Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1β Αλληλεπίδραση ακτινοβολίας με την ύλη.

Σχετικά έγγραφα
Κ.Κορδάς. Ανιχνευτές : Μάθημα 2 Αλληλεπίδραση ακτινοβολίας με την ύλη.

Μάθημα 18 Αλληλεπίδραση ακτινοβολίας με την ύλη.

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3: (Ανιχνευτές,) Κινηματική και Μονάδες

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Σκέδαση αδρονίων. Λέκτορας Κώστας Κορδάς

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 2β: Πειράματα-Ανιχνευτές

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 2β Μέτρηση ορμής σωματιδίου

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 2 Αλληλεπίδραση ακτινοβολίας με την ύλη.

Ανιχνευτές Thursday 6 March 14

Μαθηµα 20 Ανιχνευτές

Μαθηµα 20 Ανιχνευτές

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου)

Μαθηµα Tuesday, February 22, 2011

Κ.Κορδάς. Ανιχνευτές : Μάθημα 3 - Μέτρηση ορμής σωματιδίου - Ταυτοπίηση σωματιδίων

Σε περίπου 200 µέρες θα ξεκινήσει το LHC

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 3 Σπινθηριστές και καλοριμετρία - μέτρηση ενέργειας σωματιδίου

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 3 - Μέτρηση ορμής σωματιδίου - Ταυτοπίηση σωματιδίων

Κ.Κορδάς. Ανιχνευτές : Μάθημα 4 Σπινθηριστές και καλοριμετρία - μέτρηση ενέργειας σωματιδίου

dx A β δ: παράμετρος πυκνότητας, πόλωση του μέσου, ενέργεια πλάσματος τι περιμένουμε 1/ 2 πτώση Ένα ελάχιστο: minimum ionizing particle: MIP

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου)

Αλληλεπίδραση των σωματιδίων με την ύλη

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 1γ: Επιταχυντές (α' μέρος) Λέκτορας Κώστας Κορδάς

p T cosθ B Γ. Τσιπολίτης K - + p K - + p p slow high ionisation Κατά τον ιονισμό το εκπεμπόμενο μ e θα έχει κινητική ενέργεια : 0 T T max

Ιατρική Φυσική. Π. Παπαγιάννης Επίκ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο

ΑλληλεπίδρασηΦορτισµένων ΣωµατιδίωνκαιΎλης. ηµήτρηςεµφιετζόγλου Εργ. ΙατρικήςΦυσικής Παν/µιοΙωαννίνων

Φυσικά ή τεχνητά ραδιονουκλίδια

p T cosθ B Γ. Τσιπολίτης K - + p K - + p p slow high ionisation Κατά τον ιονισμό το εκπεμπόμενο μ e θα έχει κινητική ενέργεια : 0 T T max

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Μιόνιο μ ±. Mass m = ± MeV Mean life τ = ( ± ) 10 6 s τμ+/τ μ = ± cτ = 658.

Αλληλεπίδρασηφορτισµένων σωµατιδίωνµετηνύληκαιεφαρµογές

ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΤΗΝ ΥΛΗ

Άσκηση ATLAS Z path Τι θα μετρήσουμε σήμερα και πώς

P = E /c. p γ = E /c. (p) 2 = (p γ ) 2 + (p ) 2-2 p γ p cosθ E γ. (pc) (E γ ) (E ) 2E γ E cosθ E m c Eγ

# αλλ/σεων με e # αλλ/σεων με πυρήνες

3. ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΑΚΤΙΝΟΒΟΛΙΑΣ KAI ΥΛΗ

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Μάθημα 4 Mέγεθος πυρήνα

Theory Greek (Cyprus) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 μονάδες)

the total number of electrons passing through the lamp.

Ανιχνευτές σωματιδίων

δ-ray με κινητική ενέργεια T e και ορμή p e παράγεται σε μια γωνία Θ q, p

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Εισαγωγη στους ανιχνευτες σωματιδιων στο CERN

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Πυρηνικές Αντιδράσεις

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Μέγεθος, πυκνότητα και σχήμα των πυρήνων. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

3/6/2010. Γ. Τσιπολίτης

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 5: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi. Λέκτορας Κώστας Κορδάς

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Εισαγωγη στους ανιχνευτες σωματιδιων στο CERN

( E σε GeV) m m. E E mc E E. m c

Σκοπός της εργαστηριακής αυτής άσκησης είναι η μελέτη της εμβέλειας των σωματίων α στην ύλη.

