Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Σχετικά έγγραφα
Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Επαναληπτικές Ασκήσεις Εργαστηρίου Κυκλωµάτων και Μετρήσεων ΗΜΥ 203

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ203 Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Επαναληπτικές Ασκήσεις Εργαστηρίου Κυκλωμάτων και Μετρήσεων ΗΜΥ 203

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Επαναληπτικές Ασκήσεις Εργαστηρίου Κυκλωμάτων και Μετρήσεων ΗΜΥ 203

Εργαστήριο Κυκλωμάτων και Μετρήσεων

Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Παρουσιάσεις στο ΗΜΥ203, 2015

2η Εργαστηριακή Άσκηση: ιαγράµµατα Bode και εφαρµογή θεωρήµατος Thevenin

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ

Πανεπιστήμιο Θεσσαλίας

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση

ΑΣΚΗΣΗ 6. Μελέτη συντονισμού σε κύκλωμα R,L,C, σειράς

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

ΑΣΚΗΣΗ 208 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ U U (3)

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

ΑΣΚΗΣΗ 2 η : ΟΡΓΑΝΑ ΚΑΙ ΣΥΣΚΕΥΕΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ

Εργαστήριο Κυκλωµάτων και Μετρήσεων ΗΜΥ203

ΗΜΜΥ 203 Εργαστήριο Κυκλωμάτων και Μετρήσεων. Τελική Εξέταση Πέμπτη 7/12/2006, Α και

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

«Εργαστήριο σε Θέματα Ηλεκτρικών Μετρήσεων»

ΑΣΚΗΣΗ-3: Διαφορά φάσης

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

ΗΜΜΥ 203 Εργαστήριο Κυκλωμάτων και Μετρήσεων Εβδομαδιαία Εξέταση 5 Τετάρτη

Τµήµα Βιοµηχανικής Πληροφορικής Σηµειώσεις Ηλεκτρονικών Ισχύος Παράρτηµα

ΗΜΥ203 Εργαστήριο Κυκλωμάτων και Μετρήσεων

Το διπολικό τρανζίστορ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΗΜΜΥ 203 Εργαστήριο Κυκλωμάτων και Μετρήσεων. Τελική Εξέταση Παρασκευή 8/12/2006, Α και

ΑΣΚΗΣΗ-3: ΣΧΗΜΑΤΑ LISSAJOUS

και συνδέει τον αριθμό των σπειρών του πρωτεύοντος και του

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εισαγωγή στην Τεχνολογία

ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ R-C ΚΥΚΛΩΜΑΤΩΝ. Η θεωρία της άσκησης καλύπτεται από το βιβλίο του Εργαστηρίου. ( j

ΗΜΥ203 Εργαστήριο Κυκλωµάτων και Μετρήσεων

Ηλεκτρικές Ταλαντώσεις: Εξαναγκασμένη Ηλεκτρική Ταλάντωση

Το εξεταστικό δοκίµιο µαζί µε το τυπολόγιο αποτελείται από εννιά (9) σελίδες. Τα µέρη του εξεταστικού δοκιµίου είναι τρία (Α, Β και Γ ).

ΜΕΡΟΣ Α: Απαραίτητες γνώσεις

dv C Στον πυκνωτή η ένταση προηγείται της τάσης ενώ στο πηνίο η ένταση υστερεί της τάσης.

5. Τροφοδοτικά - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Ανορθωµένη τάση Εξοµαλυµένη τάση Σταθεροποιηµένη τάση. Σχηµατικό διάγραµµα τροφοδοτικού

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΑΣΚΗΣΗ 2 Συντονισμός RLC σε σειρά

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΑΚΕΛΛΑΡΗ ΔΕΣΠΟΙΝΑ ΦΥΣΙΚΟΣ- M.SC.

