Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers.

Σχετικά έγγραφα
Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin

Phytochemical Studies and Antioxidant Activities of Artocarpus scortechinii King

Supporting information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Antioxidant Activities of Chemical Constituents Isolated from Echinops orientalis Trauv.

Supporting Information

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

SUPPLEMENTARY MATERIAL

SUPPORTING INFORMATION

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

Available online at shd.org.rs/jscs/

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

phase: synthesis of biaryls, terphenyls and polyaryls

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Selective mono reduction of bisphosphine

Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

Supplementary Materials

Available online at shd.org.rs/jscs/

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Electronic Supplementary Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Efficient Synthesis of Ureas by Direct Palladium-Catalyzed. Oxidative Carbonylation of Amines

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

Supporting information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

Rudi Hendra 1, Paul A. Keller 1* Telephone: Fax:

Divergent synthesis of various iminocyclitols from D-ribose

(M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicking the M II - Substituted Quercetin 2,3-Dioxygenase

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Supporting Information for

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

Electronic Supplementary Information

Supporting Information

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Supporting Information

A Trimeric Proanthocyanidin from the Bark of Acacia. leucophloea Willd.

Electronic Supplementary Information

Supporting Information

Electronic Supplementary information

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

The Free Internet Journal for Organic Chemistry

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Journal of Chemical and Pharmaceutical Research, 2014, 6(5): Research Article

Supporting Information for. Update of spectroscopic data for 4-hydroxyldictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Supporting Information. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Supporting Information

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Electronic Supplementary Information

Supplementary material

Supplementary!Information!

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Crossed Intramolecular Rauhut-Currier-Type Reactions via Dienamine Activation

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Transcript:

Supporting Information Rec. Nat. Prod. 9:1 (2015) 159-163 Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers. Mohamed Ali A. Alwahsh, Melati Khairuddean * and Wong Keng Chong School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia Table of Contents Page S1: 1 H NMR (CDCl 3, 500 MHz) spectrum of compound 1 (5-hydroxy- 3,6,7,4 -tetramethoxyflavone) 3 S2: 13 C NMR (CDCl 3, 125 MHz) spectrum of compound 1 4 S3: (a) DEPT 135 and (b) DEPT 90 NMR (CDCl 3, 125 MHz) spectra of compound 1 4 S4: 1 H NMR (CDCl 3, 500 MHz) spectrum of compound 2 (Salvigenin) 5 S5: 13 C NMR (CDCl 3, 125 MHz) spectrum of compound 2 6 S6: (a) DEPT 135 and (b) DEPT 90 NMR (CDCl 3, 125 MHz) spectra of compound 2 6 S7: 1 H NMR (CDCl 3, 500 MHz) spectrum of compound 3 7 (5-hydroxy-6,7,3,4 -tetramethoxyflavone) S8: 13 C NMR (CDCl 3, 125 MHz) spectrum of compound 3 8 S9: (a) DEPT 135 and (b) DEPT 90 NMR (CDCl 3, 125 MHz) spectra of compound 3 8 S10: 1 H NMR (Acetone-d 6, 500 MHz) spectrum of compound 4 (Chrysosplenetin) 9 S11: 13 C NMR (Acetone-d 6, 125 MHz) spectrum of compound 4 10 S12: (a) DEPT 135 and (b) DEPT 90 NMR (Acetone-d 6, 125 MHz) spectra of 10 compound 4 * Corresponding author: E-Mail: melati@usm.my; Phone:+604-6533560 Fax:+604-6574854 1

