Some Microscopic Aspects of Double Beta Decay Nuclear Matrix Elements in IBM-2

Σχετικά έγγραφα
Electronic structure and spectroscopy of HBr and HBr +

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Derivation of Optical-Bloch Equations

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Fermion anticommutation relations

Lecture 21: Scattering and FGR

α - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Three coupled amplitudes for the πη, K K and πη channels without data

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Λιμνοποτάμιο Περιβάλλον και Οργανισμοί

Andreas Peters Regensburg Universtity

Local Approximation with Kernels

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Hartree-Fock Theory. Solving electronic structure problem on computers

Hadronic Tau Decays at BaBar

Nuclear Physics 5. Name: Date: 8 (1)

Table of Contents 1 Supplementary Data MCD

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Dark matter from Dark Energy-Baryonic Matter Couplings

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

NN scattering formulations without partial-wave decomposition

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Matrices and Determinants

2.1

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Parts Manual. Trio Mobile Surgery Platform. Model 1033

The Hartree-Fock Equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Reminders: linear functions

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

α & β spatial orbitals in

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

Higher Derivative Gravity Theories

APPLICATIONS TECHNOLOGY. Leaded Discs N.03 N.06 N.09

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

derivation of the Laplacian from rectangular to spherical coordinates

2 Composition. Invertible Mappings

S

X X (Knee) Knee Victor Franz Hess

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Variational Wavefunction for the Helium Atom

Spherical shell model

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

What happens when two or more waves overlap in a certain region of space at the same time?

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Second Order RLC Filters

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ELECTRONIC SUPPORTING INFORMATION

Solutions to Exercise Sheet 5

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Inverse trigonometric functions & General Solution of Trigonometric Equations

Transitions, Overlaps. Spectroscopic Factors

Other Test Constructions: Likelihood Ratio & Bayes Tests

TMA4115 Matematikk 3

P ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Computer No.53 (1992) IBM 650. Bacon TSS JRR-2.[1] free inductin decay IBM 7044 FACOM

«ΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΙ ΡΟΥΝ ΣΤΗΝ ΑΦΟΣΙΩΣΗ ΤΟΥ ΠΕΛΑΤΗ ΣΕ ΕΠΩΝΥΜΑ ΠΡΟΪΟΝΤΑ ΤΡΟΦΙΜΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΕΠΩΝΥΜΩΝ ΓΑΛΑΚΤΟΚΟΜΙΚΩΝ ΠΡΟΪΟΝΤΩΝ»

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

MSWD = 1.06, probability = 0.39

Aluminum Electrolytic Capacitors

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Electronic Supplementary Information (ESI)

Congruence Classes of Invertible Matrices of Order 3 over F 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

The Pohozaev identity for the fractional Laplacian

Space-Time Symmetries

Finite Field Problems: Solutions

Srednicki Chapter 55

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

ST5224: Advanced Statistical Theory II

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

Aluminum Electrolytic Capacitors (Large Can Type)

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö

Tridiagonal matrices. Gérard MEURANT. October, 2008

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Transcript:

Some Microscopic Aspects of Double Beta Decay Nuclear Matrix Elements in IBM- J. Barea 1 J. Kotila,3 F. Iachello 3 1 Departamento de Física, Universidad de Concepción, Chile Department of Physics, University of Jyväskylä, Finland 3 Sloane Physics Laboratory, Yale University, USA TRIUMF Double-Beta Decay Workshop May 11-13, 016, Vancouver, Canada

Contents 1 Double beta decay theory The interacting boson model 3 Results 4 The role of the single particle levels 5 Concluding remarks

Contents 1 Double beta decay theory The interacting boson model 3 Results 4 The role of the single particle levels 5 Concluding remarks

Halflives and NME [ τ (0ν) 1/ ] 1 G0ν M 0ν f (m i, U ei ), [ τ (ν) 1/ ] 1 Gν mec M ν, M 0ν M ν F ; J F h F 0ν + h GT 0ν F ; J F h F ν + h GT ν + h0ν T I ; 0 + 1 I ; 0 + 1 F,GT,T hx = 1 4 α πα π α ν α ν ( 1) J F,GT,T ( GX απα πα να ν; J ) J 1 + ( 1) J δ αν α ν 1 + ( 1) J δ απα π ( ) (J) π α π π ) (J) α ( ναν ν α π ν α ρ = (n ρl ρj ρ), ρ = ν, π, X = 0ν, 0ν h, ν Source: J. Barea and F. Iachello, PRC 79, 044301 (009)