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 15/2/2011

+ E=mc 2! Οι επιταχυντές επιλύουν δυο προβλήματα :

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου)

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3β: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi

Μάθημα 4 Mέγεθος πυρήνα

Διάσπαση σωµατιδίων. = m C 2 + p 2 = m C 2 + E B 2! m B E C = (E B = (E C. p B. , p), p C. ,- p) = (m A , 0) p A = E B. + m C 2 + E B 2! m B.

Μαθηµα Φεβρουαρίου 2011 Tuesday, February 22, 2011

Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή

Questions on Particle Physics

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

Αναζητώντας παράξενα σωµατίδια στο ALICE

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

ΕΡΓΑΣΤΗΡΙΟ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΙΙ

CERN-ACC-SLIDES

Calculating the propagation delay of coaxial cable

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 24/4/2007

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα

Ο ανιχνευτής «βλέπει» χιλιάδες τροχιές. Χριστίνα Κουρκουμέλη Παν/μιο Αθηνών

Homework 3 Solutions

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi

Cosmotron. Το COSMOTRON ενέργειας 3 GeV ήταν το πρώτο σύγχροτρο πρωτονίων που τέθηκε σε λειτουργία το 1952.

[1] P Q. Fig. 3.1

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Οι ανιχνευτες στο LHC (απο αλλο ματι...) Ανδρομάχη Τσίρου, CERN Μετεκπαιδευση Ελληνων καθηγητων, CERN

Q2-1. Πού βρίσκεται το νετρίνο; (10 μονάδες) Theory. Μέρος A. Η Φυσική του Ανιχνευτή ATLAS (4.0 μονάδες) Greek (Greece)

Πειραµατική Θεµελίωση της Φυσικής Στοιχειωδών Σωµατιδίων

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16

Ανακλώμενο ηλεκτρόνιο KE = E γ - E γ = E mc 2

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Ενεργειακή Κατανοµή. Ατοµική σύνθεση. Γ.Βούλγαρης

Areas and Lengths in Polar Coordinates

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 3a: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi

Nuclear Physics 5. Name: Date: 8 (1)

Αναζητώντας παράξενα σωματίδια στο A LargeIonColliderExperimnent. MasterClasses : Μαθήματα στοιχειωδών σωματιδίων

Ιατρική Φυσική. Π. Παπαγιάννης Επίκ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο

Πειραµατική Θεµελείωση της Φυσικής

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Σχετικιστική Κινηματική

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Homework 8 Model Solution Section

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Transcript:

Επταχθντές - Ανιχνευτές Δ. Σαμψωνίδης & Κ.Κορδάς Ανιχνευτές : Μάθημα 1β Αλληλεπίδραση ακτινοβολίας με την ύλη. Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Επιταχυντές & Ανιχνευτές 8ου εξαμήνου, Α.Π.Θ, 7 Απριλίου 2016

Τι θα συζητήσουμε Αλληλεπίδραση ακτινοβολίας/σωματιδίων με την ύλη Μέτρηση ορμής και ενέργειας σωματιδίων Ταυτοποίηση σωματιδίων 2

Φυσική Στοιχειωδών Σωματιδίων Πολύπλοκα πειράματα Συνέργεια πολλών: Δέσμες σωματιδίων Επιταχυντές δεσμών Σωματιδίων Ανιχνευτές Ηλεκτρονικά Ανιχνευτική Διάταξη Υπολογιστές Συλλογή Δεδομένων Πειράματα στο CERN: πειράματα στο LEP: Ανάλυση Δεδομένων > 300 άτομα πειράματα στο LHC: > 2000 άτομα (φυσικοί, μηχανικοί, τεχνικοί) Φυσική - Νέα Γνώση 3

Για να μάθουμε κάτι από τις συγκρούσεις που παρέχει ο επιταχυντής, Χρειαζόμαστε Ανιχνευτές Σκοπός: - Να μετρήσουμε την ενέργεια και την ορμή των σωματιδίων που παράγονται στις συγκρούσεις - Να ταυτοποιήσουμε το είδος των σωματιδίων Αλλα πώς; 4