S13: 1 H NMR (Acetone-d 6, 500 MHz) spectrum of compound 5 (Cirsilineol) 11 S14: 13 C NMR (Acetone-d 6, 125 MHz) spectrum of compound 5 12 S15: (a) DEPT 135 and (b) DEPT 90 NMR (Acetone-d 6, 125 MHz) spectra of 12 compound 5 S16: 1 H NMR (DMSO-d 6, 500 MHz) spectrum of compound 6 (Cirsimaritin) 13 S17: 13 C NMR (DMSO-d 6, 125 MHz) spectrum of compound 6 14 S18: (a) DEPT 135 and (b) DEPT 90 NMR (DMSO-d 6, 125 MHz) spectra of 14 compound 6 S19: 1 H NMR (DMSO-d 6, 500 MHz) spectrum of compound 7 (Cirsiliol) 15 S20: 13 C NMR (DMSO-d 6, 125 MHz) spectrum of compound 7 16 S21: (a) DEPT 135 and (b) DEPT 90 NMR (DMSO-d 6, 125 MHz) spectra of 16 compound 7 S22: 1 H NMR (DMSO-d 6, 500 MHz) spectrum of compound 8 (Apigenin) 17 S23: 13 C NMR (DMSO-d 6, 125 MHz) spectrum of compound 8 18 S24: (a) DEPT 135 and (b) DEPT 90 NMR (DMSO-d 6, 125 MHz) spectra of 18 compound 8 S25: 1 H NMR (DMSO-d 6, 500 MHz) spectrum of compound 9 (Luteolin) 19 S26: 13 C NMR (DMSO-d 6, 125 MHz) spectrum of compound 9 20 S27: (a) DEPT 135 and (b) DEPT 90 NMR (DMSO-d 6, 125 MHz) spectra of 20 compound 9 S28: 1 H NMR (acetone-d 6, 500 MHz) spectrum of compound 10 (methyl caffeate) 21 S29: (a) 13 C, (b) DEPT 135 and (c) DEPT 90 NMR (acetone-d 6, 125 MHz) 22 spectra of compound 10 S30: (a) 1 H, (b) 13 C and (c) DEPT 90 NMR (acetone-d 6, 500/125 MHz) 23 spectra of compound 11 (4-hydroxybenzaoic acid) S31: Inhibition effect at various concentrations of extracts and standards (trolox, 24 gallic acid and ascorbic acid) on DPPH radical. S32: Inhibition effect at various concentrations of extracts and standards (trolox, 24 gallic acid and luteolin) on ABTS radical. Table S33: Correlation (Pearson s correlation coefficients). 25 2

H 3 CO H 3 CO 6 7 3' 2' 4' 8 1' 9 O 2 5' 6' 5 3 4 10 OCH 3 OH O OCH 3 S1: 1 H NMR (CDCl 3, 500 MHz) spectrum of compound 1 (5-hydroxy-3,6,7,4 - tetramethoxyflavone) Compound 1 (5-hydroxy-3,6,7,4 -tetramethoxyflavone), yellow wax: -ESI-MS m/z: 357.1 [M H] ; UVλ max (nm): (MeOH) 234 (sh), 273, 335, (NaOMe) 291, 366 (sh), (AlCl 3 ) 233 (sh), 283, 299 (sh), 363, (AlCl 3 /HCl) 235, 285, 299 (sh), 357, (NaOAc) 294, 320 (sh), (NaOAc/H 3 BO 3 ) 272, 336; 1 H NMR (500 MHz, CDCl 3 ): δ 12.59 (s, 1 H, 5-OH), 8.04 (d, J = 9.0 Hz, 2 H, H-2, 6 ), 7.00 (d, J = 9.0 Hz, 2 H, H-3, 5 ), 6.47 (s, 1 H, H-8), 3.93 (s, 3 H, 7-OMe), 3.89 (s, 3 H, 6-OMe), 3.87 (s, 3 H, 4 -OMe), 3.83 (s, 3 H, 3-OMe); 13 C NMR (125 MHz, CDCl 3 ): δ 178.93 (C-4), 161.71 (C-4 ), 158.75 (C-7), 156.00 (C-2), 152.78 (C-5), 152.34 (C-9), 138.72 (C-3), 132.30 (C-6), 130.13 (C-2, 6 ), 122.81 (C-1 ), 114.08 (C-3, 5 ), 106.61 (C-10), 90.33 (C-8), 60.86 (6-OMe), 60.12 (3-OMe), 56.43 (4 -OMe), 56.30 (7-OMe). 3

