Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης / Ινστιτούτο Τεχνολογίας & Εφαρμογών Στερεών Καυσίμων



Σχετικά έγγραφα
Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης / Ινστιτούτο Τεχνολογίας & Εφαρµογών Στερεών Καυσίµων

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

EU energy policy Strategies for renewable energy sources in Cyprus

Assalamu `alaikum wr. wb.

ΠΟΛΤΣΔΥΝΔΗΟ ΚΡΖΣΖ ΣΜΖΜΑ ΜΖΥΑΝΗΚΧΝ ΟΡΤΚΣΧΝ ΠΟΡΧΝ

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΧΗΜΙΚΑ ΠΡΟΣΘΕΤΑ ΠΟΥ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΤΟ ΝΕΡΟ ΤΟΥ ΑΤΜΟΛΕΒΗΤΑ

ΗΜΟΣΙΑ ΕΠΙΧΕΙΡΗΣΗ ΗΛΕΚΤΡΙΣΜΟΥ Α.Ε. Νίκος Περδικάρης. ιεύθυνση Περιβάλλοντος Παραγωγής

O ρόλος των τεχνολογιών CCS ως τεχνολογική επιλογή αντιµετώπισης της κλιµατικής αλλαγής

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

the total number of electrons passing through the lamp.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Strain gauge and rosettes

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Isotopic and Geochemical Study of Travertine and Hot Springs Occurring Along the Yumoto Fault at North Coast of the Oga Peninsula, Akita Prefecture

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

Démographie spatiale/spatial Demography

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΠΟΙΟΤΗΤΑ ΑΤΜΟΣΦΑΙΡΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Σπουδάστρια Δακανάλη Νικολέτα Α.Μ "Πώς η εξέλιξη της τεχνολογίας επηρεάζει την απόδοση των επιχειρήσεων" ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

A global biofuels outlook: U.S. RIN markets and EU proposals. Gerard Wynn Energy and climate columnist Thomson Reuters

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ

ΔΘΝΗΚΖ ΥΟΛΖ ΓΖΜΟΗΑ ΓΗΟΗΚΖΖ

ΟΙΚΟΝΟΜΟΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ ΕΝΟΣ ΕΝΕΡΓΕΙΑΚΑ ΑΥΤΟΝΟΜΟΥ ΝΗΣΙΟΥ ΜΕ Α.Π.Ε

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

[1] P Q. Fig. 3.1

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΠΟΔΟΣΗΣ ΜΗΧΑΝΩΝ ΕΣΩΤΕΡΙΚΗΣ ΚΑΥΣΗΣ ΜΕ ΧΡΗΣΗ ΒΙΟΚΑΥΣΙΜΩΝ

CH 3 CH 2 COOCH 2 CH 2 CH 3 + H 2 O

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

Capacitors - Capacitance, Charge and Potential Difference

Food production and climate change

ΣΕΝΑΡΙΟ ΑΝΑΦΟΡΑΣ ΣΕΝΑΡΙΟ ΤΩΝ ΜΗΧΑΝΙΚΩΝ ΣΕΝΑΡΙΟ ΣΥΝΕΡΓΑΣΙΑΣ

EE512: Error Control Coding

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Η ΝΟΜΟΘΕΣΙΑ ΤΗΣ Ε.Ε. ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΑΤΜΟΣΦΑΙΡΙΚΗ ΡΥΠΑΝΣΗ ΑΠΟ ΠΛΟΙΑ ΚΑΙ ΟΙ ΠΡΟΚΛΗΣΕΙΣ ΣΤΗΝ ΕΦΑΡΜΟΓΗ ΤΗΣ

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Το μελλοντικό Ευρωπαϊκό Ενεργειακό σύστημα: Υλοποίηση των ενεργειακών στόχων για το 2030

ΣΧΕΔΙΑΣΜΟΣ ΠΑΡΑΒΟΛΙΚΟΥ ΣΥΛΛΕΚΤΗ ΓΙΑ ΠΑΡΑΓΩΓΗ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΒΙΟΜΗΧΑΝΙΕΣ ΠΑΝΑΓΙΩΤΗΣ ΚΤΙΣΤΗΣ