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΑΣΚΗΣΗ 8 ΧΡΗΣΗ ΤΟΥ ΠΑΛΜΟΓΡΑΦΟΥ ΣΕ ΚΥΚΛΩΜΑ ΕΝΑΛΛΑΣΣΟΜΕΝΗΣ ΤΑΣΗΣ (AC)

3 η ΕΝΟΤΗΤΑ. Το διπολικό τρανζίστορ

ΕΠΙΛΥΣΗ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ Κ-ΙΙ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΗΛΕΚΤΡΟΛΟΓΙΑ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α

ΚΕΦΑΛΑΙΟ 5 Ο : ΣΥΝΤΟΝΙΣΜΟΣ ΑΠΛΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

3. Κύκλωμα R-L σειράς έχει R=10Ω, L=10mH και διαρρέεται από ρεύμα i = 10 2ηµ

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

m e j ω t } ja m sinωt A m cosωt

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΗΜΜΥ 203 Εργαστήριο Κυκλωμάτων και Μετρήσεων

ΗΜΜΥ 203 Εργαστήριο Κυκλωμάτων και Μετρήσεων. Τελική Εξέταση Α μ.μ. και μ.μ.

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ

ΜΕΡΟΣ Α: Απαραίτητε γνώσει

ΠΑΝΕΚΦE ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΥΠΕΥΘΥΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΚΕΝΤΡΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

ΗΜΜΥ 203 Εργαστήριο Κυκλωμάτων και Μετρήσεων Εβδομαδιαία Εξέταση 4 Τετάρτη 31/10/2007

Ανάλυση και υλοποίηση ταλαντωτή τύπου Colpitts

2012 : (307) : , :

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Μηχανικών Πληροφορικής

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 2010 ΕΚΦΩΝΗΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

ΗΧΗΤΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ

Ειδικά Θέματα Ηλεκτρονικών 1

Transcript:

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 9 Κυκλώµατα RLC, Σταθερή Ηµιτονοειδής Κατάσταση και ιόρθωση Συντελεστή Ισχύος (Power Factor) Λευκωσία, 2014

Εργαστήριο 9 Κυκλώµατα RLC και Σταθερή Ηµιτονοειδής Κατάσταση Σκοπός: Σκοπός του εργαστηρίου αυτού είναι Να εξεταστεί η ηµιτονοειδή απόκριση σταθερής κατάστασης ενός κυκλώµατος συντονισµού. Να υπολογιστεί και να µετρηθεί η συχνότητα συντονισµού σε ένα κύκλωµα RLC σειράς Να µετρηθούν και να σχεδιαστούν οι τάσεων και τα ρεύµατα σε συνάρτηση µε τη συχνότητα για ένα κύκλωµα συντονισµού σειράς. Να αποδειχθεί πειραµατικά ότι η σύνθετη αντίσταση εισαγωγής (input) είναι ελάχιστη στη συχνότητα συντονισµού. Να επαληθευτεί η σχέση µεταξύ του συντελεστή ποιότητας (Q) του κυκλώµατος και του εύρους ζώνης (bandwidth). Να µετρηθεί το µέτρο και η φάση τάσεων και ρευµάτων σε εναλλασσόµενα κυκλώµατα. Να υπολογιστεί ο συντελεστής ισχύος (power factor) ενός δεδοµένου φορτίου και στη συνέχεια να διορθωθεί. Εργαστηριακός Εξοπλισµός Παλµογράφος (Oscilloscope) Γεννήτρια Συναρτήσεων (Function Generator) Πολύµετρο (DMM Multimeter) Μετρητής LRC Πλακέτα Κατασκευής Κυκλωµάτων (Breadboard) Σετ καλωδίων Αντιστάσεις Πυκνωτές Πηνία 2