S2: 13 C NMR (CDCl 3, 125 MHz) spectrum of compound 1 (5-hydroxy-3,6,7,4 - tetramethoxyflavone) S3: (a) DEPT 135 and (b) DEPT 90 NMR (CDCl 3, 125 MHz) spectra of compound 1 (5- hydroxy-3,6,7,4 -tetramethoxyflavone) 4

H 3 CO H 3 CO 6 7 8 9 O 5 4 10 OH O 2' 1' 2 3 3' 6' 4' 5' OCH 3 S4: 1 H NMR (CDCl 3, 500 MHz) spectrum of compound 2 (Salvigenin) Compound 2 (Salvigenin), yellow wax: -ESI-MS m/z: 327.1 [M H] ; UV λ max (nm): (MeOH) 275, 333, (NaOMe) 295, 369 (sh), (AlCl 3 ) 263, 289 (sh), 301, 357, (AlCl 3 /HCl) 261, 289 (sh), 300, 354, (NaOAc) 280, 328, (NaOAc/H 3 BO 3 ) 275, 332; 1 H NMR (500 MHz, CDCyl 3 ): δ 12.74 (s, 1 H, 5-OH), 7.82 (d, J = 8.9 Hz, 2 H, H-2, 6 ), 6.99 (d, J = 8.9 Hz, 2 H, H-3, 5 ), 6.57 (s, 1 H, H-3), 6.52 (s, 1 H, H-8) 3.95 (s, 3 H, 7-OMe), 3.90 (s, 3 H, 6-OMe), 3.87 (s, 3 H, 4 -OMe); 13 C NMR (125 MHz, CDCl 3 ): δ 182.69 (C-4), 164.03 (C-2), 162.63 (C-4 ), 158.74 (C-7), 153.24 (C-9), 153.09 (C-5), 132.67 (C-6), 128.01 (C-2, 6 ), 123.59 (C-1 ), 114.53 (C- 3, 5 ), 106.16 (C-10), 104.15 (C-3), 90.57 (C-8), 60.85 (6-OMe), 56.30 (7-OMe), 55.54 (4 - OMe). 5

S5: 13 C NMR (CDCl 3, 125 MHz) spectrum of compound 2 (Salvigenin) S6: (a) DEPT 135 and (b) DEPT 90 NMR (CDCl 3, 125 MHz) spectra of compound 2 (Salvigenin) 6

H 3 CO H 3 CO 6 7 8 9 O 5 4 10 OH O 2' 1' 2 3 OCH 3 3' OCH 3 4' 5' 6' S7: 1 H NMR (CDCl 3, 500 MHz) spectrum of compound 3 (5-hydroxy-6,7,3,4 - tetramethoxyflavone) Compound 3 (5-hydroxy-6,7,3,4 -tetramethoxyflavone), yellow needles: -ESI-MS m/z: 357.1 [M H] ; UV λ max (nm): (MeOH) 276, 337, (NaOMe) 291, 371 (sh), (AlCl 3 ) 257 (sh), 285, 364, (AlCl 3 /HCl) 257 (sh), 287, 359, (NaOAc) 282, 325, (NaOAc/H 3 BO 3 ) 275, 338; 1 H NMR (500 MHz, acetone-d 6 ): δ 12.95 (s, 1 H, 5-OH), 7.71 (dd, J = 8.5, 2.2 Hz, 1 H, H-6 ), 7.63 (d, J = 2.2 Hz, 1 H, H-2 ), 7.15 (d, J = 8.5 Hz, 1 H, H-5 ), 6.87 (s, 1 H, H-8), 6.78 (s, 1 H, H-3), 3.98 (s, 1 H, 7-OMe), 3.96 (s, 1 H, 3 -OMe), 3.93 (s, 1 H, 4 -OMe), 3.80 (s, 1 H, 6- OMe); 13 C NMR (125 MHz, acetone-d 6 ): δ 183.63 (C-4), 165.13 (C-2), 160.22 (C-7), 154.19 (C-5), 154.03 (C-9), 153.89 (C-4 ), 150.76 (C-3 ), 133.63 (C-6), 124.48 (C-1 ), 121.04 (C-6 ), 112.58 (C-5 ), 110.50 (C-2 ), 106.62 (C-10), 104.68 (C-3), 92.05 (C-8), 60.61 (6-OMe), 56.90 (7-OMe), 56.50 (3 -OMe), 56.35 (4 -OMe). 7