4 th SE European CODE Workshop 10 th 11 th of March 2011, Thessaloniki, Greece

Conductivity Logging for Thermal Spring Well

Biodiesel quality and EN 14214:2012

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Αγγλική Τουριστική Ορολογία

Παρουζίαζη ζηην Ημερίδα ΥΝΕΡΓΕΙΑ 15 Ιανουαρίου A success story: Waste management in UK. Γπ. Θάνορ Μποςπηζάλαρ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Instruction Execution Times

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 6: Working Capital

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

AKAΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Η ΧΡΗΣΗ ΒΙΟΚΑΥΣΙΜΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΛΕΟΝΕΚΤΗΜΑΤΑ-ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΠΡΟΟΠΤΙΚΕΣ

Σπανό Ιωάννη Α.Μ. 148

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΥΠΟΓΕΙΑΣ ΡΟΗΣ ΚΑΙ ΜΕΤΑΦΟΡΑΣ ΝΙΤΡΙΚΩΝ ΣΤΟΝ ΠΑΡΑΚΤΙΟ ΥΔΡΟΦΟΡΕΑ ΤΟΥ ΠΛΑΤΥ ΠΟΤΑΜΟΥ ΣΤΟ ΝΟΜΟ ΡΕΘΥΜΝΟΥ

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.

Study of urban housing development projects: The general planning of Alexandria City

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Μετρήσεις ηλιοφάνειας στην Κύπρο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ


Approximation of distance between locations on earth given by latitude and longitude

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

(Biomass utilization for electric energy production)

Πτυχιακή εργασία. Παραγωγή Βιοντίζελ από Χρησιμοποιημένα Έλαια

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΜΑΡΙΟΛΑΚΟΣ Η., ΦΟΥΝΤΟΥΛΗΣ Ι., ΣΠΥΡΙΔΩΝΟΣ Ε., ΑΝΔΡΕΑΔΑΚΗΣ Ε., ΚΑΠΟΥΡΑΝΗ, Ε.

«Έντυπο και ψηφιακό βιβλίο στη σύγχρονη εποχή: τάσεις στην παγκόσμια βιομηχανία».

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

Block Ciphers Modes. Ramki Thurimella

GREECE BULGARIA 6 th JOINT MONITORING

Faculty of Management and. Economics. Master s Thesis. Πορεία Ναύλων και Οικονομία: Παράγοντες που επηρεάζουν τους Δείκτες Ναύλων της Ναυτιλίας

Calculating the propagation delay of coaxial cable

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ

Επίδραση της Συμβολαιακής Γεωργίας στην Χρηματοοικονομική Διοίκηση των Επιχειρήσεων Τροφίμων. Ιωάννης Γκανάς

IMES DISCUSSION PAPER SERIES

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Μεταπτυχιακή διατριβή

þÿ ³¹µ¹½ º±¹ ±ÃÆ»µ¹± ÃÄ ÇÎÁ

ΔΗΜΙΟΥΡΓΙΑ ΔΥΝΑΜΙΚΟΥ ΜΟΝΤΕΛΟΥ ΑΝΟΔΙΚΗΣ ΠΡΟΣΕΓΓΙΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΤΗΣ ΖΗΤΗΣΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟΝ ΟΙΚΙΣΤΙΚΟ ΤΟΜΕΑ ΤΗΣ ΚΥΠΡΟΥ

The Simply Typed Lambda Calculus

ΚΛΙΜΑΤΙΚΕΣ ΑΛΛΑΓΕΣ IPCC WGII AR5. Summary for Policymakers. WGII AR5 Phase I Report Launch 1 31 March 2014

ΠΡΟΣΤΑΣΙΑ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΔΙΑΒΡΩΣΗΣ ΑΛΟΥΜΙΝΙΟΥ/ΑΝΟΔΙΩΣΗ Al

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Transcript:

ΑΝΘΡΩΠΙΝΑ ΔΙΚΤΥΑ ΕΡΕΥΝΗΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΠΙΜΟΡΦΩΣΗΣ «ΤΕΧΝΟΛΟΓΙΚΟ ΔΥΝΑΜΙΚΟ ΓΙΑ ΤΗΝ ΜΕΙΩΣΗ ΤΩΝ ΕΚΠΟΜΠΩΝ ΔΙΟΞΕΙΔΙΟΥ ΤΟΥ ΑΝΘΡΑΚΑ ΔΥΝΑΤΟΤΗΤΕΣ ΠΡΟΟΠΤΙΚΕΣ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ» Δρ. Ν. Κούκουζας Πτολεμαΐδα, Δεκέμβριος 2007