1. Αλληλεπίδραση σωματιδίων με την ύλη: de/dx κλπ 5

Για να υπολογίσουμε την απώλεια ενέργειας ανά μονάδα απόστασης (de/dx, σε MeV/cm), πρέπει να πολλαπλασιάσουμε το 1/ρ de/dx (σε MeV cm2/g) με την πυκνότητα ρ του υλικού. 1/ρ de/dx Φορτισμένο σωματιδίο χάνει ένεργεια διαπερνώντας την ύλη: specific Energy Loss (1/ρ de/dx) βγ Ένα σωματίδιο διασχίζει ένα υλικό με πυκνότητα ρ. Ανάλογα με την ορμή του, το σωματίδιο χάνει ενέργεια και με διαφορετικό μηχανισμό. Π.χ., στην περιοχή βγ=[0.1 1000] (περιοχή Bethe-Bloch) έχουμε απώλειες με ιονισμό του υλικού. Από εκεί και πάνω, η απώλεια ενέργειας είναι κυρίως λόγω εκπομπής φωτονίων (δηλ., με radiation = Bremsstahlung) 6

Απώλεια ενέργειας με ιονισμό και διέγερση του υλικού (Bethe-Bloch) Bethe Bloch Formula Z1e = φορτίο προσπίπτοντος σωματιδίου β=η ταχύτητά του ρ,ζ,α = πυκνότητα κλπ του ανιχνευτή Π.χ., Φορτισμένα σωματίδια (από κοσμική ακτινοβολία) διαπερνούν υλικό πυκνότητας ρ. Η απώλεια ενέργειάς του είναι μεγαλύτερη, όσο περισσότερο φορτίο έχει το σωματίδιο: de/dx ~ Z12 7

Απώλεια ενέργειας με ιονισμό και διέγερση του υλικού (Bethe-Bloch) Bethe Bloch Formula Z1e = φορτίο προσπίπτοντος σωματιδίου β=η ταχύτητά του ρ,ζ,α = πυκνότητα κλπ. του ανιχνευτή first decreases as 1/ 2 increases with ln for =1 is independent of M (M>>me) is proportional to Z12 of the incoming particle. is independent of the material (Z/A const) shows a plateau at large (>>100) de/dx 1-2 * ρ [g/cm3] MeV/cm 1/ρ de/dx The specific Energy Loss 1/ρ de/dx βγ=p/mc Προσεγγιστικά: 8

π.χ. Μιόνιο διαπερνά σίδερο - απώλεια ενέργειας (Energy Loss) Bethe Bloch Formula, a few Numbers: a minimum ionizing particle (MIP) Παράδειγμα : Σίδερο: πάχος = 100 cm; ρ = 7.87 g/cm3 de 1.4 * 100* 7.87 = 1102 MeV 1/ Σημειώστε ότι για Z 0.5 A: 1/ de/dx 1.4 MeV cm 2/g, όταν βγ 3 (minimum ionizing) A 1.15 GeV Muon can traverse 1m of Iron! Για να υπολογίσουμε την απώλεια ενέργειας ανά μονάδα απόστασης (de/dx, σε MeV/cm), πρέπει να πολλαπλασιάσουμε το 1/ρ de/dx (σε MeV cm2/g) με την πυκνότητα ρ του υλικού. 9

Particle identification from energy loss Energy loss depends on the particle velocity and is independent of the particle s mass M. The energy loss as a function of particle momentum P= Mcβγ IS however depending on the particle s mass By measuring the particle momentum (deflection in the magnetic field) and measurement of the energy loss one can measure the particle mass Particle Identification! 10

Particle identification from energy loss Measure momentum by curvature of the particle track. Find de/dx by measuring the deposited charge along the track. Particle Identification ( particle ID ) 11

Σωμάτια σταματούν απόσταση(range) Particle of mass M and kinetic Energy E0 enters matter and looses energy until it comes to rest at distance R (=range of particle). 12

Σωμάτια σταματούν απόσταση(range) Particle of mass M and kinetic Energy E0 enters matter and looses energy until it comes to rest at distance R (=range of particle). Bragg Peak: For >3 the energy loss is constant (Fermi Plateau) As the energy of the particle falls, below =3, the energy loss rises as 1/ 2 Towards the end of the track the energy loss is largest Cancer Therapy 13