S8: 13 C NMR (CDCl 3, 125 MHz) spectrum of compound 3 (5-hydroxy-6,7,3,4 - tetramethoxyflavone) S9: (a) DEPT 135 and (b) DEPT 90 NMR (CDCl 3, 125 MHz) spectra of compound 3 (5- hydroxy-6,7,3,4 -tetramethoxyflavone) 8

H 3 CO H 3 CO 6 7 8 5 2' 9 O 1' 2 6' 3 4 10 OCH 3 OH O OCH 3 3' OH 4' 5' S10: 1 H NMR (Acetone-d 6, 500 MHz) spectrum of compound 4 (Chrysosplenetin) Compound 4 (Chrysosplenetin), yellow solid: EI-MS m/z: 374.1 [M] + ; UV λ max (nm): (MeOH) 257, 269 (sh), 351, (NaOMe) 268, 405, (AlCl 3 ) 268, 379, (AlCl 3 /HCl) 265, 279 (sh), 366, (NaOAc) 268, 292 (sh), 413, (NaOAc/H 3 BO 3 ) 257, 268 (sh), 354; 1 H NMR (500 MHz, acetone-d 6 ): δ 12.72 (s, 1 H, 5-OH), 7.80 (d, J = 2.0 Hz, 1 H, H-2 ), 7.72 (dd, J = 2.0, 8.5 Hz, 1 H, H-6 ), 7.01 (d, J = 8.5 Hz, 1 H, H-5 ), 6.82 (s, 1 H, H-8), 3.97 (s, 3 H, 7-OMe), 3.94 (s, 3 H, 3 -OMe), 3.90 (s, 3 H, 3-OMe), 3.80 (s, 3 H, 6-OMe); 13 C NMR (125 MHz, acetone-d 6 ): δ 179.87 (C-4), 156.99 (C-2), 160.21 (C-7), 153.66 (C-5), 153.26 (C-9), 150.65 (C-4 ), 148.38 (C-3 ), 139.34 (C-3), 133.25 (C-6), 123.46 (C-6 ), 122.88 (C-1 ), 116.20 (C-5 ), 112.80 (C-2 ), 107.11 (C-10), 91.81 (C-8), 60.63 (6-OMe), 60.32 (3-OMe), 56.90 (7-OMe), 56.52 (3 -OMe). 9

S11: 13 C NMR (Acetone-d 6, 125 MHz) spectrum of compound 4 (Chrysosplenetin) S12: (a) DEPT 135 and (b) DEPT 90 NMR (Acetone-d 6, 125 MHz) spectra of compound 4 (Chrysosplenetin) 10