Content Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης / Climate change effects Potential of CCS technologies CO 2 capture technologies and Storage Options Trapping mechanisms Basin-Scale Screening criteria for CO2 geological Storage Types of CO2 Geological Storage Projects CO 2 geological storage potential

The increase of atmosphere s natural warming capacity - Global warming - is caused due to the increase of human-induced GHGs.

Greenhouse gas effects General temperature increase Ice/glacier/pole cap melting Rise in sea level/coastal flooding Change of ocean ph/ocean life Effect on ocean currents and related large scale climate Regional cloud formation, impact on weather conditions, precipitation changes, floods Severe sectorial meteorological changes, intense storms, extreme droughts

Contribution of different gases to the anthropogenic greenhouse effect

The greatest increase of CO2 emissions originates from power generation and transport In Europe Energy sector is responsible for 80% of the EU-greenhouse gas (GHG) emission 93% of the EU-CO2 emission million tonnes of CO 2 18 000 16 000 14 000 12 000 10 000 8 000 6 000 4 000 2 000 0 1990 2002 2010 2020 2030 Power Generation Other Transformation Industry Transport Other Sectors Source: IEA WEO 2004

By 2030 energy use forecast to grow by 60% World Primary Energy Demand Fossil fuels projected to remain dominant energy source accounting for almost 90% of the growth in energy demand Source: IEA WEO 2004

20 000 Global CO 2 emissions grow by about 60% by 2030 16 000 Mt of CO2 12 000 8 000 4 000 0 1970 1980 1990 2000 2010 2020 2030 OECD Transition economies Developing countries Source: IEA WEO 2004

CCS will plays a significant role in GHG mitigation 150 In the context of the long term objective of 60 per cent reduction by 2050 CCS is a medium term (2020-2030) technology. Worldwide CO2 emissions (billion ton CO2/year) 125 100 75 50 25 Energy efficiency Renewable energy CO2 capture and storage Fossil fuels 0 2000 2025 2050 2075 2100 Year Source: GESTCO project, Hendriks, Ecofys

Advantages of CCS technologies as a climate change mitigation option Continued use of available fossil fuel resources Sufficient storage capacity Capture technologies involve the highest costs associated with CCS BUT over the next decade the cost of capture could be reduced by 20 30 %. Health, safety and environment risks for geological storage are low, and the level of risk will decline over time. Potential bridging technology from a current fossil-fuel energy-based world to a renewable energy-based one in the future.

Capture Transport Geological Storage

Overview of CO2 Capture processes

Reservoirs and Seals In general a reservoir / seal pair consist of: Porous and permeable reservoir rock that can contain (a mixture of) gas and liquid - Rocks with porosity of typically 5-30% of volume of the rock Overlain by a seal ( non permeable rock) layer Typical seal permeability is < 0.001 md Typical Reservoir size is 0.05-50 50 km^3

Porosity is the storage space in the rock for fluids and is shown by the blue spaces in this photomicrograph of a thin slice through a reservoir sandstone. Permeability is a measure of the ability of the rock to allow fluid flow. Permeability is strongly affected by the geometry of the porosity inparticular thesizeofthespacesconnecting theporesintherock

Suitability of basins for CO2 geological storage Sedimentary basins are suitable for CO2 storage due to the right type of porous and permeable rocks for storage and injection, such as sandstones and carbonates, and the low permeability-toimpermeable rocks needed for sealing, such as shales and evaporitic beds. Igneous and metamorphic rocks generally are not suitable for CO2 storage because they do not possess the necessary porosity and permeability that would allow injection and storage.