Two body matrix elements I F,GT,T ( GX απ α πα ν α ν; J ) = α π α π; JM h F,GT,T X α ν α ν; JM F,GT,T h X h (s 1,s,λ) X = 1 τ n + τ + n n,n ( Σ (s 1) n Σ (s ) n ) (λ) HX (r nn )C (λ) (Ω nn ), h F h (0,0,0) X, h GT h (1,1,0) X, h T h (1,1,) 0ν Σ (0) n = 1, Σ (1) n = σ n, C (λ) (Ω) = 4π/ (λ + 1)Y (λ) (Ω)

Two body matrix elements II F,GT,T GX (α π α πα ν α ν; J; J) G (s 1,s,λ) X (α π α πα ν α ν; J; J) = lπ+lν l π +l ν kmax k 1 = l π l ν k = l π l ν k=k min i k 1 k +λˆk 1 ˆk k 10 k 0 λ0 { } { ( 1) s +k 1 k1 s 1 k ( 1) j π+j ν+j jπ j π } J ˆk jˆ π ĵ ν 1 1 s k λ 1 l π j π 1 l ν j ν s 1 k 1 k ˆk ˆ j πĵ ν j ν j ν k 1 l π j π 1 l ν j ν s k k Σ (s 1) 1 ( 1) k 1 lˆ π l π 0 k 1 0 l ν 0 ( 1) k l ˆ π l π0 k 0 l ν0 Σ (s ) 1 R (s 1,s,λ) X,k 1,k (n π, l π, n π, l π, n ν, l ν, n ν, l ν),

Radial Integrals 0 h (s 1,s,λ) X (p) p dp R (s 1,s,λ) X,k 1,k (n π, l π, n π, l π, n ν, l ν, n ν, l ν) = 0 0 R nπl π (r 1 ) R nνl ν (r 1 ) j k1 (pr 1 ) r 1 dr 1 R n π l π (r ) R n ν l ν (r ) j k (pr ) r dr h (s 1,s,λ) X (p) = v X (p) h (s 1,s,λ) (p) }{{} +HOC+FNS+SRC δ(p) for ν p 1 v X (p) = for light 0ν π p(p+ã) 1 π m em p for heavy 0ν ; HOC source: F. Šimkovic et al, PRC 60, 05550 (1999)

Contents 1 Double beta decay theory The interacting boson model 3 Results 4 The role of the single particle levels 5 Concluding remarks

The DBD transition operator in IBM- F,GT,T h = X α πα π α ν α ν J 1 4 ( 1)J F,GT,T G (α X πα ) π αν α ν ; J 1 + ( 1) J δ απ α 1 + ( 1) J δ π αν α ( ) ν (J) ) π απ (J) π α ( ν αν ν α π ν ( ) π απ (0) ( π Aαπ s απ π + A απ s π d π d ) (0) π +... ( ) () ( π απ π α B απ α π π d π + C απ α π s π s π d ) () π +... ) ( ( ναν ν (0) αν Ã αν s ν + Ã αν sν d ν d ) (0) ν +... ) () ( ) ( ν αν ν α B ν αν α d ν + C ν αν α d ν ν () sν sν +... Source: E. Caurier et al, PRL 100, 05503 (008) F,GT,T h X F,GT,T h s X,AA π,gt,t sν + hf d X,BB π d ν, where F,GT,T h X,AA F,GT,T h X,BB = α π α ν F,GT,T G (α X πα πα ν α ν ; 0) A απ Ã αν = 1 1 + δαπ α α π, α 1 + δαν π α ν π α ν, α ν F,GT,T ( G X απα π αν α ν ; ) B απ α B π αν α ν 0 Ν M GT 4 3 1 0 AA A 76 BB BC CB CC BD DB CD DC DD

Isospin correction of the transition operator Monopole term removed R (s 1,s,λ) X,k 1,k R (s 1,s,λ) X,k 1,k δ k1 0δ k 0δ λ0 δ απαν δ α π α ν R(s 1,s,0) X,0,0 Consequences: M F ν 0 and M F 0ν are strongly reduced M GT ν and M GT,T 0ν do not change

Contents 1 Double beta decay theory The interacting boson model 3 Results 4 The role of the single particle levels 5 Concluding remarks

NMEs for light neutrino exchange Source: J. Barea, J. Kotila and F. Iachello, PRC 91, 034304 (015)