Σταθερή Ηµιτονοειδής Κατάσταση Θεωρία Στη σταθερή ηµιτονοειδή κατάσταση, η σύνθετη αντίσταση των τριών βασικών στοιχείων κυκλωµάτων σε συνάρτηση µε τη συχνότητα είναι: Z R = R (1) Z = R + jωl (2) L L Z C = 1 jωc (3) Σε εκθετικά κυκλώµατα υπάρχει µια διαφορά φάσης µεταξύ τάσης και ρεύµατος η οποία καθορίζεται ως θ(ω) = TV(ω) = Vout - Vin. όπου T V(jω) =V out(jω)/v in(jω) Κυκλώµατα Συντονισµού RLC Σε ένα κύκλωµα RLC σειράς, όπως πιο κάτω, υπάρχει µόνο µια συχνότητα όπου το µέτρο (magnitude) της σύνθετης αντίστασης του πηνίου είναι ίσο µε το µέτρο της σύνθετης αντίστασης του πυκνωτή. Σε αυτήν τη συχνότητα jx L = jx ή C RL + jωl = 1 jωc R L Vs C Αυτή η συχνότητα ονοµάζεται συχνότητα συντονισµού (resonant frequency) του κυκλώµατος και η τάση εισαγωγής και το ρεύµα βρίσκονται στην ίδια φάση. Η σύνθετη αντίσταση του κυκλώµατος είναι πραγµατική (real - resistive) αφού οι σύνθετες αντιστάσεις του πηνίου και του πυκνωτή αλληλοεξουδετερώνονται. Αυτό επίσης συνεπάγεται ότι σε συντονισµό το κύκλωµα έχει την ελάχιστη σύνθετη αντίσταση και το µέγιστο ρεύµα. Η συχνότητα συντονισµού ωo είναι 1 LC ω 0 = ή f0 1 = 2π LC Ακόµα ένα χαρακτηριστικό του κυκλώµατος είναι το εύρος ζώνης ω (bandwidth) του κυκλώµατος που ορίζεται ως η διαφορά στις συχνότητες µισής ισχύος (half-power frequencies). Οι συχνότητες µισής ισχύος ορίζονται ως οι συχνότητες όπου η ισχύς είναι η µισή της ισχύς στη συχνότητα συντονισµού. Μια και η ισχύς είναι ανάλογη των V 2 ή I 2 τότε µπορούµε να καθορίσουµε το εύρος ως τη διαφορά όπου η τάση ή το ρεύµα είναι στο 1/ 2 =0.707 της µέγιστης του τιµής. Το εύρος είναι ίσο µε ω = R L 3

Το εύρος ζώνης φαίνεται και στο πιο κάτω σχήµα. I I o 0.707I o ω 1 ω 0 ω 2 ω Το κύκλωµα επίσης έχει και ένα Q (συντελεστής ποιότητας Quality Factor) το οποίο ορίζεται σαν 0 0 0L Q = ω ω ω 2ζ = ω = R Οι τάσεις των τριών στοιχείων στο κύκλωµα σε συνάρτηση µε τη συχνότητα, παρουσιάζουν τα εξής χαρακτηριστικά: Η τάση στα άκρα της αντίστασης έχει την ίδια µορφή µε το ρεύµα µε τη µέγιστη τιµή να εµφανίζεται στη συχνότητα συντονισµού (δεδοµένου ότι ο νόµος του Ohm ισχύει). Οι τάσεις στα άκρα του πυκνωτή και του πηνίου είναι ίσες κατά το συντονισµό αλλά καµία δεν είναι µέγιστη στη συχνότητα συντονισµού. ω 0 Η τάση της αντίστασης σε συνάρτηση µε τη συχνότητα. ω 0 Η τάση του πηνίου σε συνάρτηση µε τη συχνότητα. ω 0 Η τάση του πυκνωτή σε συνάρτηση µε τη συχνότητα. 4

Ο λόγος απόσβεσης ενός κυκλώµατος περιγράφει τον τρόπο µε τον οποίο το κύκλωµα θα φτάσει στη σταθερή του κατάσταση. Ο λόγος απόσβεσης είναι R ω ζ = = 2L 2 Υπεραπόσβεση (Over damping) Κρίσιµη απόσβεση (Critical damping) Υποαπόσβεση (Under-damping) 5