Sandstone Roughly 20% of sedimentary rocks Consists mainly of quartz, sometimes feldspar and other minerals High permeability Medium porosity Often contain liquids or gases (water, oil or gas)

Shale (clay rich rocks) Most abundant sedimentary rock Originates from mechanical and chemical weathering of silicate minerals Transported by water and deposited in quit environments (lakes, floodplains) Very fine particles Very low permeability High porosity Often forms a sealing barrier to liquid movement

Limestone Roughly 20% of sedimentary rocks Originates mainly from the precipitation and accumulation of material of biochemical origin Consists mainly of the mineral calcite Transported and deposited in water Low to medium permeability High porosity

Rock salt Originates from the precipitation of minerals by the evaporation of seawater Consist mainly of the mineral halite very low permeability and porosity Flows plastically (with very little fracturing) when under pressure Tends to move upwards due to low density and form salt domes (m/year) Capable to serve as a lubricant or as an impermeable seal

Trapping mechanisms Hydrogeological trapping - traps the carbon dioxide into flow systems for geological periods of time Phase trapping;- strips out the CO2 as an immobile liquid or gas phase Geochemical trapping - converts the carbon dioxide to aqueous species and carbonate minerals rendering it immobile.

Hydrodynamic (hydrogeological) trapping in saline aquifers. Carbon dioxide can be injected into deep aquifers by displacing the saline formation water CO2 is expected to migrate under the force of buoyancy towards the surface If the aquifer is well-bounded by aquitards, migration of the CO2 would be slowly The time needed for a volume of fluid to reach the surface from the deep basin is measured on a geological time scale (more than 10 5 years) Migration paths in hydrodynamic traps in deep saline aquifers: a) trapping in regional-scale systems, b) in interconnected systems through faults and fractures

Geologic (hydrogeological) trapping in reservoirs structural traps (anticlines, unconformities or faults) stratigraphic traps (change in type of rock layer) Folding and anticlines Folding and anticlines Faults and unconformities

Phase Trapping In the case of injection of CO2, the water will reach irreducible saturation as the CO2 bubble displaces it. The CO2 will reach irreducible saturation after injection ceases and the natural flow of the aquifer displaces the CO2. Irreducible saturation for gases can range from 2 to 25%. Consequently, a CO2 bubble formed around the base of an injection well will be dispersed by any natural water flow through the porous media until all of the CO2 is trapped by stripping, through retention in the form of the irreducible saturation.

Geochemical trapping Adsorption the preferential adsorption of gaseous CO2 onto the coal matrix because of its higher affinity to coal than that of methane; Solubility up to 30% of injected CO2 will dissolve in the formation water for an engineering time scale; Ionic Silicate or carbonate minerals present in the aquifer neutralize the acid added to the formation water by the addition of CO2. These reactions fix the CO2 as an ionic species in the formation water. Mineral - Silicate minerals present in the aquifer neutralize the acid added to the formation water by the addition of CO2. These reactions can fix the CO2 as a mineral and result in permanent trapping.

Contribution of trapping mechanisms to the security of CO2 geological storage

Basin-Scale Screening Criteria Based on: Geological characteristics Hydrodynamic and geothermal regimes Basin resources and maturity Industry maturity and infrastructure Economic and societal aspects

More suitable sedimentary basins

Basin characteristics important for storage Adequate thickness >1000 m; Strong reservoir and seal pair; Not highly faulted, fractured or located in fold belts; Strongly harmonious sequences; No volcanogenic sediments; No significant diagenesis.

Geological characteristics important for CO2 storage sites Adequate porosity, thickness and permeability - The presence of a storage formation of adequate porosity and thickness (for capacity) and permeability (for injectivity) is critical. Depth greater than 800 m for CO2 in supercritical state Confining unit cap - shale, salt or anhydrite beds, to ensure CO2 storage and prevent its escape into overlying, shallower units and ultimately to the surface.

