( S, P, M) := Find( TG) ISENTROPIC EXPANSION PRESSURE Given fst( PG, T, M) = S fpsol( S, T, M) := Find( PG) ISENTROPIC DESSICATION TEMPERATURE Given faa( P, TG, M) = S fasol( S, P, M) := Find( TG) ISENTHALPIC DESSICATION TEMPERATURE, EQUIVALENT TEMPERATURE Given fee( P, TG, M) = H fesol( H, P, M) := Find( TG) MIXING RATIO FROM WET BULB Given fht( P, W, fmvs( P, W) ) = fhw( P, T, MG, W) fmsol( P, T, W) := Find( MG) WET BULB FROM MIXING RATIO Given fht( P, TG, fmvs( P, TG) ) = fhw( P, T, M, TG) fwsol( P, T, M) := Find( TG) LIFTING CONDENSATION LEVEL Given fu( PG, fθm( P, T, M, PG), M) = fcsol( P, T, M) := Find( PG) DEW POINT Given fpv( P, M) = fpv( TG) fdsol( P, T, M) := Find( TG)

by: L.Michaud, Nov. Fetch and display sounding data Ending α denotes property of the sounding Fetch the San Juan average sounding for Sept Z and Z Sept READ SOUNDING DATA SDAT := Pα := ZW := SDAT TCα := SDAT TDα := SDAT UW := SDAT MW := SDAT READPRN ("SANJUAN.prn" ) Sounding Pressure (kpa) SDAT Sounding Level (m) Sounding Temperature (C) Sounding Dew Point (C) Sounding Realtive Humidity (%) Sounding Mixing Ratiol (g/kg)..... 9.....9. -. -. -9. -9.9 -.9 Pα = 9 TCα = 9 -. -. TDα = 9-9. -. -. -. -.9 -. -. -9..9 - -. -. -. -9. -. -. -. -. -.

Calculate sounding properties im := last( Pα) i:=.. im im = jm := last( Pα) j:=.. jm jm = Temperature in degree Kelvin Tα := TCα + T Mixing Ratio from dew point Mα := fmvl( Pα, TDα + T) Entropy Sα := fst( Pα, Tα, Mα) Enthalpy Hα := fht( Pα, Tα, Mα) Relative Humidity from mixing ratio- Uα := fu( Pα, Tα, Mα) Virtual Temperature TVα := ftv( Tα, Mα) ρα := Pα ( RA + Mα RV) Tα ( + Mα)

Mα i 9............ = MW i 9............. = Sα i.9...9 9.. 9....9...9 9.. 9.. = Hα i 9 - -99 - - - - - - - -99-9 - = Pα i. 9..9 = Tα i.9.9 9. 9.... 9.. 9.. 9. 9. 9.... = Pα i. 9..9 = Uα i 9.... 9...9.... 9.....9.9 = UW i 9 9 9 9 = TVα i.. 9. 9... 9.. 9.. 9. 9. 9.... = ρα i...........9.....9. =

Entropy of sounding Pressure (kpa) Pα i Sα i Entropy (J/kg K)

Calculate lapse rate and heights α := α j ( ) + := fα Pα j, Pα j+, TVα j, TVα j+ Z j ( ) + := fz Pα j, Pα j+, TVα j, TVα j+ ZC := ZW ZC j := + + Z j+ ZC j ZD := ZW α ( ) = -. Z = ZC = 9 ZD = 9 -. 9 9 9 -.9 -. -. -.9 -. -. -. -. -...9... 9 9 9 9 9 99 9 9 9 9 9 9 9 9

Calculate surface pressure reduction using the TWO GUESSES METHOD. Define air properties at large radius - State P := Pα P =. T := Tα T T =. MW M := M = 9. H := fht( P, T, M) H = S := fst( P, T, M) S =. Define P pressure - State n:= P := Pα n P = ENTER SEA SURFACE TEMPERATURE SSTC :=. SST := T + SSTC ENTER TEMPERATURE AND HUMIDITY APPROACHES A := B := Calculate T and U T := SST A T = 9. T T =. U := B U = 9 Enter first guess for eyewall base pressure and calculate second guess PC := 9 PC := PC. Calculate surface air mixing ratio U MC := fmvs( PC, T) MC = Calculate air properties at State.. SC := fst( PC, T, MC) HC := fht( PC, T, MC) SC = HC =..