Σχήµατα Lissajous στον παλµογράφο Το σχήµα Lissajous µπορεί να χρησιµοποιηθεί στη µέτρηση της γωνιάς φάσης µεταξύ δύο ηµιτονοειδών σηµάτων της ίδιας συχνότητας. Σχήµα Lissajous Για να δείτε ένα σχήµα Lissajous: a. Ρυθµίστε τον παλµογράφο σε X-Y mode. Από το Horizontal Menu επιλέξετε ΧΥ (F5). b. Ενώστε την τάση V in στο X channel του παλµογράφου, και την τάση V out στο Y channel. c. Ρυθµίστε τα VOLTS/DIV στο X και Y channels ούτως ώστε το σχήµα Lissajous να είναι όσο πιο µεγάλο γίνεται, αλλά να φαίνεται ολόκληρο στον παλµογράφο. Σε συχνότητες εκτός συντονισµού παίρνουµε κάτι παρόµοιο µε το πιο πάνω σχήµα. d. Ελέγξτε ότι το σχήµα Lissajous είναι ακριβώς στο κέντρο της οθόνης. Εάν όχι να µετατοπιστεί για να έρθει στο κέντρο. e. Μετρήστε τις αποστάσεις A και B στο σχήµα χρησιµοποιώντας τους ενδείκτες (cursors). Η απόσταση A είναι η απόσταση µεταξύ των δύο τοµών του σχήµατος Lissajous µε τον άξονα Y. Η B είναι η κάθετη απόσταση µεταξύ του επάνω και κάτω µέρους του σχήµατος. f. Η γωνιά φάσης υπολογίζεται από την πιο κάτω εξίσωση: θ = A sin 1 ( ) B g. Στη συχνότητα συντονισµού, η γωνία θ είναι 0 και άρα το σχήµα είναι µια διαγώνιος γραµµή, αφού το Α είναι επίσης 0. Το πρόσηµο της γωνιάς φάσης δεν µπορεί να βρεθεί από το σχήµα Lissajous. Για να βρεθεί το πρόσηµο της θ, ρυθµίστε τον παλµογράφο σε time-base (MAIN-F1) (όχι X-Y), και προσδιορίστε εάν το κύµα εξόδου οδηγεί (leads) ή ακολουθεί (lags) το σήµα εισόδου. a. Εντοπίστε το σηµείο που το σήµα εισόδου διασχίζει το 0 µε θετική κατεύθυνση και το κοντινότερο σηµείο που το σήµα εξόδου διασχίζει το 0. b. Εάν το σηµείο όπου το σήµα εξόδου διασχίζει τον άξονα είναι µετά από το σήµα εισόδου, όπως στο πιο κάτω σχήµα, τότε το σήµα εξόδου ακολουθεί (lags) και η γωνιά θ είναι αρνητική. 6

c. Εάν το σηµείο όπου το σήµα εξόδου διασχίζει τον άξονα είναι πριν από το σήµα εισόδου τότε το σήµα εξόδου οδηγεί (leads) και η γωνιά θ είναι θετική. Σε συντονισµό, η µιγαδική αντίσταση είναι 0 και η σύνθετη αντίσταση είναι πραγµατική (real and resistive). εδοµένου ότι το φανταστικό µέρος της σύνθετης αντίστασης είναι µηδέν, Im{T V (jω)} = 0, η γωνιά φάσης θ = 0. Όλες οι συχνότητες πιο πάνω από το συντονισµό έχουν το ίδιο πρόσηµο, και οι συχνότητες κάτω από το σηµείο συντονισµού έχουν το αντίθετο πρόσηµο. Πειραµατική Εργασία Εργαστηριακή Άσκηση 9.1 Σταθερή Ηµιτονοειδής Κατάσταση Στόχοι Υπολογισµός και µέτρηση της συχνότητας συντονισµού σε ένα κύκλωµα RLC σε σειρά Μέτρηση και σχεδιασµός των τάσεων και των ρευµάτων σε συνάρτηση µε τη συχνότητα για ένα κύκλωµα συντονισµού σειράς. Να αποδειχθεί πειραµατικά ότι η σύνθετη αντίσταση εισαγωγής (input) είναι ελάχιστη στη συχνότητα συντονισµού. Να επαληθευτεί η σχέση µεταξύ του Q του κυκλώµατος και του εύρους ζώνης (bandwidth). ιαδικασία 1. Σχεδιάστε ένα κύκλωµα συντονισµού σειράς (RLC), παρόµοιο µε αυτό στο σχήµα 9.1, το οποίο να πληροί τις πιο κάτω προϋποθέσεις: F 0 = 80-90kHz, F = 10kHz και µέγιστο ρεύµα 1mA όταν αυτό συνδεθεί σε ηµιτονοειδή τάση µε Vp-p = 6V Vs R Σχήµα 9.1: Κύκλωµα RLC σειράς 7