NMEs for heavy neutrino exchange and β + β + /β + EC/ECEC decays

NMEs for sterile neutrino exchange [ τ (0ν) 1/ ] 1 G0ν (U en ) M 0ν (m N ) f (m N ) ; N v (p) = π p + mn f (m N ) = m N m e lim f (m N)v (p) = m N m N 0 m e ( lim f (m N)v (p) = mp m N m N π 1 ( p + mn + Ã ) ; 1 ( ) π p p + Ã ) 1 m em p J. Barea, J. Kotila and F. Iachello, PRD 9, 093001 (015)

Exclusion zones

Contents 1 Double beta decay theory The interacting boson model 3 Results 4 The role of the single particle levels 5 Concluding remarks

Occupations for 130 Te Energies from a Woods-Saxon potential for different radii

Sensitivity of the NMEs for A = 130

Occupations for 150 Nd

Sensitivity of the NMEs for A = 150

Realistic occupancies in 130 Te Orbital Neutron S.P.E. [MeV] Neutron Occupancies (calculated) Neutron Occupancies (experiment) 3s 1/ 0.33 1.737 1.50(0) d 3/ 0.000 3.046 d 5/ 1.655 5.81 8.55(0) 1g 7/.434 7.860 8 1h 11/ 0.070 9.536 9.8(3)

Contents 1 Double beta decay theory The interacting boson model 3 Results 4 The role of the single particle levels 5 Concluding remarks

Summary The formalism of the DBD in IBM- has been explained. The results obtained have been shown. The influence of the single particle levels has been investigated.

Summary Thank you for your attention!

Woods-Saxon potential parametrization The single particle energies were obtained diagonalizing the Woods-Saxon Hamiltonian H = T + V (r) + V so (r) + 1 (1 + τ 3) V C (r), where ( V V (r) = 1 + e r/a ; V = V 0 1 ± κ N Z ) ; N + Z ( ) V so (r) = λ V 1 + e r/a (σ p) ; We used the Blomqvist and Wahlborn parametrization for V 0, κ, a, λ, etc. The values of N and Z correspond to those of the most stable beta decay isobars for A = 100, 110, 10, 130, 140, 150, 160 Computer Code WSBETA, S. Cwiok et al, Comp. Phys. Commun. 46 (1987) 379.

High Order Corrections / Finite Nucleon Size New terms in GT and a Tensor contribution h F 0ν = h F VV h GT 0ν = h GT AA + hgt AP + hgt PP + hgt MM h T 0ν = h T AP + ht PP + ht MM Coupling constants become momentum dependent g V (p g ( V ) = ( ), MV = 0.71 GeV/c ) 1 + p MV g A (p ) = g A ( ), M A = 1, 09 GeV/c 1 + p MA

HOC + FNS Terms HOC term h(p) h F VV h GT AA h GT AP h GT PP h MM GT h AP T h PP T h MM T g A g A [ [ ga gv /g A (1+p /MV ) 4 ga 1 (1+p /MA) 4 1 p 3 (1+p /MA) 4 p +mπ 1 1 3 p +m π p (1+p /M [ A) g A 3 g V g A 1 ( ( κ β p (1+p /MV ) 4 4mp hap GT h GT PP 1 hgt MM ) ] 1 m π MA ) ] 1 m π MA ]

Short Range Correlations Jastrow function in coordinate space ψ SRC = f (r) ψ ψ SRC = f (r) ψ } ψ SRC H ψ SRC = ψf (r) H f (r) ψ H F,GT,T (r) H F,GT,T (r)f (r) f (r) = 1 Ce Ar ( 1 Br ) H F,GT (r) = H T (r) = 0 0 j 0 (pr)h F,GT,T (p)p dp j (pr)h T (p)p dp

SRC Parametrizations Name A (fm ) B (fm ) C Miller-Spencer 1.10 0.68 1.00 Argonne 1.59 1.45 0.9 CD-Bonn 1.5 1.88 0.46 Source: F. Šimkovic et al, Phys. Rev. C 79, 055501 (009)

IBM- and isospin For heavy nuclei the valence protons occupy orbits full of neutrons T ψ = 0 T = M T max = 1 N Z For nuclei where protons and neutrons are in the same major shell, but with different character as particles or holes, isospin symmetry is violated only of order For lighter nuclei IBM-3 and IBM-4 are required to produce states with definite isospin Source: J. P. Elliot, Prog. Part. Nucl. Phys. 5, 35 (1990) 1 Ω