Calculate air properties at Point TC := ftsol( SC, P, MC) TC = HC := fht( P, TC, MC) HC = Calculate static energy at state σc := fσ P, TC, MC, ZD n σc = ( ) Calculate the work for the two guesses WC := ( HC σc) WC = Calculate the pressure P required to make the work zero 99. 99. 9 99 9 9 MINMUM EYEWALL PRESSURE (kpa) WC P := PC ( PC PC ) P = 9. WC WC Calculate base pressure reduction ( ) P := P P P =. Calculate air properties at State M := fmvs( P, T) U S := fst( P, T, M) M =. S =. H := fht( P, T, M) H = 9 Calculate air properties at State Check temperatures at equilibrium level T := ftsol( S, P, M) T = 9. T T =. TV := ftv( P, T, M) TV = 9. TV T =. TVα n = 9. TVα n T =. H := fht( P, T, M) H = 9 Calculate air properties at State T := ftsol( S, P, M) T = 9. T T =. H := fht( P, T, M) H = 9 T = 9. T T =.

Work and Heat calculations W := H H W = MAXIMUM HURRICANE WIND VELOCITY (m/s) V := W V =. Qr := H H Qi := H H Qr = Qi = ZD n = µ:= H + ZD n ( + M) G µ = 9 M_DEL := M M M_DEL =. Calculate Updraft properties Tβ := ftsol( S, Pα, M) S =. ρβ := Pα ( RA + M RV) Tβ ( + M) M =. Tβ i =.. 9. 9..... 9... 9. 9..9. ρβ i =...9.99......9....... Pα i =. 9..9

Hydrostatic Base Pressure Calculation - Air-Sea Interaction case q:= PK := Pα q PK = M =. S =. PHK := Pα q PHK := PHK + m:=.. z :=.. PHK m := PHK + ( m ) TK z := ftsol S, PHK z, M TU z := TK z T ( ) ( ) TVK z := ftv PHK z, TK z, M UK := fu( PHK, TK, M) ρk z := PHK z ( RA + M RV) TK z ( + M)

PHK 9 9 9 9 = TK 9 9.9 9... 9...... 9.... 9. 9. 9. 9. 99... = TVK 9 9. 9....... 9....9. 9. 9. 9.9 9.9.... = UK 9 9. 9.... 9...9.9 9..9 9.... 9... =

ZK := ZD n PHK = m:=.. ZK =. DKZ m := fz PHK m, PHK ( m+ ), TVK m, TVK m+ ( ) 9... ZK m+ ( ) := ZK m DKZ m.. 9. 9.. 9. PHK = ZK = TVK = 9.9 9. DKZ = 9 9. ZK =.. 9....9 G TVK := TVK + ZK CPA... 9.9 9..9.... 9... 9. 9 -.....9...9. 9.9 ρk =. PHK =......9.99. 9.9. 9 9 9 9

Pressure versus Height Elevation (km) ZK m ZD i Updraft Pressure Ambient Pressure PHK m, Pα i Pressure (kpa) Pressure versus Height - Lower End Elevation (km) ZK m ZC i 9 9 9 9 9 Updraft Pressure Ambient Pressure PHK m, Pα i Pressure (kpa)

Pressure versus Height - Top End Elevation (km) ZK m ZC i Updraft Ambient PHK m, Pα i Pressure (kpa) Density versus Height Elevation (km) ZK m ZC i ZC i...... ρk m, ρα i, ρβ i Air Density (kg/m) Updraft Density Ambient Density Updraft Density ignoring pressure effect

Temperature versus Height Elevation (km) ZK m ZC i Updraft Temperature Ambient Temperature TK m, Tα i Temperature (K) Temperature versus Pressure Pressure (kpa) Updraft Temperature Ambient Dew Point Temperature Ambient Dry Bulb Temperature (K)

Temperature versus Pressure Pressure (kpa) 9 9 9 Updraft Virtual Temperature Ambient Temperature Temperature (K) Density versus Pressure Pressure (kpa) 9.........9.. Updraft Density Ambient Density Density (kg/m)

ZPPLOT ZC := ZPPLOT ZK := ZPPLOT ρk := ZPPLOT ρα := ZPPLOT TK := ZPPLOT Tα := ZPPLOT....... 9..9....9........ 9..9.....9....9.9....9....9...........9.9.99..9.................9...9 9... 9...... 9.... 9. 9. 9. 9. 99....9.9 9. 9.... 9.. 9.. 9. 9. 9.... = WRITEPRN "ISABEL_PLOT.prn" ( ) ZPPLOT :=