......... 2. Μετρήστε τις πραγµατικές τιµές των στοιχείων που θα χρησιµοποιήσετε και υπολογίστε ξανά τα f 0, I F0, F, και Q. (Αν χρησιµοποιήσετε περισσότερα στοιχεία R, L, C, δηλώστε τη συνολική τιµή µαζί µε τις πράξεις υπολογισµού) R = L = C = 3. Κατασκευάστε το κύκλωµα µε τα στοιχεία που έχετε επιλέξει και βρείτε πειραµατικά τη συχνότητα συντονισµού, το εύρος (-3dB) καθώς και το µέγιστο ρεύµα (rms) που µπορεί να διαπεράσει το κύκλωµα. Συµπληρώστε επίσης τον πίνακα 9.1 µε τις µετρηµένες τιµές της τάσης εξόδου (V R) και του ολικού ρεύµατος για την κάθε συχνότητα. Στη συνέχεια, δηµιουργήστε την καµπύλη απόκρισης του κυκλώµατος (τόσο για τον λόγο V out/v in σε db, όσο και για το ρεύµα) µε λογαριθµική κλίµακα στον άξονα της συχνότητας. Όσο αφορά στις γραφικές παραστάσεις χρησιµοποιήστε συνεχόµενη γραµµή για να σχεδιάσετε τις πειραµατικές τιµές και διακεκοµµένη γραµµή για τις θεωρητικές τιµές. Βοήθεια! Ενώστε τον παλµογράφο έτσι ώστε να βλέπετε το σχήµα Lissajous από τα V in και V R. Βρείτε τη συχνότητα συντονισµού f 0 αλλάζοντας τη συχνότητα µέχρι το σχήµα Lissajous να γίνει µια διαγώνια γραµµή. Καταγράψτε τη συχνότητα της γεννήτριας συναρτήσεων και τη γωνιά φάσης σε συντονισµό. f 0 = θ = Μετρήστε την τάση εξόδου (στα άκρα της αντίστασης) καθώς και το ρεύµα στο κύκλωµα µεταξύ της αντίστασης και της γείωσης στη συχνότητα συντονισµού. V F0 = I F0 = 8

Για κάθε µια από τις συχνότητες του πίνακα a. Με τη βοήθεια του σχήµατος Lissajous, βρείτε τη γωνιά φάσης θ, µεταξύ V in και V out. b. Ρυθµίστε τον παλµογράφο να δείχνει V in και V out (time-base όχι X-Y) και καταγράψτε τις τιµές peak-to-peak της V in και V out. c. Καταγράψετε το πρόσηµο της γωνίας φάσης για συχνότητες πάνω και κάτω από τη συχνότητα συντονισµού και συµπληρώστε και το πρόσηµο της γωνίας φάσης στον πίνακα 9.1. Προσοχή! Οι ρυθµίσεις V/Div πρέπει να είναι ίδιες και για τα δύο κανάλια στο X-Y mode. F 1= F 0= F 2= Πρόσηµο για f < f 0 = Πρόσηµο για f > f 0 = Πίνακας 9.1 Συχνότητα V in (rms) V out = V R (rms) I R (rms) Γωνία Φάσης θ 50 Hz 100 Hz 200 HZ 500 Hz 1 khz 2 khz 5 khz 10 khz 20 khz 50 khz 150 khz 250 khz 500 khz 4. Στη συχνότητα συντονισµού, τα Vin και Vout µπορεί να µην είναι ακριβώς ίσα. Γιατί;.... 9