Cold Basins: Low surface temperature and/or geothermal gradients more favorable (higher CO2 density, at shallower depths) Warms basins: High surface temperature and geothermal gradients less favorable (lower CO2 density, larger depths needed Geothermal regimes

Basin Maturity Fossil-energy potential (oil and gas, coals) and degree of exploration and production Mature: Rich in Energy resources, advanced production Poor: No or poor in hydrocarbon resources

Industry Maturity and Infrastructure Developed continental basins: Access roads, pipelines, wells Developed marine basins: Drilling and production platforms

Economic and Societal Aspects Cost: Affected by basin location, marine or continental, climatic conditions, transportation distances, injection depth Legal: Jurisdiction over resources, liability, regulatory regime Public Acceptance Proximity to population centers, accept or reject projects

Prospective geological storage areas in sedimentary basins

How much storage potential is available? Study Location World - Koide 92 World - van der M eer 92 World - IEA 92 Wo rld - H endriks and B lo k 93 Wo rld - H endriks and B lo k 94 World - IEA 94 Wo rld - H endriks 94 World - Hendriks & Blok 95 World - Turkenburg 97 Wo rld - IP C C 01/A rc 00 World - ECOFYS & TNO-NITG 2002 Wo rld - B ruant 02 World 1 - GEOSEQ World 2 - Beecy & Kuuskra 01 World 3 - IEA Wo rld - D o o ley and F riedman World - ECOFYS Euro pe - van der Straaten Europe - Boe et al N W Euro pe - Jo ule R epo rt Western Europe - Dooley amd Friedman Eastern Europe - Dooley and Friedman Former Soviet Union - Dooley and Combined Europe - Dooley and Friedman Western Europe - ECOFYS Eastern Europe - ECOFYS Total Europe - ECOFYS USA - Bergman & Winter )M t Simo n Sandsto ne (Ohio )M t Simo n Sandsto ne (M idwest USA M t Simo n Sandsto ne USA - Dooley and Friedman USA - ECOFYS Alberta Basin (Canada) - Total Alberta Basin (Canada) - Viking Fmn C anada - D o o ley and F riedman C anada - EC OF YS Australia - Bradshaw et al 2002 Australia/NZ - Dooley and Friedman Oceania - ECOFYS Japan - ECOFYS Japan - Dooley and Friedman Japan From Bradshaw et al., 2005: Discussion Paper on CO 2 Storage Capacity Estimation CSLF Task Force on Capacity 1 10 100 1,000 GT CO 2 10,000 World WORLD: : 100-100 200,000-000 GT Europe : 1 2449 GT EUROPE: 1-2449 GT USA : 2 3747 GT USA: 2-3747 GT Canada : 2 4000+ GT CANADA: 2-4000+ GT Australia : 4 740 GT AUSTRALIA: 4-740 GT Japan : 0 80 GT JAPAN: 0-80 GT 100,000 1,000,000

Storage potential The potential storage capacity covers at least several decades of current global CO2 emissions (approx. 30 Gt CO2/year). The estimated range of the economic potential for CCS varies between 220-2200 Gt CO2, which would mean that 15-55% of the world-wide mitigation effort by 2100 could be achieved through the implementation of CCS. Gton CO 2 2050 1 Gton CO 2 2 Depleted oil fields 126-400 150-700 Depleted gas fields 800 500-1100 Enhanced oil recovery 61-6565 Unminable coal seams >15 >73 Saline aquifers* 400-10,000 320-10,000 1 Source: (IEA GHG, 2001) 2 Source: (Edmonds, 2000)

European geological storage capacity 200 to up to 1550 Gt CO2. 150 to 1500 Gt of CO2 in deep saline formations mainly in the North Sea. The total capacity of hydrocarbon fields is estimated at more than 40 Gt CO2, 7 Gt of which can be stored in oil reservoirs. The storage capacity of unmineable coal seams is estimated at 6 Gt CO2.

Enhanced oil recovery (EOR) CO2-EOR is applied on commercial scale in the USA, Canada, Turkey and Trinidad and Tobago. The majority of projects are situated in the Permian basin in the USA. Currently about 43 million tonnes/year of CO2 is being injected; the majority (~ 75%) being CO2 from geological reservoirs and the remaining part from industrial sources. CO2 injection into water flooded oil reservoirs could yield an extra of 4-12% OOIP oil production 40% of oil reserves can be recovered through primary (~25 to 30%) and secondary (~10%) processes. The use of CO2 can enhance the recovery of around 10 to 12% of the remaining oil.

By injecting CO2 into oil reservoirs oil is mobilized through miscible or immiscible displacement increasing oil recovery. Enhanced oil recovery (EOR) The average retention of the injected CO2 in several reservoirs is around 60% while 140-280 m3 of CO2 is required to produce 1barrel of oil.