H 3 CO H 3 CO 6 7 8 9 O 5 4 10 OH O 2' 1' 2 3 OCH 3 3' OH 4' 5' 6' S13: 1 H NMR (Acetone-d 6, 500 MHz) spectrum of compound 5 (Cirsilineol) Compound 5 (Cirsilineol), yellow amorphous: EI-MS m/z: 344.1 [M] + ; UV λ max (nm): (MeOH) 241, 275, 343, (NaOMe) 266, 402, (AlCl 3 ) 261, 285, 373, (AlCl 3 /HCl) 259, 289, 365, (NaOAc) 271, 416, (NaOAc/H 3 BO 3 ) 275, 347; 1 H NMR (500 MHz, acetone-d 6 ): δ 12.96 (s, 1 H, 5-OH), 7.63 (m, 2 H, H-2, 6 ), 7.08 (d, J = 8.2 Hz, 1 H, H-5 ), 6.84 (s, 1 H, H-8), 6.74 (s, 1 H, H-3), 3.99 (s, 3 H, 3 -OMe), 3.97 (s, 3 H, 7-OMe), 3.80 (s, 3 H, 6-OMe); 13 C NMR (125 MHz, acetone-d 6 ): δ 183.60 (C-4), 165.27 (C-2), 160.13 (C-7), 154.13 (C-5), 154.01 (C- 9), 151.61 (C-4 ), 148.98 (C-3 ), 133.55 (C-6), 123.60 (C-1 ), 121.45 (C-6 ), 116.47 (C-5 ), 110.59 (C-2 ), 106.57 (C-10), 104.26 (C-3), 92.00 (C-8), 60.60 (6-OMe), 56.87 (7-OMe), 56.68 (3 -OMe). 11

S14: 13 C NMR (Acetone-d 6, 125 MHz) spectrum of compound 5 (Cirsilineol) S15: (a) DEPT 135 and (b) DEPT 90 NMR (Acetone-d 6, 125 MHz) spectra of compound 5 (Cirsilineol) 12

H 3 CO H 3 CO 6 7 8 9 O 5 4 10 OH O 2' 1' 2 3 3' 6' 4' 5' OH S16: 1 H NMR (DMSO-d 6, 500 MHz) spectrum of compound 6 (Cirsimaritin) Compound 6 (Cirsimaritin), yellow crystal: EI-MS m/z: 314.1 [M] + ; UV λ max (nm): (MeOH) 276, 332, (NaOMe) 274, 383, (AlCl 3 ) 265 (sh), 290 (sh), 301, 361, (AlCl 3 /HCl) 265 (sh), 290 (sh), 300, 354, (NaOAc) 273, 388, (NaOAc/H 3 BO 3 ) 275, 337; 1 H NMR (500 MHz, acetoned 6 ): δ 12.94 (s, 1 H, 5-OH), 7.95 (d, J = 8.8 Hz, 2 H, H-2, 6 ), 7.02 (d, J = 8.8 Hz, 2 H, H-3, 5 ), 6.85 (s, 1 H, H-8), 6.68 (s, 1 H, H-3), 3.98 (s, 3 H, 7-OMe), 3.79 (s, 3 H, 6-OMe); 13 C NMR (125 MHz, acetone-d 6 ): δ 183.61 (C-4), 165.49 (C-2), 162.33 (C-4 ) 160.13 (C-7), 154.13 (C-9), 153.94 (C-5), 133.53 (C-6), 129.33 (C-2, 6 ), 123.05 (C-1 ), 116.97 (C-3, 5 ), 106.51 (C-10), 103.84 (C-3), 92.02 (C-8), 60.62 (6-OMe), 56.89 (7-OMe). 13

S17: 13 C NMR (DMSO-d 6, 125 MHz) spectrum of compound 6 (Cirsimaritin) S18: (a) DEPT 135 and (b) DEPT 90 NMR (DMSO-d 6, 125 MHz) spectra of compound 6 (Cirsimaritin) 14