5. Υπολογίστε τον συντελεστή ποιότητας Q στο κύκλωµα βάσει των µετρηµένων F 0 και F αλλά και βάσει των µετρηµένων τιµών (R, L και F 0) του κυκλώµατος και σχολιάστε τη διαφορά που προκύπτει από τους δύο υπολογισµούς..... Βασικός Κώδικας MATLAB για γραφικές παραστάσεις Χ-Υ Χ = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10]; % ήλωση τιµών Χ Υ = [20, 23, 35, 43, 48, 52, 56, 59, 62, 70]; % ήλωση τιµών Υ Plot (X, Y); % γραφική παράσταση Χ-Υ semilogx(x,y); % γραφική παράσταση log(χ) - Υ semilogy(x,y) % γραφική παράσταση X - log(υ) Συγκεντρωτικά Αποτελέσµατα Κυκλώµατος RLC (από µετρήσεις) 6. Ποια είναι τα πραγµατικά χαρακτηριστικά του κυκλώµατος; f 0 = f = Q = I rms MAX = 7. Σχολιάστε τα αποτελέσµατά σας σε σχέση µε τον αρχικό σχεδιασµό του κυκλώµατος. Τι παρατηρείτε;............. 8. Περιγράψτε πώς η σύνθετη αντίσταση εισαγωγής ενός κυκλώµατος συντονισµού σειράς αλλάζει µε τη συχνότητα. Ποιο στοιχείο έχει την περισσότερη επίδραση στη σύνθετη αντίσταση στα υψηλά και χαµηλά όρια του φάσµατος συχνότητας;............. 10

9. Από τη γραφική παράσταση, βρείτε τις δύο συχνότητες µισής ισχύς f 1 και f 2 (όπου το I είναι 0.707 της µέγιστης τιµής). Υπολογίστε το εύρος ζώνης BW σε khz....... 10. Σε ποια συχνότητα η V R, είναι µέγιστη? Οι µέγιστες τιµές των V C και V L εµφανίζονται στην ίδια συχνότητα; Εξηγήστε γιατί.......... Εργαστηριακή Άσκηση 9.2 Ανάλυση εναλλασσόµενων κυκλωµάτων Στόχοι Μέτρηση µέτρου και φάσης τάσεων και ρευµάτων σε εναλλασσόµενα κυκλώµατα. Καθορισµός του συντελεστή ισχύος (power factor) ενός δεδοµένου φορτίου και διόρθωση του ιαδικασία 1. Μετρήστε και καταγράψτε τις ακριβείς τιµές της αυτεπαγωγής των πηνίων µε το µετρητή LRC και τις τιµές των αντιστάσεων µε το πολύµετρο. L TR = R TR = L L = R L = 2. Κατασκευάστε το κύκλωµα του σχήµατος 9.2 και ρυθµίστε τη γεννήτρια συναρτήσεων για ένα ηµιτονοειδές σήµα µε συχνότητα 10 khz και πλάτος (amplitude) V S = 5 V (V pp = 10 V). R TR L TR I L 4.7k Ω 10 mh + V S 10 khz 10 V pp + _ 47 mh 4.7k Ω L L V L R L _ Transmission Line Σχήµα 9.2 Load 11

3. Μετρήστε το πλάτος της V S και V L µε τον παλµογράφο. Προτού προχωρήσετε ελέγξτε ότι η τάση που µετρήσατε συµφωνεί µε τον υπολογισµό που κάνατε προηγουµένως. Αν όχι ξαναελέγξετε τις µετρήσεις και τους υπολογισµούς. V S = V L = 4. Μετρήστε τη γωνία φάσης της V L. Αυτή η µετρηµένη γωνία φάσης πρέπει να συµφωνεί µε την υπολογισµένη γωνία φάσης. Βεβαιωθείτε ότι συγκρίνετε αυτά τα µετρηµένα αποτελέσµατα µε τις θεωρητικές τιµές που υπολογίσατε µε τις πραγµατικές τιµές των στοιχείων. V L = 5. Γιατί η γωνία του V L δεν είναι 0; 6. Εκτελέστε τις ίδιες µετρήσεις (το πλάτος και τη φάση), στα άκρα της αντίστασης R L = 4.7 kω του φορτίου. Από αυτές τις µετρήσεις, υπολογίστε το πλάτος και τη γωνία φάσης του ρεύµατος I L σε αυτό το κύκλωµα σειράς. R L = V RL = V RL = Ι L = Ι L = 7. Τι παρατηρείτε για τη γωνία του Ι L; ιόρθωση του συντελεστή ισχύος - Power factor correction 8. Βρείτε τον πυκνωτή (σε σειρά), µεταξύ των L L και R L, που χρειάζεται για µέγιστη µεταφορά ισχύος. 12