Χωρική κατανομή εναπόθεσης της ενέργειας Average Range: Towards the end of the track the energy loss is largest Bragg Peak Cancer Therapy Photons 25MeV Carbon Ions 330MeV Relative Dose (%) Εναπόθεση της ενέργειας της ακτινοβολίας/σωματιδίων με ακρίβεια στην παθογενή περιοχή Cobalt 60 γ γ (~1 MeV each) Electrons 21 MeV Depth of Water (cm) 14

Ηλεκτρόνια και φωτόνια σε πυκνή ύλη - EM shower Pair production (δίδυμη γένεση) Bremsstahlung X0 = radiation length = average distance a high energy electron has to travel before reducing it s energy from E0 to E0//e by photon radiation. 15

Ηλεκτρόνια/φωτόνια μπορείς έυκολα να τα σταματήσεις Critical Energy (κριτική ενέργεια): όταν de/dx (Ionization) = de/dx (Bremsstrahlung) For the muon (the second lightest particle after the electron) the critical energy is at 400GeV. Για ηλεκτρόνια: Electron Momentum 5 50 500 MeV/c - Muon in Copper: σε p 400GeV φτάνει κριτική ενέργεια - Electron in Copper: σε p 20MeV φτάνει κριτική ενέργεια The EM Bremsstrahlung is therefore only relevant for electrons (at the energies of the past and present Detectors) μόνο τα ηλεκτρόνια κάνουν ΕΜ shower 16

Καλοριμετρία Stopping particles Let us have a look at interaction of different particles with the same high energy (here 300 GeV) in a big block of iron: 1m electron The energetic electron radiates photons which convert to electron-positron pairs which again radiate photons which... This is the electromagnetic shower. The energetic muon causes mostly just the ionization... muon pion (or another hadron) Electrons and pions with their children are almost completely absorbed in the sufficiently large iron block. The strongly interacting pion collides with an iron nucleus, creates several new particles which interact again with iron nuclei, create some new particles... This is the hadronic shower. You can also see some muons from hadronic decays. 17

Καλοριμετρία ακρίβεια μέτρησης ενέργειας Όσο μεγαλύτερη η ενέργεια του προσπίπτοντος σωματιδίου τόσο περισσότερα σωματίδια παράγονται στο shower τόσο περισσότερες μετρήσεις έχουμε για το shower τόσο καλύτερη μέτρηση της ενέργειας έχουμε σ(ε)/ε ~ 1/sqrt(Ε). Π.χ., σ(ε)/ε = 10% / sqrt(ε) +quad 2% Δηλαδή: αντίθετα με τη μέτρηση της ορμής, η μέτρηση της ενέργειας στον καλορίμετρο γίνεται όλο και πιο ακριβής όσο μεγαλώνει η ενέργεια του μετρούμενου σωματιδίου! σ(ε)/ε (%) Calorimtery: σ(e)/e = 10%/sqrt(E) +quad 2% Tracking: σ(p)/p = 1% * p Ε (GeV) Από κάποια ενέργεια ηλεκτρονίων και πάνω, η μέτρηση ενέργειας από τον καλορίμετρο είναι πολύ καλύτερη απο του tracker 18

Cerenkov (από Τ. Λιόλιο) (1/4) 19

Cerenkov (2/4): εκπομπή όταν ταχύτητα > όριο Cerenkov 20

Cerenkov (3/4): γωνία εκπομπής μέτρηση ταχύτητας 21

Cerenkov (4/4) 22

Μεση ελεύθερη διαδρομή και Μultiple scattering Για συγκεκριμένη ενέργεια σωματιδίου, όπως στο σχήμα: το βαρύτερο σωματίδιο έχει πολύ μικρότερη ταχύτητα πολύ μεγαλύτερο de/dx πολύ μικρότερη μέση ελεύθερη διαδρομή. Επίσης, όπως φαίνεται στο σχήμα, το βαρύτερο σωματίδιο δεν αλλάζει κατεύθυνση εύκολα προχωρώντας μέσα στο υλικο. 23

Μultiple scattering Θ : γωνία στον τρισδιάστατο χώρο Απόκλιση από την αδιατάρακτη τροχιά του: - αντιστρόφως ανάλογη της ορμής του - ανάλογη με την τετραγωνική ρίζα του πόσα radiation lenthgs διασχίζει Θp : γωνία σε ένα επίπεδο (δύο διαστάσεις) που περιέχει την τροχιά του σωματιδίου 24