Enhanced oil recovery (EOR) When introduced in the reservoir CO2 interacts chemically and physically with the reservoir rock and the contained oil, creating favourable conditions that improve oil recovery such as: (i) the reduction of the capillary forces that inhibit oil flow through the pores of the reservoir by reducing the interfacial tension between oil and the reservoir rock; (ii) the expansion of the volume of the oil (oil swelling) and the subsequent reduction of its viscosity; (iii) the development of favourable complex phase changes in the oil that increase its fluidity; (iv) the maintenance of favourable mobility characteristics for oil and CO2 to improve the volume sweep (replacement) efficiency.

Two processes for CO2-EOR: Enhanced oil recovery (EOR) Miscible displacement where the injected gas and the hydrocarbons are completely miscible and form a single-phase fluid. Immiscible displacement occurs at pressures below a minimum miscible pressure (MMP) of the oil, in which there is less interchange of components or mixing zones between the gas injected and the reservoir fluid.

Miscible CO2 displacement method A schematic of a WAG miscible CO2-EOR operation

Immiscible CO2 displacement method CO2 is typically injected in GSGI mode at slow rates at the crest of the reservoir aiming at filling the pore volume of the reservoir rock. The injected gas creates an artificial gas cap, pushing oil simultaneously downwards and towards the rim of the reservoir where the producing wells are located. The presence of water within the reservoir reduces the effectiveness of the process as it inhibits oil flow. This process may not be effective when applied after significant water flooding.

Immiscible displacement technique

Criteria Specific to Enhanced Oil Recovery Light oil (25 to 48 API) Reservoir pressure greater than Minimum Miscibility Pressure Preferably thin net pay (<20 m) Homogeneous reservoir

Enhanced Gas Recovery (EGR) Using CO2 for enhanced gas recovery (EGR) is a speculative method for repressurizing depleted gas fields that can be applied to certain fields when 80-90% of the gas has been produced. CO2 EGR has not yet been applied anywhere in the world.

Enhanced Gas Recovery (EGR) The injected CO2 will flow in the reservoir due to pressure and gravitational effects. CO2 is denser than CH4 at all relevant pressures and temperatures and will tend to flow downwards, displacing CH4 gas and repressurizing the reservoir Given an initial pressure of 120 bar, another 5-15% of the initial gas in place could be recovered using EGR. About 1.8 GJ of gas could be recovered per tonne of CO2 stored, if a whole reservoir was filled with CO2 up to its original pressure. The potential for CO2 use for EGR might be larger than for EOR but the EGR revenues per tonne of CO2 are lower than for EOR.

Enhanced Coal Bed Methane Projects (ECBM) Conventional coalbed methane recovery may achieve 40-50% recovery while the recovery increases to 90-100% in the case of ECBM. ( ECBM is limited to coal seams that will not be mined The technology is only in the demonstration phase

Enhanced Coal Bed Methane Projects (ECBM) Coal contains micro-pores (r = 0.4 1 nm) suitable for adsorption of gases, such as CO 2 (r = ca. 0.3 nm) Higher affinity to adsorb CO 2 than CH 4 One methane molecule can be replaced by at least two molecules of o CO 2 Ratio CO 2 /CH 4 depends on the maturity and type of coal Coal plastization and swelling can occur due to the presence of CO 2 and this reduces permeability

Enhanced Coal Bed Methane Projects (ECBM) Adsorption-desorption mechanism

Enhanced Coal Bed Methane Projects (ECBM) Adsorption of various gases on coal

Enhanced Coal Bed Methane Projects (ECBM) Factors affecting coal adsorption Coal rank Peat lignite bituminous coal anthracite Pore structure and size Moist content (rank dependent) Coal composition Presence of different macerals and minerals Moisture content Water molecules block adsorption sites of pore system ph change Temperature adsorption rates decrease with increasing T

Enhanced Coal Bed Methane Projects (ECBM) No clear whether supercritical CO2 is adsorbed by coal, occupies the pore space like a fluid with very low viscosity, or infuses into the coal matrix. Thus, CO2 is injected in gaseous phase. For hydrostatic conditions and average geothermal gradients this would correspond to depths in the 700-800 m range.