H 3 CO H 3 CO 6 7 8 9 O 5 4 10 OH O 2' 1' 2 3 OH 3' 6' 4' 5' OH S19: 1 H NMR (DMSO-d 6, 500 MHz) spectrum of compound 7 (Cirsiliol) Compound 7 (Cirsiliol), yellow powder: EI-MS m/z: 330.1 [M] + ; UV λ max (nm): (MeOH) 255, 273, 345, (NaOMe) 239 (sh), 268, 400, (AlCl 3 ) 240 (sh), 275, 300 (sh), 342 (sh), 423, (AlCl 3 /HCl) 262, 284, 366, (NaOAc) 269, 402, (NaOAc/H 3 BO 3 ) 263, 370; 1 H NMR (500 MHz, acetone-d 6 ): δ 12.96 (s, 1 H, 5-OH), 7.45 (m, 2 H, H-2, 6 ), 6.91 (d, J = 8.8 Hz, 1 H, H- 5 ), 6.87 (s, 1 H, H-8), 6.73 (s, 1 H, H-3),3.93 (s, 3 H, 7-OMe), 3.74 (s, 3 H, 6-OMe); 13 C NMR (125 MHz, DMSO-d 6 ): δ 182.07 (C-4), 164.26 (C-2), 158.56 (C-7), 152.57 (C-9), 152.07 (C-5), 149.94 (C-4 ), 145.82 (C-3 ), 131.87 (C-6), 121.35 (C-1 ), 119.01 (C-6 ), 115.96 (C-5 ), 113.48 (C-2 ), 105.04 (C-10), 102.65 (C-3), 91.42 (C-8), 60.00 (6-OMe), 56.40 (7- OMe). 15

S20: 13 C NMR (DMSO-d 6, 125 MHz) spectrum of compound 7 (Cirsiliol) S21: (a) DEPT 135 and (b) DEPT 90 NMR (DMSO-d 6, 125 MHz) spectra of compound 7 (Cirsiliol) 16

HO 6 7 8 9 O 5 4 10 OH O 2' 1' 2 3 3' 6' 4' 5' OH S22: 1 H NMR (DMSO-d 6, 500 MHz) spectrum of compound 8 (Apigenin) Compound 8 (Apigenin), yellow powder: EI-MS m/z: 270.1 [M] + ; UV λ max (nm): (MeOH) 268, 336, (NaOMe) 275, 325, 393, (AlCl 3 ) 275, 302, 349, 379, (AlCl 3 /HCl) 277, 300, 340, 374, (NaOAc) 275, 312, 389, (NaOAc/H 3 BO 3 ) 269, 343; 1 H NMR (500 MHz, DMSO-d 6 ): δ 12.97 (s, 1 H, 5-OH), 7.93 (d, J = 8.8 Hz, 2 H, H-2, 6 ), 6.93 (d, J = 8.8 Hz, 2 H, H-3, 5 ), 6.78 (s, 1 H, H-3), 6.48 (d, J = 2.0 Hz, 1 H, H-8), 6.19 (d, J = 2.0 Hz,1 H, H-6); 13 C NMR (125 MHz, DMSO-d 6 ): δ 181.75 (C-4), 164.29 (C-7), 163.72 (C-2), 161.46 (C-5), 161.20 (C- 4 ), 157.33 (C-9), 128.48 (C-2, 6 ), 121.17 (C-1 ), 115.97 (C-3, 5 ), 103.65 (C-10), 102.82 (C-3), 98.87 (C-6), 93.99 (C-8). 17

S23: 13 C NMR (DMSO-d 6, 125 MHz) spectrum of compound 8 (Apigenin) S24: (a) DEPT 135 and (b) DEPT 90 NMR (DMSO-d 6, 125 MHz) spectra of compound 8 (Apigenin) 18

HO 6 7 8 9 5 10 OH O 4 O 2' 1' 2 3 OH 3' 6' 4' 5' OH S25: 1 H NMR (DMSO-d 6, 500 MHz) spectrum of compound 9 (Luteolin) Compound 9 (Luteolin), yellow powder: EI-MS m/z: 286.1 [M] + ; UV λ max (nm): (MeOH) 254, 265, 295 (sh), 348, (NaOMe) 267, 333, 403, (AlCl 3 ) 273, 300 (sh), 333, 424, (AlCl 3 /HCl) 263, 275, 295 (sh), 357, 381, (NaOAc) 270, 326, 399, (NaOAc/H 3 BO 3 ) 262, 300 (sh), 374, 422 (sh); 1 H NMR (500 MHz, DMSO-d 6 ): δ 12.98 (s, 1 H, 5-OH), 7.42 (m, 2 H, H- 2, 6 ), 6.90 (d, J = 8.0 Hz, 1 H, H-5 ), 6.67 (s, 1 H, H-3), 6.45 (d, J = 2.0 Hz, 1 H, H-8), 6.19 (d, J = 2.0 Hz, 1 H, H-6); 13 C NMR (125 MHz, DMSO-d 6 ): δ 181.70 (C-4), 164.16 (C-7), 163.92 (C-2), 161.52 (C-5), 157.32 (C-9), 149.73 (C-4 ), 145.77 (C-3 ), 121.56 (C-1 ), 119.02 (C-6 ), 116.05 (C-5 ), 113.40 (C-2 ), 103.74 (C-10), 102.91 (C-3), 98.87 (C-6), 93.88 (C-8). 19