C L = 9. Προσθέστε τον πυκνωτή στο κύκλωµα του σχήµατος 9.2. 10. Βρείτε το νέο µέτρο και φάση της V L, µετρώντας την τάση στα άκρα του φορτίου και τη γωνία φάσης σε σχέση µε τη V S. V L = V L = 11. Μετρήστε το πλάτος και τη φάση στα άκρα τις αντίστασης R L του φορτίου. Από αυτές τις µετρήσεις, υπολογίστε το πλάτος και τη γωνία φάσης του ρεύµατος I L σε αυτό το κύκλωµα σειράς. R L = V RL = V RL = Ι L = Ι L = 12. Τι παρατηρείτε σχετικά µε την τιµή του πυκνωτή και τη σχέση της µε τα πηνία; Πως συγκρίνονται τα πειραµατικά αποτελέσµατα µε τους υπολογισµούς σας; 13. Τι παρατηρείτε για τη γωνία του Ι L; 13

Επαναληπτικές Ασκήσεις Εργαστηρίου 9 1. Υπολογίστε την συχνότητα συντονισµού, το εύρος ζώνης (µέσης ισχύος) και τον συντελεστή ποιότητας σε ένα κύκλωµα RLC σειράς εάν R=4.7κΩ, L=10mH, RL=10Ω και C=0.1µF. ( είξτε όλους τους υπολογισµούς σας) 2. Τι θα αλλάζατε στο πιο πάνω κύκλωµα (άσκησης 1) για να πετύχετε µόνο το διπλασιασµό του εύρους ζώνης 3. Τι θα αλλάζατε στο πιο πάνω κύκλωµα (άσκησης 1) για να πετύχετε µετατόπιση της συχνότητας συντονισµού κατά 10κΗz προς τα πάνω χωρίς επηρεασµό του εύρους ζώνης; 4. Τι πληροφορία µας δίνει ο συντελεστής ποιότητας (Q) σε ένα κύκλωµα RLC; 5. Τι στοιχείο θα προσθέτατε σε ένα κύκλωµα RLC σειράς και πώς θα το συνδέατε εάν το αρχικό κύκλωµα παρουσιάζει επαγωγική συµπεριφορά και θέλετε να την αλλάξετε σε ωµική; 6. Τι είναι τα σχήµατα Lissajous, πώς συνδέουµε τον παλµογράφο για να τα δούµε και τι πληροφορίες µπορούµε να πάρουµε από αυτά; 7. Αναφέρετε τι θα συµβεί στο ρεύµα που διαρρέει ένα κύκλωµα (RLC σειράς) στη συχνότητα συντονισµού και εξηγήστε γιατί; 8. Γιατί µια ηλεκτρική συσκευή µε χαµηλό συντελεστή ισχύος απαιτεί περισσότερη ηλεκτρική ισχύ σε σχέση µε µια ηλεκτρική συσκευή µε ψηλότερο συντελεστή ισχύος; 9. Περιγράψτε την διαδικασία διόρθωσης του συντελεστή ισχύος µιας ηλεκτρικής συσκευής ( ώστε και ένα παράδειγµα). 10. ιορθώστε τον συντελεστή ισχύος στο πιο κάτω κύκλωµα (θεωρήστε ότι δεν µπορείτε να επέµβετε στη γραµµή µεταφοράς και ότι το πηνίο στο φορτίο είναι ιδανικό). Σχεδιάστε το νέο σας κύκλωµα και δείξτε την τάση εξόδου. VAMPL = 5V FREQ = 50kHz V1 R1 3.8k L1 1 2 1mH, R=10 Ohms L2 1 2 10mH R2 Vout 2.6k Transmission Line Load 11. Ποιο το εύρος τιµών που µπορεί να πάρει ο συντελεστής ισχύος και γιατί; 14