Enhanced Coal Bed Methane Projects (ECBM) CO2 adsorption related to pressure for wet and dry coal CO2 adsorbed [mmole/g coal daf] 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 2 4 6 8 10 12 Equilibrium Pressure [MPa]

Criteria Specific to Enhanced Coalbed Methane Recovery A homogeneous reservoir, laterally continuous and vertically isolated from surrounding strata; Minimally faulted and folded; At least 1-5 millidarcies (md) permeability. High methane content; Stratigraphically concentrated coal seams are preferred over multiple thin seams; A possibility to use or export methane (pipeline) and CO2 availability (local power plant, industry or pipeline).

CO2 storage in deep saline aquifers Saline Aquifers are defined as porous and permeable reservoir rocks that contain saline fluid in the pore spaces between the rock grains. They generally occur at depths greater than aquifers that contain potable water. Water in aquifers deep below the ground in sedimentary basins is confined by overlying and underlying aquitards and/or aquicludes, usually has a high content of dissolved solids (brackish water and brine) and may have been there for millions of years. Because of the confined character of these aquifers, they have been proposed as locations for CO2 storage.

CO2 storage in deep saline aquifers Storage in confined aquifers relies on trapping of the buoyant CO2 by structural (e.g. anticlines) and /or stratigraphic features, and is closely analogous to gas storage schemes in hydrocarbon fields, or indeed to natural gas storage in subsurface aquifers. In simple structural traps, volumes and migration pathways of the injected CO2 can be predicted and reservoir models constructed with a higher degree of certainty than in an unconfined aquifer.

CO2 storage in deep saline aquifers CO2 is injected into large aquifers without specific large structural or stratigraphic closures. The injected CO2 migrates upwards along the most permeable pathway until it reachs the impermeable cap rock. Next CO2 migrates laterally along the cap rock-reservoir reservoir boundary following the most permeable pathways where small domes and undulations trap effectively a proportion of the injected CO2, depending on the average roughness.

CO2 storage in deep saline aquifers As these minor structural closures are filled, the CO2 spills out and continues to migrate laterally. In unconfined aquifers over time the CO2 will likely be distributed over a large area and in low concentrations increasing thet volumes that can be stored in these small perturbations on the top reservoir surface. Because of the likely large migration path lengths, the component of storage due to dissolution is increased significantly and thus, probably in many cases with the absence of vertical migration pathways the CO2 is unlikely to reach the surface. This type of storage has been demonstrated at Sleipner

. Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης / Depleted oil and gas fields Established seal and trap.. These structures have effectively stored hydrocarbons for millions of years, proving the integrity of the reservoir seal and the permanence of the fluid trap. Existing Infrastructure.. Some of the equipment installed on the surface or underground for oil or gas recovery may be re-used for injecting and storing CO2 lowering the initial capital requirements for establishing the t CO2 storage facility. Value-Added Products: : The revenues derived from the additional oil production could offset some (or all) of the costs associated with CO2 storage. Legal barriers are less strict for the injection of CO2 into hydrocarbon reservoirs compared to aquifers. Injection of CO2 for EOR is not prohibited under the London and OSPAR treaties.

Advantages and disadvantages IEA, GHG, 2004

Maximum potential CO2 storage capacity in Prinos offshore depleted oil field compared to the annual emissions from major point sources. Oil field (10 6 t CO2) Total storage capacity (10 6 t CO2) Annual point source CO2 emissions (10 6 t CO2) Number of years storage capacity from current point sources (approx.) 17 17 43 0.3 (GESTCO PROJECT)

CO2 storage capacity in saline aquifers -Greece Aquifer Position Storage capacity (Mt CO2) Prinos W. Thessaloniki W. Thessaloniki sandstone offshore 1343 onshore 459 onshore 145 Alexandria Mesohellenic basin onshore 34 onshore 360 Total 2345 (GESTCO PROJECT)

Conclusions With appropriate site selection informed by available subsurface information, a monitoring program to detect problems, a regulatory system, and the appropriate use of remediation methods to stop or control CO2releases if they arise, the local health, safety, and environment risks of geological storage would be comparable to risks of current activities such as natural gas storage, EOR, anddeepundergrounddisposalofacidgas. IPCC, 2005