S26: 13 C NMR (DMSO-d 6, 125 MHz) spectrum of compound 9 (Luteolin) S27: (a) DEPT 135 and (b) DEPT 90 NMR (DMSO-d 6, 125 MHz) spectra of compound 9 (Luteolin) 20

2 HO 3 1 HO 4 5 6 1' 2' O OCH 3 S28: 1 H NMR (acetone-d 6, 500 MHz) spectrum of compound 10 (methyl caffeate) Compound 10 (methyl caffeate), brown solid: EI-MS m/z: 194.0 [M] + ; 1 H NMR (500 MHz, DMSO-d 6 ): δ 7.54 (d, J = 15.9 Hz, 1 H, H-1 ), 7.17 (d, J = 2.0 Hz, 1 H, H-2), 7.03 (dd, J = 8.2, 2.0 Hz, 1 H, H-6), 6.87 (d, J = 8.2 Hz, 1 H, H-5), 6.29 (d, J = 15.9 Hz, 1 H, H-2 ), 3.73 (s, 3 H, -OMe); 13 C NMR (125 MHz, DMSO-d 6 ): δ 168.01 (CO), 149.00 (C-4), ), 146.49 (C-3), 145.90 (C-1 ), 127.52 (C-1), 122.60 (C-6), 116.39 (C-5), 115.26 (C-2), 115.11 (C-2 ), 51.60 (- OMe). 21

S29: (a) 13 C, (b) DEPT 135 and (c) DEPT 90 NMR (acetone-d 6, 125 MHz) spectra of compound 10 (methyl caffeate) 22

O OH 2 3 1 4 OH 6 5 S30: (a) 1 H, (b) 13 C and (c) DEPT 90 NMR (acetone-d 6, 500/125 MHz) spectra of compound 11 (4-hydroxybenzaoic acid) Compound 11 (4-hydroxybenzaoic acid), brown solid: -ESI-MS m/z: 137.0 [M H] ; 1 H NMR (500 MHz, acetone-d 6 ): δ 7.91 (d, J = 8.7 Hz, 2 H, H-2, 6), 6.91 (d, J = 8.7 Hz, 2 H, H-3, 5); 13 C NMR (125 MHz, DMSO-d 6 ): δ 167.87 (CO), 162.80 (C-4), 132.87 (C-2, 6), 122.90 (C-1), 116.10 (C-3, 5). 23

S31: Inhibition effect at various concentrations of extracts and standards (trolox, gallic acid and ascorbic acid) on DPPH radical. S32: Inhibition effect at various concentrations of extracts and standards (trolox, gallic acid and luteolin) on ABTS radical. 24

Table S33: Correlation (Pearson s correlation coefficients). Extract TFC (QE) DPPH (IC 50 ) ABTS (TEAC) ABTS (IC 50 ) FRAP (TE) TPC (GAE) 0.785-0.785 0.935-0.769 0.839 TFC (QE) -0.677 0.915-0.638 0.986 DPPH (IC 50 ) -0.81 0.982-0.74 ABTS (TEAC) -0.788 0.953 ABTS (IC 50 ) -0.701 Correlation is significant at the 0.01 level. 25